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Abstract: Numerous studies have linked short-term exposure to ambient air pollution with 

cardiopulmonary health outcomes, yet evidence regarding other health conditions remains limited. 

This study investigates associations between urban air pollutant concentrations and emergency 

department visits for a broader spectrum of health outcomes classified under ICD-10 Chapters II 

(neoplasms), III (blood diseases), IV (endocrine and metabolic disorders), and XVIII (symptoms and 

signs). Using a case-crossover design with conditional Poisson regression, relative risks were 

estimated for pollutant exposures, particularly nitrogen dioxide (NO₂), across multiple lag periods 

up to 14 days. The analysis incorporated stratified subgroup estimates, applying dynamic linear 

models and a novel transformation of pollutant concentration to better characterize concentration–

response relationships. Results demonstrate consistent positive associations between NO₂ levels and 

emergency visits across all studied chapters, with the strongest effects observed within 0 to 3 days 

after exposure. While cumulative concentration–response functions were not computed due to data 

limitations, the methodology presented offers a flexible framework for modeling temporal risk 

patterns. These findings suggest that air pollution impacts a wider range of health outcomes than 

traditionally recognized, highlighting the need for broader consideration in environmental health 

research and public health policy. 
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1. Introduction 

Historically, environmental epidemiology has focused predominantly on respiratory diseases. 

Over time, its scope has gradually expanded to include cardiovascular conditions, mental health 

disorders, human behavior, skin diseases, and other health outcomes. If the emerging hypothesis—

that air pollution affects nearly every organ in the human body—proves true, it could profoundly 

reshape the field [1]. This expanded understanding would not only redefine research priorities but 

also carry far-reaching implications for air pollution policy. 

There is growing evidence of a positive association between exposure to ambient air pollution 

and a wide range of health conditions, extending beyond the respiratory system. For instance, short-

term exposure to fine particulate matter (PM₂.₅)—particles with an aerodynamic diameter of 2.5 

micrometers or less—has been linked to increased hospital admissions across seven major disease 

categories: endocrine, nervous system, digestive, nutritional and metabolic, circulatory, respiratory, 

musculoskeletal and connective tissue, and genitourinary diseases [2–4]. 

Similar associations have been observed across 35 minor disease categories in relation to same-

day PM₂.₅ exposure, in both single- and two-pollutant models. These include conditions such as 

chronic skin ulcers, diabetes mellitus, anemia, liver disease, intestinal infections, gastrointestinal 

hemorrhage, urinary tract stones, renal failure, and back problems [5]. 
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Daily ambient exposure to air pollutants—including fine particulate matter (PM₂.₅), coarse 

particulate matter (PM₁₀), sulfur dioxide (SO₂), and ground-level ozone (O₃)—has also been positively 

associated with lung cancer mortality. According to the International Classification of Diseases, 10th 

Revision (ICD-10; WHO, 2016, [6]), this includes malignant neoplasms of the trachea (code C33) and 

of the bronchus and lung (code C34) [7,8]. These associations varied by city, season, pollutant levels, 

and weather conditions, with evidence of synergistic effects on daily lung cancer mortality. Older 

adults and male lung cancer patients appeared especially vulnerable. Additionally, short-term 

exposure to SO₂ was specifically linked to increased lung cancer mortality (ICD-10 codes C33–C34) 

among males, with notable seasonal variation [9]. 

In children under five, daily exposure to PM₂.₅ has been significantly associated with a higher 

prevalence of moderate to severe anemia (ICD-10 codes D50–D64) and reduced hemoglobin levels 

[9]. Among older adults, short-term exposure to PM₂.₅, carbon content in particulate matter, ultrafine 

particles, and accumulation mode particles has been linked to changes in blood parameters related 

to anemia (ICD-10 codes D50–D89), including red blood cell count, hemoglobin concentration, 

hematocrit, mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration 

(MCHC) [10]. 

Exposure to volatile organic compounds (VOCs), carbon monoxide (CO), and nitrogen dioxide 

(NO₂) has also been associated with an increased risk of primary hypothyroidism (ICD-10 code E03) 

among individuals living near petrochemical complexes [11]. Additionally, short-term exposure to 

PM₂.₅ (lag 0) has been linked to significant increases in hospital outpatient visits for endocrine 

disorders (ICD-10 codes E00–E90), as well as digestive, urological (ICD-10 codes R30–R39), and 

dermatological conditions [12]. 

Dust outbreaks characterized by high concentrations of PM₁₀ and PM₂.₅ have been significantly 

associated with increased emergency department visits for respiratory conditions (ICD-10 codes 

R04.2–R06, R09.0–R09.3, R09.89), particularly among individuals under five and over 65 years of age 

[13]. 

The relationships identified above for these health categories warrant further investigation into 

the impact of urban air pollution. One such study explored associations between concentrations of 

urban air pollutants and adverse health outcomes in Toronto, Canada [14]. Specifically, it assessed 

the short-term effects of exposure to ambient air pollutants on multiple disease categories. The study 

focused geographically on the Census Division (CD) of Toronto, Ontario, which, as of 2016, had a 

population of 2,731,571 and a population density of approximately 4,334 people per square kilometer. 

The study population included individuals who visited emergency departments (EDs) and resided 

within the Toronto CD. The study period spanned from April 2004 to December 2015. 

The health outcomes considered were classified according to the following ICD-10 categories 

[6]: 

(a) C00–D48: Neoplasms (Chapter II) 

(b) D50–D98: Diseases of the blood and blood-forming organs and certain disorders involving 

the immune mechanism (Chapter III) 

(c) E00–E90: Endocrine, nutritional, and metabolic diseases (Chapter IV) 

(d) R00–R99: Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere 

classified (Chapter XVIII) 

The primary aim of this study was to provide evidence that various health conditions—many of 

which have not been thoroughly studied—are associated with air pollution concentration levels. The 

study examined associations between specific health outcomes and air pollutants, their lag effects, 

and demographic subgroups such as age and sex, and also season. This resulted in the creation of 18 

strata categories, defined by sex (all, male, female), age group (under 11, 11–60, over 60), and season 

(warm period: April–September; cold period: October–March) [14]. 

The study employed well-established statistical methodologies and utilized reliable health and 

environmental datasets. Its findings contribute to a deeper understanding of the disease burden 

associated with acute fluctuations in urban air pollution levels. 
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2. Materials and Methods 

Data on six ambient air pollutants—carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), 

sulfur dioxide (SO₂), daily maximum 8-hour ozone (O₃H8), and fine particulate matter (PM₂.₅, with a 

diameter ≤2.5μm)—were compiled and merged with daily counts of ED visits [14]. Daily average 

concentrations were used to represent urban pollutant levels. 

Additionally, the Air Quality Health Index (AQHI) was calculated based on NO₂, O₃, and PM₂.₅ 

concentrations. The coefficients used in the AQHI formula were derived from mortality risks in large 

Canadian cities [15], and the values were calculated as follows: 

���� =
��

��.�
(��.������⋅��� + ��.������⋅�� + ��.������⋅���.� − 3). 

An alternative index (AQHIX) was also calculated, replacing O₃ with O₃H8 to emphasize ozone 

exposure. These two indexes were considered measures of exposure. 

A total of 2,160 statistical models (15 lags × 18 strata × 8 air pollutants or index values) were 

developed for a given ICD-10 chapter (Chapters II–IV and XVIII), following the model specification: 

ModelH = gnm(DCOUNT ~ AirPoll + ns(Temperature, 3) + ns(Humidity, 3)), 

Here, DCOUNT represents the daily counts for each stratum. A quasi-Poisson model was chosen 

to account for over dispersed count data. The Cluster variable refers to groups of days defined by the 

structure “year: month: day of the week.” The EDVisits dataset contains daily counts of emergency 

department visits, pollutant concentrations, weather variables, and date information (Cluster) [16,17]. 

The coefficients (Beta) and standard errors (SE) for the considered air pollutants and indexes 

were estimated using a case-crossover (CC) design [18,19]. This was implemented via the model 

above. In this classical CC approach, a time-stratified technique was applied to define controls for 

cases. The Cluster variable grouped days belonging to the same month and weekday. The CC design 

inherently adjusts for time-invariant characteristics such as chronic health conditions or 

socioeconomic status. 

Only two values from the model—the coefficients (Beta) and standard errors (SE)—were used 

in the study. The primary objective was to develop concentration–response functions (C-RFs). 

Nonlinear functions were constructed to represent the relative risks (RR) associated with lagged 

exposures. Lags from 0 to 14 days were considered, i.e., from the same day of exposure up to two 

weeks prior. 

The primary outputs of the model were the estimated slope (β) and its standard error (SE). These 

values were used to compute relative risks (RR) and the corresponding 95% confidence intervals (95% 

CI), quantifying the health impact of air pollutant exposure. Relative risk was calculated for a 10-unit 

increase in pollutant concentration using the formula: 

�� = ��∗�� 

The 95% confidence interval was calculated as: 

��(���.��∗��)∗��, �(���.��∗��)∗���. 

In the second methodological step, RR values were modeled as a function of lag time using a 

nonlinear cubic polynomial function of the form: 

��(�) = � ∗ �� + � ∗ �� + � ∗ � + �, 

where x represents the lag in days (ranging from 0 to 14). The coefficients of the polynomial were 

estimated using the nlsLM function in R, which applies a nonlinear least squares optimization 

algorithm [20]. This approach enabled a detailed characterization of the temporal pattern of relative 

risk following exposure. 

The data used, R scripts, and example results are available at the following location: 

https://github.com/szyszkowiczm/ICD10-C00D48-D50D89-E00E90-R00R99TORONTO_META. This 

repository allows for verification of the presented results and also provides the ability to obtain RR 

model coefficients as a function of lag for various combinations. 

3. Results 
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The results are presented in two stages. In the first stage, the distribution of the estimated 

coefficients is shown using boxplots. This graphical presentation allows for visual identification of 

associations and how they change across the applied lag periods. 

Figures 1–4 provide a graphical summary of the results. Each figure displays 2,160 values, 

organized by air pollutant, stratification group, and lag period. The second stage of the analysis 

focuses on the analytical representation of risks. Using the estimated coefficients (Beta), relative risk 

functions RR(x) were derived. Importantly, these functions incorporate information from a set of 18 

values corresponding to individual strata. 

 

Figure 1. Distribution of coefficients (Beta) for air pollutants — Chapter II: C00–D48. 
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Figure 2. Distribution of coefficients (Beta) for air pollutants — Chapter III: D50–D89. 

 

Figure 3. Distribution of coefficients (Beta) for air pollutants — Chapter IV: E00–E99. 

 

Figure 4. Distribution of coefficients (Beta) for air pollutants — Chapter XVIII: R00–R99. 

Figure 5 indicates that exposure on the same day or 1–2 days prior to the emergency department 

(ED) visit has the greatest health impact. For lag 0 (same-day exposure), the estimated relative risks 

(RR) are approximately 1.08, 1.04, 1.02, and 1.09 for Chapters II, III, IV, and XVIII, respectively. In 

contrast, for the longest lag periods, the associations diminish and are no longer statistically 

significant. 
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Figure 5. Estimated relative risks (RR, black) along with their lower (blue) and upper (red) 95% confidence 

bounds for four disease categories. The points represent the median RR values. Estimates are presented for 

nitrogen dioxide (NO₂) concentration levels. 

4. Discussion 

Numerous studies have demonstrated positive correlations between short-term changes in 

ambient air pollution levels and cardiopulmonary health outcomes. The large number of related 

publications reflects the strong focus on this topic within thematic and cause-specific research [1]. 

The ratio of studies related to pulmonary versus cardiac outcomes highlights a traditional 

assumption in environmental epidemiology — namely, that “inhalation of polluted air affects the 

human respiratory system.” 

A recent PubMed search using the keywords “air pollution pulmonary” yielded over 14,795 

results, while “air pollution cardiac” returned 4,971 results. In contrast, a search for “air pollution 

depression” produced 934 results, and “air pollution mental” returned 1,580 results. These 

publication counts clearly illustrate the current research emphasis in the field of environmental 

health. 

The present study examines four broad groups of health conditions, each corresponding to a 

specific chapter of the ICD-10 classification [6,14]. Although these health outcomes differ in nature, 

they were all analyzed using the same environmental exposure data and a consistent statistical 

methodology. This unified approach enables both the identification and comparison of effects across 

different health conditions. The aim is to demonstrate that, beyond traditionally studied diseases, 

other conditions may also be linked to ambient air pollution exposure. The results reveal consistent 

associations across all condition categories, particularly for lag periods ranging from 0 to 3 or 4 days. 

The applied method is a case-control design based on a log-linear model. Consequently, relative 

risk is estimated using an exponential function: RR = exp(β × concentration). This model determines 

the concentration–response function (C-RF). The results shown in Figure 5 allow the tabulation of C-

RFs for selected pollutant levels. These results also incorporate stratified data. Specifically, the 

median values from 18 estimation strata are used. 
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Several methodological techniques underpin this analysis. Little introduced the ADMODEL, a 

formal advertising response model incorporating distributed lag structures to account for delayed 

and cumulative effects of advertising on sales [21]. Over the years, various functional forms of 

distributed lag models have been developed to capture the decay patterns of such effects. 

The first applications of dynamic linear models (DLMs) to air pollution and health outcomes 

appeared in the late 1990s and early 2000s. These foundational and highly cited studies marked the 

beginning of efforts to model short-term effects of air pollution on mortality and hospital admissions, 

while better capturing temporal dynamics and uncertainty than traditional models [22]. 

Since then, DLMs have been increasingly employed in environmental epidemiology to assess 

short-term effects of air pollution on emergency department (ED) visits. These models provide a 

flexible framework to capture time-varying associations between pollutant exposure and health 

outcomes, while accounting for temporal trends, seasonality, and autocorrelation. The technique has 

also been adapted for stratified or subgroup analyses. Researchers either stratify populations or 

include interaction terms in DLMs — or in extended forms such as distributed lag nonlinear models 

(DLNMs) — to assess heterogeneous effects [23,24]. 

In the current study, the model was used to compute responses to ambient nitrogen dioxide 

(NO₂) exposure (Figure 5). Let Z denote NO₂ concentration levels. Traditionally, such a crude variable 

is directly entered into statistical models to assess its relationship with health outcomes, yielding a 

C-RF of the form: C-RF(Z) = exp(β × Z) 

For each lag period, a separate coefficient β is estimated, and the corresponding C-RF is derived. 

In this study, the models also incorporate stratified results — specifically, the medians from 18 

subgroup estimates. 

To better highlight the shape of the response function around average pollutant concentrations 

and reduce the influence of extreme values, the following transformation of Z is proposed: 

�(�) = �(�) ∗ ���(�), 

where �(�) = ��� (� +
�

�
) and LWF(Z) is a logistic weighted function: 

���(�) =
1

�1 + �
���
�∗� �

. 

In this formula, parameters A, μ, and τ control the shape of the transformation T(Z). The constant 

r is the range of Z, μ is a location parameter, and τ controls the curvature of the logistic function 

[25,26]. Model fitting involves estimating these parameters to optimize the goodness of fit of T(Z) 

within a linear combination of predictors. The estimation is performed using conditional Poisson 

regression (via the gnm model), within a case-crossover framework. Model quality can be assessed 

using the Akaike Information Criterion (AIC). 

Given the log-linear nature of the model, the final concentration–response function takes the 

form: 

� − ��(�) = ����� ∗ �(�)� 

Here, β is estimated jointly with the parameters defining the transformation T(Z). Once a series 

of C-RFs for statistically significant lags (p-value < 0.05) has been estimated, they can be aggregated 

into a single function with a common parametric form. This can be accomplished using least-squares 

approximation. The resulting parameters — A, μ, τ, and β — describe a response function 

representing the cumulative health risk associated with recent pollutant exposure. 

This technique, however, is not implemented in the current study due to lack of access to raw 

data, including ED visits, air pollution levels, and weather variables. The method is instead described 

here as a possible alternative approach. Typically, such models provide more accurate fits of C-RFs 

and allow for better identification of potential exposure thresholds due to their flexibility. 

5. Conclusions 
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This work contributes additional evidence that health outcomes classified under ICD-10 

Chapters II–IV and XVIII are associated with ambient air pollution levels. The proposed technique 

enables the implementation of dynamic linear models and the integration of estimates obtained 

across various subgroups. The presented methodology shows promise for further research and 

application in environmental epidemiology. 
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