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Abstract: In this article, the problem of Planck length is considered in the language of metric geometry.
To do this, we explicitly construct a geodesic in the Gromov-Hausdorff space of isometry classes of
compact metric spaces connecting a non-Archimedean space with an Archimedean one.
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1. The Planck Length Problem

The Planck length is the following combination of fundamental constants, having the dimension

of length:
hG
Numerical value of the Planck length is £p; ~ 1.61 - 10~33cm.

The physical meaning of the Planck length is as follows. This is a scale on which it is fundamentally
impossible to consider the theory of gravity without taking into account the quantum effects [1], since
it is on the Planck scale that the values with the dimension of length inherent for gravity theory (the
Schwarzschild radius of a spherically symmetric black hole) coincide with those for quantum theory
(the Compton wavelength). Really, the Compton wavelength is given by the expression

h
Ac=—
C mc’
and the Schwarzschild radius is
2Gm
rg - CT
It is easy to see that the equality takes place:
Acr
2 c'g
ePl = 2

The appearance of a black hole on Planck scales does not allow us to obtain information about the
structure of space on scales smaller than the Planck length.

In [2], it was conjectured that this kind of effect is associated with a fundamental change in the
geometry of space on the Planck scale. Namely, the existence of unmeasurable regions of space is
the result of a violation of Archimedes’” axiom (the axiom of measurability) in Euclidean geometry. A
conjecture about the non-Archimedean nature of space on Planck scales was formulated. This gave
rise to the development of a new field in mathematical physics [3,4].

However, the question of the mechanism of changing the metric from Archimedean to non-
Archimedean remains open. In this paper, an attempt is made to construct a model of metric change
using the apparatus of metric geometry. Namely, a geodesic in the Gromov-Hausdorff space connecting
ultrametric and ordinary metric spaces will be explicitly constructed. As a model example of an
ultrametric space, we will consider the set Z;, of p-adic integers with a metric generated by the
standard p-adic norm; as a model example of an ordinary metric space, we will choose the unit
segment [0, 1] C R with a standard metric generated by the absolute value.
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2. Metric Geometry. Basic Notions
A metric space is a pair X = (X, dx), where X is a set, dx is a metric on X, that is, a mapping
dx: X x X — [0, c0) satisfying the conditions:
o dy(x,x')=0 <= x=1/;
o dy(x,x") =dx(x',x);
o dx(x,x") <dx(x,x") +dx(x,x").
If d satisfies the condition dx(x, x”) < max{dx(x,x’),dx(x’,x”)} then this is ultrametric, the
space (X, dx) is ultrametric (or non-Archimedean).
Important examples for the future are the following.
e 1=101],dr(x,x") = |x —x'| - Archimedean space;
*  Zp,dyg,(x,x") = |x — x'|p —non-Archimedean space;
o Aw=A{x1,.. - xm},dp,(x;,x)) =1Li#j,i,j=12,...,m~simplex.
We define two operations on metric spaces: direct product and dilation.

Direct product (X X Y, dx«y) of the metric spaces X and Y is the Cartesian product of X x Y with
the metric given by the expression

dxxy (2, y), (+,y') = max{dx (x,x'), dy(y,y") }-

Let A € Ry be a positive real number. The space AX obtained from the space (X, dx) by dilation the
metric has the form:
AX = (X, Adx).

Let (X, d) be a metric space and H = H(X) be a set of compact subsets of X. We define the metric
(Hausdorff metric) dy on H.
Let A, B € H(X),

dp(A,B) =inf{e > 0: B C Ue(A) and A C Uc(B)},

where Us(A) = {x € X: d(x,A) <€}

(H(X),dpy) is a metric space, and it is true that H(X) is compact if and only if X is compact.

By means of GH, we denote the set of isometric classes of compact metric spaces. We introduce
the metric on the set GH as follows [5,6].

The realization of the pair X, Y of compact metric spaces is called the triple (Z, X, Y'), where Z is
a metric space, X' C Z, Y C Z, X, Y are isometric to X', Y/, respectively, and dz|x = dx,dz|y = dy.

dou(X,Y) = inf dy (X', Y.
ol ) realizations of X,Y ( )

(GH, dgp) is a complete separable metric space.

3. Calculation of Distances

The following Theorems are valid.

Theorem 1. 1
deu(l, Zy) = 5

Theorem 2. Let X be a connected compact metric space, diamX = 1. Then we have:

1
deu(X, Zy) = >
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Theorem 3. Let k be a positive integer such that the inequalities p* < q < p**' are satisfied. Then equality is
valid: 1
2dcu(Zp, Zq) =1 — —.

p

A subset of R(X,Y) C X x Y of the direct product of the sets X and Y is called a correspondence
if the projections of this subset onto the components of the product are surjective: pryR(X,Y) =
X, pryR(X,Y) =Y.

The distortion distR(X, Y) of a corresponence R(X, Y) is the following number:

distR(X,Y) = sup |dx (x,x") —dy(v,y)|
(xy)(x y)ER(X)Y)

The following statement [6] is true:

dea(X,Y) = inf distR(X,Y).

1
2 correspondences R(X,Y)

This statement provides a convenient way to calculate distances in the Gromov-Hausdorff space.
Here are some simple examples.

Example 1. Let R(X,Y) = X x Y, then
distR(X,Y) = max{diamX, diamY}.

Therefore,
2dgy(X,Y) < max{diamX, diamY}.

Example 2. 2dgy (X, A1) = diamX. Using the triangle inequality

deu(X, A1) <dgu(X,Y) +dgu(Y, M),

we get:
2dgy(X,Y) > |diamX — diamY]|.

Example 3. Let f: X — Y be surjective. Then the graph {(x, f(x)),x € X} is a correspondence.

There are two important points:

* thereis (not unique) optimal correspondence
Ropt(X/ Y) . 2dGH = diSthpt(X, Y),

*  to calculate distances in the Gromov-Hausdorff space, it is enough to consider only closed
correspondences.

Proof of Theorem 1. Let R(Zy,I) be an arbitrary closed correspondence. Let’s consider Z, as
a disjoint union of p balls of radius 1/p, Z, = I—li:l,...,pBi /p The family of subsets I of the form
{pr;R(B! jpr)ii=1,..., p} forms a covering of the segment I by closed subsets. Since Il is connected,
at least two sets of our coverage have a common point. The projections on Z, of the preimages
of this common point lie in different balls B; and B;. Therefore, the distance in Z, between the
projections of the preimages is equal to one. Thus, distR(Zp,I) > 1. Since this is true for any
correspondence, choosing the optimal one yields 2d (Zp,I) > 1. On the other hand, 2dcp(Zy,I) <
max{diam Z,, diaml} = 1.

Since we used only the connectivity of the space I, the same proof works in the case of Theorem 2.

Proof of Theorem 3.
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Let N be a positive integer. Let’s consider Z, as a disjoint union of p™ balls of radius e = p~ .

)

consisting of p points, is provided with the metric dy, induced by the metric on Z,. As a result,

we get the metric space (XI(\;7 ), dy). It is useful to note that the space Xgp ) is nothing but a simplex of

We will choose one point in each ball of the constructed partition. The set X 1(\’;7 obtained in this way,

Ap. Note that the Hausdorff distance between Z;, and X 1(\57 ) is equal to €. This immediately implies
the validity of the evaluation of dgy(Zy, X 1(\’;7 )) < e (it suffices to consider the realization of the pair
(Zp, X)) of the form Z = Z,, = Y/, X' = XI)).

The following simple Lemma follows from the triangle inequality.
Lemma 1. For any metric compact X, the inequality holds:
don (X, Zy) — don(X, XY < p~V.

Let MST(XZ(\f )) be the minimum spanning tree of a finite metric space Xz(\? ), By means of O'(XI(\? ) ),

()

we denote the mst-spectrum of the space X);’, that is, the sequence of edge lengths of the minimum
spanning tree in decreasing order. The following Lemma is valid.

Lemma 2.

1 11 1 1 1
o ?,...,7,?,...,P...,pNil,...,W

p(p—1) p2(p—1) pN-1(p-1)

Let’s decompose Z, into a disjoint union of p balls of radius 1/p: Z, = U/'B} /p In each of the

partition balls, we will choose one element from the set X%’ ). The pairwise distances between the

various elements of this set are equal to one, that is, it is a simplex A,. It follows directly from this
that MST(XI(\?)) has exactly p — 1 edge of length 1. Now each of the balls Bi/p,i =1,2,...,pof our

partition let’s decompose into disjoint union of p balls of radius 1/ p? (in total, we get p? balls of radius
1/ p2) and let’s do a similar reasoning for each of these balls. Continuing these arguments N times, we
obtain the statement of the Lemma.

To further prove of Theorem 3, we first prove the estimate from below:

1
1—- J < ZdGH(Zpqu)‘

From the triangle inequality for the spaces Z,, Z,, A we obtain:
deu(Zyp Zg) > dGH(Apk,Zq) - dGH(Apk,ZP).

Next, we will use the results of [7] (Theorem 3.3). The above theorem states, in particular, the
following:
2dGH(Am1 X) = max{(fl — 1,0’m, 1-— O'm_l},

where X is a finite ultrametric space consisting of n points, and 1 < m < n.
Let’s choose a positive integer N, g < pN. Then the equality

ZdGH(Apk/XI(\?)) =1

is valid, because 01 = 01 = 0, = 1. In addition, the following equality is true

2dcu (A X)) = 1/pF,
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because in this case o1 = 0,1 = 1 and 0, = 1/ pk. Taking into account the last equalities for
sufficiently large N, we obtain the required estimate from below.

To obtain an estimate from above, we construct the correspondence R(Zp,Z;) explicitly and
calculate its distortion.

Let’s represent the number g as the sum of positive integers of the following form:

I=q+qm+ . 1<q<p i=12..p"

Note that in this representation, at least one of the terms is not equal to 1 (since p* < ).
Let’s decompose Z, into a disjoint union of p* balls of radius p~*:

P* g
Zp == Uilep,k.

Let’s represent Z, as a disjoint union of balls of radius g~ ! in accordance with the above decomposition
of the number g:

_ M

i 492 i Tk ik
11:1Bq*1 |_|i2:1 Bq*1 u11:1 qul‘

Since any compact totally disconnected spaces are homeomorphic, there exists a homeomorphism
¢: Zg — Zp such thatforall j =1,2,... p* the conditions

(i) =5

are fulfilled.

As the desired correspondence, R(Zy, Zy) let’s take the graph of the map ¢.

We'll show that the distortion of this correspondence is 1 — ﬁ

Letx,x' € Zg: |[x —x'|; < %, then the inequality |¢p(x) — ¢(x')[, < ﬁ is fulfilled by the definition
of the map ¢. Indeed, the inequality |x — x'|; < % means that x and x’ lie inside a ball of radius 1/¢,
and the image of each such ball lies inside a ball of radius 1/ pk in Zy. Therefore, for all such x and X/,
the inequality ||x — x'|; — |¢(x) — ¢(x")|| < p~* holds.

Now let x and x’ lie in different balls of radius 1/4 in Z; (in this case, |x — x’[; = 1). There are
two possible cases here. The first is when x and x’ lie in different groups of balls, and the second is
when they lie in the same group of balls.

In the first case, we have |[¢(x) — ¢(x')], > p~¥*1, since ¢(x) and ¢(x") lie in different balls of
radius p~* in Zy. Therefore, the inequality

[ =l = (x) = p(x)][| <1—p~*H

holds.

In the second case, |¢(x) — ¢(x")|, < p~*, since ¢(x) and $(x’) lie in the same ball of radius p~*
inZp.

Now we will impose an additional condition on the map ¢. As noted earlier, in our partition of
a set consisting of g balls of radius 1/4 in Z, into pk groups of balls, there are groups (at least one)
consisting of g balls such that the inequalities 2 < g; < p are satisfied. The image of each such group
under the map ¢, is a ball of radius p~¥ in Zy (each group has its own). Let’s decompose this ball into
a disjoint union of p balls of radius p~*~1, and divide this set into g; groups (recall that g; < p). We
will construct the map ¢ in such a way that each of the gj balls is mapped into its own group. In this
case, if x and x’ lie in different balls from the group of g balls, then their images lie in different balls of
radius p~*~! inside a ball of radius p~* and, thus, |¢(x) — ¢(x")|, = p~*.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Thus, we have obtained the following properties of the map ¢:

—_

/ / 1 . /
[lx = lg = l9(x) = p(x)], Sﬁflflx—xhﬁ —

-

and in the case of [x — x'[; = 1:

1

be= Iy~ 19(0) =9yl <1~ ey
or 1
e = ly = 609 =9y =1~ 5

It follows directly from the last formulas that the graph of the constructed map ¢ has a distortion
equal to 1 — # Therefore, the inequality is valid 2dgy (Zp, Zq) <1- # The theorem has been
proved.

4. Geodesics

Note that the correspondence constructed during the proof of theorem 3 (the graph of the map
¢: Zy — 7Zyp) is optimal.

It is not difficult to construct an optimal correspondence R(Zy, I) between Z,, and the unit interval
L

As such a correspondence, consider the graph of the Monna map.

LetZy, > x=xo+x1p+.. . xxp* +.... The Monna map y: Zp — lis given by the expression

1 _ _
y(x):;(xg—i—xlp 1+~~—|—xkp k...).

Calculate the distortion of the Monna map’s graph. Let x,x" € Z: |x — x|, = p~". This means that

!
n—1/

X0 = X, X1 = X},...,Xn_1 = X|,_q1, Xy # X},. Then the inequality is valid

—n

u(x) = p(x)[ < p

Therefore, for all x,x’: |x — x'| < 1, the estimate

[|x = x| = |p(x) —u(x")|| <1/p

is valid.
Now let |x — x'|, =1, that is, xg # x{. Let xg > x{, be for certainty, then (x — x")y = xy — x( and
the inequalities are valid
xp — X/ xo—xh+1
=2 < () - p)] < =
p p
It immediately follows that the distortion of the Monna map’s graph is 1 — % Taking into account
theorem 1, it can be concluded that the Monna map’s graph defines the optimal correspondence
between Z, and L.
Our task is to construct a geodesic connecting Z, and I in the Gromov-Hausdorff space. To do
this, we will use the following result from the paper [8]:

Proposition 1. Let (X, dx), (Y, dy) be compact metric spaces, then for any optimal correspondence Ropt(X,Y')
there is a family of compact metric spaces R; such that Ry = X, Ry = Y and for t € (0,1) Ry =
(Ropt(X,Y), dy), where

di((x,y), (<) = (1= )dx (x,x") + tdy (v,y)

defines the shortest curve in GH connecting the spaces X and Y.
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Thus, the following statement is true.

Theorem 4. The family of spaces (Zy,do = | - |p), (Ty,d), (I, dy = | -|), where T, C Z, x1 denotes the
graph of the Monna map,

de((x, u(x)), (v, u(y))) = (1 = t)|x —ylp +t{u(x) —pu(y)l, t € (0,1),

defines the shortest curve connecting Z, and I in the Gromov-Hausdorff space.

A geodesic connecting Zy, and Z, is constructed in a similar way. To do this, instead of the graph
of the Monna map, we need to take the graph of the map ¢ from the proof of theorem 3.
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