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Article

A Conjecture on Large Prime Gaps
Huan Xiao

School of Artificial Intelligence, Zhuhai City Polytechnic, Zhuhai, China; xiaogo66@outlook.com

Abstract: We propose a conjecture on large prime gaps based on Littlewood’s oscillatory theorem.
While this conjecture is inconsistent with the classical conjecture of Cramér, we will provide evidences
to this new conjecture on large prime gaps.

Keywords: prime gaps

1. Prime Gaps
Throughout let p denote a prime number and let pn denote the n-th prime. Let x denote a positive

integer. The n-th prime gap is dn := pn+1 − pn. Let Ω± denote the big omega notation and O the big
O notation. For the basic theory on prime numbers see any standard books on prime number theory
and analytic number theory.

1.1. Small Prime Gaps

In 2005 Goldston, Pintz and Yıldırım [6] proved that

lim inf
n→∞

pn+1 − pn

log pn
= 0, (1)

and improved this bound a bit in [7]. By a refinement of the method of Goldston-Pintz-Yıldırım, Zhang
[16] proved that

lim inf
n→∞

(pn+1 − pn) < 7 · 107, (2)

which is the first result of bounded gaps between primes. Later on Maynard [10], Tao and the Polymath
Project [12] reduced the bound of Zhang. The current bound is the following

lim inf
n→∞

(pn+1 − pn) ≤ 246. (3)

These are the recent works towards to the old twin prime conjecture, which says that there are infinitely
many twin prime numbers. In general Polignac’s conjecture says that for every positive even integer
2k, there are infinitely many primes p such that p + 2k is also prime.

1.2. Large Prime Gaps

Unlike the case of small prime gaps, which has been made much progress in recent years. The
advance to the problem of large prime gaps is slow and it seems that studying the large prime gaps is
more difficult than the case of small gaps.

In 1930 Hoheisel [8] showed that there is a constant θ < 1 such that for sufficiently large n,

dn < pθ
n.

The current best result of this type is due to Baker, Harman and Pintz [1], who proved in 2001 that for
sufficiently large n,

dn < p0.525
n .
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It should be mentioned that assuming the Riemann hypothesis, H. Cramér proved [3] that dn =

O(
√

pn log pn), and thus
dn = O(p1/2+ε

n ) (4)

where ε > 0. We shall give a new proof of this estimate later.
Another type of results on large prime gaps was started by Westzynthius [15], who showed in

1931 that
lim sup

n→∞

dn

log pn
= ∞.

Later Rankin [14] improved this and proved that there is a c > 0 such that

dn >
c log n log log n log log log log n

(log log log n)2

holds infinitely often. The current record of this type is due to Ford, Green, Konyagin, Maynard and
Tao [5], who showed that

dn >
c log n log log n log log log log n

log log log n

holds infinitely often. This result improves the one of Westzynthius by logarithmic factors.

2. A New Proof of (4)
Recall that the first Chebyshev function [11] is define as

ϑ(x) = ∑
p≤x

log p.

It is well known [4] that the Riemann hypothesis is equivalent to that for ε > 0,

ϑ(x) = x + O
(

x1/2+ε
)

. (5)

In the following we give a new proof of (4) under the Riemann hypothesis.

Theorem 1 (Cramér). The Riemann hypothesis implies dn = O(p1/2+ε
n ).

Proof. By (5) the Riemann hypothesis implies that as x → ∞,

ϑ(x) = x + O
(

x1/2+ε
)

.

Thus we have as n → ∞,
ϑ(pn) = pn + O

(
p1/2+ε

n

)
, (6)

ϑ(pn+1 − 1) = pn+1 − 1 + O
(
(pn+1 − 1)1/2+ε

)
. (7)

Since ϑ(pn) = ϑ(pn+1 − 1), thus

pn + O
(

p1/2+ε
n

)
= pn+1 − 1 + O

(
(pn+1 − 1)1/2+ε

)
. (8)

Therefore
dn = O

(
p1/2+ε

n

)
− O

(
(pn+1 − 1)1/2+ε

)
. (9)

Notice that (pn+1 − 1)1/2+ε = O
(

p1/2+ε
n

)
since pn+1 < 2pn, we conclude

dn = O(p1/2+ε
n ). (10)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 May 2025 doi:10.20944/preprints202505.1939.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1939.v1
http://creativecommons.org/licenses/by/4.0/


3 of 6

3. Our Conjecture on Large Prime Gaps
Note that we let Ω± denote the big omega notation. The following is Littlewood’s oscillatory

theorem.

Theorem 2 ([9]). As x → ∞,
ϑ(x)− x = Ω±

(
x1/2 log log log x

)
.

By [11, p481, Exercise 15.2.1-5], the implicit constant in Littlewood’s theorem can be taken to be
1/2. There is a similar result for prime arguments and the implicit constant in this version can be taken
to be 1/4, followed from the proof of [2, Lemma 9.14].

Lemma 1 ([2, Lemma 9.14]). There are infinitely many primes p such that

ϑ(p) < p − 1
4
√

p log log log p,

and also infinitely many primes p such that

ϑ(p) > p +
1
4
√

p log log log p.

For the large prime gaps Cramér conjectured [3] that

lim sup
n→∞

dn

log2 pn
= 1 (11)

and it fits well for small prime numbers. Nevertheless in the theory of prime numbers, the oscillatory
phenomena often happens for large numbers. Examples include Skewes’s number and Littlewood’s
oscillatory theorem.

By Lemma 1 there are infinitely many primes p such that

ϑ(p) > p +
1
4
√

p log log log p,

and infinitely many primes p such that

ϑ(p) < p − 1
4
√

p log log log p.

Thus it is highly likely that there exists n such that

pn < ϑ(pn),

and

pn+1 > ϑ(pn+1) +
1
4
√

pn+1 log log log pn+1 = ϑ(pn) + log pn+1 +
1
4
√

pn+1 log log log pn+1.

If so, then dn > log pn+1 +
1
4
√

pn+1 log log log pn+1 which suggests the falsity of Cramér’s conjecture.

Based on the oscillatory property of ϑ(p)− p we propose the following conjecture.

Conjecture 3. There are infinitely many n such that

dn > log pn+1 +
1
4
√

pn+1 log log log pn+1 >
1
4
√

pn log log log pn. (12)
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In particular,

lim sup
n→∞

dn√
pn

= ∞, lim sup
n→∞

dn√
pn log log log pn

> 0. (13)

If this conjecture is true then Cramér’s theorem 1 indicates that the Riemann hypothesis implies
essentially the near best possible estimate of large prime gaps. In the next section we give two evidences
to our conjecture.

4. Evidences to Conjecture 3
4.1. First Evidence

Let
M(n) = max

0<i<n
pn−i pn+i.

Pomerance [13] proved that

lim sup
n→∞

p2
n − M(n)

log2 n
≥ 1. (14)

See [13, Theorem 3.1] and the remark that follows. He then made the following conjecture.

Conjecture 4 ([13], p.405, (5.4)).

lim sup
n→∞

p2
n − M(n)

pn
> 0. (15)

Pomerance noticed that this conjecture would be true from the proof of [13, Theorem 3.1], together
with an additional condition (see [13, p.405]). For simplicity we denote this additional condition by X.

Now let us assume that Conjecture 4 is true, then since pn+1 pn−1 ≤ M(n), we have

lim sup
n→∞

p2
n − pn+1 pn−1

pn
≥ lim sup

n→∞

p2
n − M(n)

pn
> 0. (16)

The left limit is

lim sup
n→∞

p2
n − pn+1 pn−1

pn
= lim sup

n→∞

p2
n − (pn + dn)(pn − dn−1)

pn
. (17)

Suppose there is an infinite subsequence of n for condition X that also satisfies

dn ≥ dn−1. (18)

Then

lim sup
n→∞

p2
n − (pn + dn)(pn − dn)

pn
≥ lim sup

n→∞

p2
n − (pn + dn)(pn − dn−1)

pn
> 0, (19)

and thus

lim sup
n→∞

d2
n

pn
> 0. (20)

To sum up under the condition X and the condition there is an infinite subsequence of n for condition
X that also satisfies (18) (both of which are likely to be true) , then there are infinitely many n such that

dn ≫ √
pn. (21)

4.2. Second Evidence

By (1) we have

lim inf
n→∞

pn+1 − pn√
pn+1

= 0. (22)
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If this fraction has a limit, that is if

lim
n→∞

pn+1 − pn√
pn+1

= 0, (23)

then let us see what will probably happen.
We recall the well known Stolz-Cesàro theorem.

Theorem 5 (Stolz-Cesàro). Let (an)n≥1 and (bn)n≥1 be two sequences of real numbers. Assume that (bn)n≥1

is a strictly monotone and divergent sequence and the following limit exists:

lim
n→∞

an − an−1

bn − bn−1
= k.

Then
lim

n→∞

an

bn
= k.

Thus

lim
n→∞

pn+1 − pn − (pn − pn−1)√
pn+1 −

√
pn

= 0 (24)

implies that

lim
n→∞

pn+1 − pn√
pn+1

= 0. (25)

We have
pn+1 − pn − (pn − pn−1)√

pn+1 −
√

pn
=

dn − dn−1√
pn + dn −

√
pn

>
dn − dn−1√

dn
. (26)

Suppose there is a sequence nℓ such that dnℓ−1 = o(dnℓ
) (which is likely true), then

lim sup
n→∞

pn+1 − pn − (pn − pn−1)√
pn+1 −

√
pn

≈
√

dnℓ
→ ∞, (27)

and thus (24) would be false. All the arguments provide evidence to Conjecture 3.
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