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Abstract: This paper derives the fundamental physical constants from a projection-based
informational framework in which spacetime and its fields emerge from constraint-governed
realization of identity structures defined in a non-metric domain, Q. In this ontology, identity
signatures o € () are timeless latent configurations, and projection IT: & — M is governed by
compatibility with constraint classes € ¢ Q". The projection process is characterized by intrinsic
latency 7, curvature x, and an impedance tensor Z,v, which together define the emergent geometry
of observable physics. Constants such as Planck’s constant % Newton’'s constant G, vacuum
permittivity &, permeability u,, elementary charge e and the fine-structure constant a are shown to
arise as invariant features of constraint-saturated projection. /corresponds to minimal 7-x coupling,
G quantifies curvature response to projection strain, and &, t represent electric and magnetic
admittances of projection. The fine-structure constant emerges as a ratio of structural asymmetry to
projection granularity. These results reinterpret fundamental constants as necessary consequences
of the informational structure underlying spacetime and not as empirical parameters. The
framework unifies dimensional and dimensionless constants within a single ontological model,
suggesting that the laws of physics reflect structural limits of admissible identity realization rather
than imposed dynamical axioms.

Keywords: emergent spacetime; fundamental constants; projection geometry; informational
ontology; constraint-based physics

1. Introduction

The idea that spacetime and its structure may emerge from a deeper, non-geometric substrate
has gained significant traction in theoretical physics. Notable approaches, such as causal set theory,
holographic duality, and quantum information geometry, seek to reconstruct continuum physics
from primitive, often informational, building blocks [1-3]. These models share a core aim: to
understand the origin of geometry, fields, and physical law from a more fundamental level. Among
the persistent mysteries in physics, the dimensionless fine-structure constant @ = 1/137 stands out
[4]. It appears across domains, from quantum electrodynamics to atomic structure, yet its value
remains unexplained. Why this number unites the quantum of action 7, the speed of light ¢, vacuum
impedance (&, o), and the elementary charge ehas no established theoretical basis.

The present work builds upon the Q-dimension framework developed in earlier studies [5,6], in
which spacetime and its physical content emerge through constraint-governed projection from a non-
metric identity domain Q. Identity signatures ¢ € § represent latent, timeless structures whose
realization as fields or particles depends on compatibility with constraint classes € ¢ Q". Observable
entities arise via projection II: Q) — M, as constraint-satisfying instantiations and not as dynamic
evolutions. Unlike causal set theory [1], where causality orders discrete events, the Q-framework
defines causality as a structural precedence relation among projections, grounded in identity
coherence. In contrast to holographic duality [2], no boundary manifold or conformal field theory is
assumed. Spacetime structure emerges through projection geometry. While tensor network models
[3] link geometry to entanglement, we reinterpret entanglement as a byproduct of non-factorizable
constraint structure in Q. This study demonstrates that key physical constants, including 7, &, &, o,
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¢ e and a, arise as spectral invariants of the projection process. These constants are reframed as
geometric and informational consequences of identity realization and not as empirical inputs. The
result is a unified ontological account of constants, derived from structural properties of the
projection map /I, and consistent with earlier theoretical and gravitational components of the
framework [5,6].

2. The Ontological Vacuum of Fundamental Constants

Fundamental constants play a dual role in physical theory. They mediate between unit systems
and define the structural couplings giving form to physical law. Among them, the speed of light ¢
sets the relationship between temporal and spatial measurements, defining the invariant light cone
that underlies Lorentzian spacetime geometry. Planck’s constant /4 links energy and frequency
through the quantum relation E = hAw, anchoring the wave-particle duality and setting the scale at
which classical mechanics gives way to quantum discreteness. The vacuum permittivity & and
permeability u, define the normalization of electromagnetic fields in Maxwell’s equations and
through them, determine the wave impedance and the propagation speed of light in vacuum.
Newton’s gravitational constant & sets the coupling strength between energy-momentum and
curvature in general relativity, establishing the response of spacetime geometry to mass and energy
distributions. The elementary charge e quantizes the interaction strength of electrically charged
particles and governs the magnitude of electromagnetic forces.[7]

These constants do not exist in isolation. Their interdependence is captured in dimensionless
quantities such as the fine-structure constant a, which governs the strength of electromagnetic
interactions relative to the quantum and relativistic structure of spacetime. Though the universal
constants are fundamental to theoretical physics, their numerical values remain empirical facts.
Theories rely on them, are structured around them, and predict within their framework, but offer no
account of why they take the values they do, or why they exist at all. There is no formal reason why
the speed of light should be approximately 2.997 x 108 m/s, or why the fine-structure constant
should hover near 1/137. The standard model of particle physics and general relativity each depend
on these constants as externally imposed parameters, fitted to observation rather than derived from
first principles.

In this sense, the fundamental constants are the clearest indicators of the incompleteness of
current theory. They mark the limits of explanation, the points at which description yields to
assumption. The challenge (and the opportunity), is to find a deeper structure in which these
constants are not imposed, but instead emerge as necessary features of an underlying architecture.
The Q-framework addresses this challenge by reinterpreting these constants as spectral invariants of
projection. They are emergent quantities that arise from the way informational identity is filtered into
observable spacetime through constraint-satisfying mappings. In this view, the empirical role of
constants is a shadow of their ontological function to quantify the structure and limitation of reality
as a projection.

3. Mathematical Framework of the Q-Theory

The Q-dimension, as introduced in [5,6], is conceived as a non-metric, non-dynamical and
timeless domain encoding all identity structures admissible in the physical universe. In the present
formulation, we introduce the minimal mathematical formalism necessary to derive physical
constants as structural invariants of projection from { to the emergent manifoldM. We work within
a generalized algebraic-topological setting, with emphasis on projection admissibility, constraint
class compatibility and curvature-induced informational resistance. A visual overview of the Q —
M projection process, including the role of identity signatures, constraint embeddings, and
projection latency, is provided in [5], Figures 1, 3-5. These schematics illustrate the structural
underpinnings of identity realization and entanglement in the projection-based framework.
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3.1. Ontological Preliminaries

Let Q denote a stratified topological space, whose elements o € ) represent identity signatures.
Each oencodes the intrinsic, timeless structure of a potentially realizable physical entity, be it particle,
field, or composite configuration, independent of its spacetime trajectory.

A subset € ¢ Q" is called a constraint class if all n-tuples (o4, ...,0,) € C are simultaneously
projectable to a shared neighborhood in M. Such classes formalize the idea of co-projectability and
may carry additional structure such as algebraic closure, topological connectedness, or homotopy
invariance, depending on the physical domain.

The projection operator I1: Q — M is defined as a surjective, structure-preserving map that
instantiates an identity signature o € Q) into an admissible field configuration I1(c) € F, ¢ F(M) at
point x € M, where F(M) is the space of physically admissible field configurations on M.
Projection is only defined where ois compatible with the local constraint geometry at x.

3.1.1. Structural Quantities and Emergent Scales

The projection latency t(o) is the minimal interval between two successive compatible
instantiations of a signature ¢ in M. It is interpreted as an informational delay reflecting projection
resistance and gives rise to temporal granularity and inertia.

The projection curvature k(o) quantifies second-order variation of projection admissibility. Let
C, c Qbe the fiber of constraint classes over a neighborhood of x € M, then:

k(o) = [IVcVcN(0)lI?, o)
which captures the local embedding tension of ¢ in deformable constraint structures.

The projection impedance tensor Z,,(x) encodes directional resistance to projection at a point
x € M.Formally, forall o € Q,, where Q, c Q is the set of signatures admissible at x, we define:

0%11(0)
CED) (m) @

TEQ,

This tensor represents the resistance of the projection interface to geometric instantiation along

(E)
uv

impedance structures respectively. The charactristic projection action associated with a signature

different spacetime directions. Subcomponents Z,,’ and Zl(lﬁ) represent electric and magnetic

o € Q isgivenby:

§(0) = 1(0) - k(0), )
quantifying the effective resistance of O — M instantiation due to temporal and geometric tension.
Planck’s constant 7is interpreted as the threshold value of admissible projection action, reflecting the
existence of a discrete lower bound on physically stable projection structures:

h:=inf S (o). (4)

oEN

3.1.2. Constraint Topology and Charge Quantization

Beyond local projection structure, the global topological behavior of constraint classes
determines the emergence of quantized observables. Let C denote the bundle of constraint classes
over M. A closed path y c C induces a holonomy class [y] € H'(C,Z)). The associated charge
content of a signature ¢ € § is given by:

1
o) = 5§ A, 6)
Tty
where A is a U(1)-valued connection over C, encoding phase alignment of projective embeddings.
The elementary electric charge e is the minimal non-zero quantized holonomy compatible with
projection.
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3.2. Geometry Induced by Projection Impedance

The projection impedance tensor Z,, (x) encodes the structural resistance to identity realization
in different spacetime directions at point x € M. Asa symmetric bilinear map over the tangent space
T X M, it satisfies Z,, = Z,, and is assumed to be positive-definite under physically realizable
projection regimes. In this section, we formalize the geometric role of Z,, by interpreting it as an
effective metric tensor and define a projection-compatible connection that gives rise to emergent
curvature within the projection manifold.

3.2.1. Effective Connection from Projection Impedance

Given that Z,, plays the role of a structural metric over spacetime induced by projection
impedance, we define the associated Levi-Civita-like connection coefficients I;2 by the usual
metric-compatibility and torsion-free conditions:

1
LA = EZ“(aquK + 0Ly — 0 Zyy), (6)

where Z** is the inverse of Z,,, satisfying Z**Z,, = §}. This connection enables us to define
parallel transport and geodesic deviation directly in terms of projection impedance. The
interpretation here is geometric. Projection resistance defines not just limits on realization, but
induces a notion of effective distance and curvature. Hence, Z,, behaves as a pseudo-metric whose
Christoffel symbols reflect how projection strain accumulates under coordinate variation in M.

3.2.2. Emergent Curvature from Projection Geometry

Using the connection I}/, we define the corresponding Riemann curvature tensor:

— yl 2
tva — avllfz - 6,,1;{{, + 12511;4/9 - 1;511;41/' )
From this, the Ricci tensor is obtained by contraction: R, = .‘R’}L v and the scalar curvature is
defined as:
R = IMR,,. (8)

This curvature is interpreted as the second-order resistance of the projection substrate to
coherent constraint embedding. Unlike in general relativity, where curvature arises from stress-
energy, here it is a measure of the internal structural response of the projection interface.

3.2.3. Emergent metric and geodesics
By construction, Z,, behaves as an effective metric:
Suv (x) = Zuv (). )
This emergent metric determines geodesics as minimal-impedance paths of projection flow:
d?x*  dxtdx”
+0——=
ds? " ds ds

In the Q-framework, this geodesic equation describes the default projection trajectory for an

(10)

identity signature o € Q under unperturbed projection into M. Curvature in this geometry
indicates structural resistance to such realization, and hence aligns with the appearance of
gravitational phenomena.

This emergent geometric framework, based entirely on projection-theoretic quantities, will serve
as the foundation for deriving Newton’s constant and the gravitational field equations in section 5.
The advantage of this approach is that curvature, causal structure and dynamical interaction all
emerge from the same primitive: the projection impedance tensor, itself a consequence of constraint
geometry in .
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3.3. Axioms of Projection Geometry

To ground the emergence of geometric structure, causal ordering, and quantized observables
within a projection-based ontology, we now introduce a minimal set of structural axioms. These
formal principles define the admissibility, coherence, and constraint-governed nature of identity
projection from the Q-domain into the spacetime manifold M. Rather than prescribing dynamics, the
axioms characterize how projection conditions give rise to effective temporal structure, embedding
resistance, and global topological constraints.

1. Timeless identity: Identity signatures in ) are non-evolving and persistent. Time arises solely
from ordering relations between projections I1(g;) < Il(g;) where structural compatibility
imposes a partial ordering.

2. Constraint-governed projection: Projection I1(c) is admissible at x € M only if ¢ € C, C
Q" for some constraint class compatible with the ambient field structure.

3. Projection resistance: The probability amplitude for a projection event is modulated by local
projection impedance Z,,(x) and decays exponentially with increasing latency—curvature
action §(o).

4. Topological quantization: Holonomy over closed constraint cycles induces discrete topological
invariants. Projection is only globally coherent when topological class invariants (e.g., charge)
are preserved.

3.4. Core Mathematical Entities

The core mathematical entities introduced above, along with their types and roles within the Q-
framework, are summarized in the following Table 1 for clarity and reference:

Table 1. Core mathematical entities and projection-invariant structures in the Q-framework. Each quantity
formalizes a structural feature of identity realization from the non-metric domain Q into the emergent

spacetime manifold M.

Object Symbol Mathematical Type Interpretation
. Stratified topological =~ Domain of static, timeless identity
Identity space Q .
space signatures
Identity . Latent configuration encodable as a
. o €N Element / Section .
signature quantum or classical structure

Set of mutually compatible
Constraint class C cqQ® Subset / fiber bundle  signatures,
co-projectable into M

Projection Partial morphism / Instantiates ¢ as a field realization
In: Q- FM) . .
operator functor in spacetime
. Minimal time separation between
Latency 7(0) Nonnegative scalar . p
coherent projections
. . Informational resistance to
Curvature k(o) Positive-definite scalar . .
constraint deformation
Impedance Z,.(x) Symmetric bilinear Projection resistance to identity
tensor w form on TM, instantiation in spacetime directions

Minimal informational action
Projection action S(o) Scalar required
for stable projection

Quantized twist in constraint bundle
phase structure

Charge

holonomy e(o) Topological invariant

Metric induced by impedance

Emergent metric x) =12Z,,(x) Riemannian metric
& g’w( ) ’w( ) structure over M
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4. Projection Mechanics and the Emergence of Constants

This section reconstructs fundamental constants as structural invariants of admissible identity
realization. Each constant appears as a spectral feature of projection mechanics, tied to the geometry
and topology of constraint-saturated identity flow into the observable manifold.

4.1. Projection impedance and the emergence of electromagnetic constants

The electromagnetic vacuum parameters &, and po, as well as the speed of light c, are
interpreted in the Q-framework as structural features of the projection impedance tensor Z,,(x). This
tensor, defined over the tangent bundle of spacetime, quantifies the local resistance of the projection
E) and 7®
ny w7
govern the emergence of Maxwell field structure and give rise to the wave impedance and

interface to directional field instantiation. Its electric and magnetic components, Z

propagation speed of light:

1
Zy= |2 (11)

\/ €oto ' €o

We now show how these quantities arise naturally from the tensorial structure of Z,,(x) under

CcC =

stable projection regimes.

Electromagnetic observables correspond to antisymmetric field structures which require dual
compatibility: both electric and magnetic components must be instantiated coherently. We therefore
partition the impedance tensor as

Z,,(x) = 22 () + 28 (%), (12)

where Zl(f,) and Z‘(f;) quantify the projection impedance for electric and magnetic degrees of
freedom, respectively. Each term can be understood as a functional over constraint gradients:

2D(x) = f Do (6211(0) ac ac ) )

N T e

with an analogous expression for Z,(ff,), where Qp © Q denotes the subspace of magnetically active

signatures. We define the scalar projection impedances associated with electric and magnetic identity
projection as Zg¢ = Tr(fo,)),ZB = Tr(Zl(f,)), where each trace quantifies the resistance of the
projection map II to instantiating coherent field structures under the constraints associated with Qg
or (g, respectively.

To interpret these quantities in relation to known physical constants, we introduce the associated
projection admittances A := Z;' and Ag = Z3'. These scalars encode the ease with which
electric and magnetic identity signatures can be coherently instantiated in the projection interface.
We thenidentify &, := Ag and yy = Ap, where g, and p, areinterpreted as structural measures of
projection admittance across Q-compatible field configurations. This identification preserves the
relationship:

c= = (Z¢ - 2) %, (14)

1
Jeoko
ensuring that the causal structure of spacetime arises as a derived limit on projection coherence,
constrained jointly by electric and magnetic projection resistance.

While the expression for Z. involves standard second-order variations of II over spatial
constraint gradients, the interpretation of Zp demands further structural clarity. Unlike electric
projection, which aligns with directional displacements in constraint gradients, magnetic field
instantiation is fundamentally rotational and nonlocal. In classical theory, magnetic fields arise from
current loops and are described via the curl of the vector potential, suggesting that magnetic
projection requires support for cyclic or closed constraint configurations.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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We therefore interpret Z,&i) as encoding rotational projection impedance, which is resistance to
embedding loop-consistent constraint transitions. Mathematically, we extend the projection
functional to include variation over constraint holonomy. Let I' © € be a contractible loop in
constraint space (or a cycle class in H;(C,Z)) corresponding to a projected magnetic flux tube. We
then generalize the magnetic projection impedance tensor as:

82M1(¢) or or

(B)

Z ~ Dol—w— =

w (%) rey "( 52 9xHox” (15)
2

where 222 denotes a second-order response to holonomy deformation, analogous to curvature in

sr2
a connection bundle over constraint space.

This construction captures the magnetic field’s resistance to nontrivial loop embedding in the
projection structure. It justifies the identification of pywith Ap, where Zz now includes cyclic and
topological projection impedance. This naturally complements the interpretation of electric
projection as local, and magnetic projection as nonlocal, aligning with duality principles in gauge
theory. The full structure reflects the internal geometry of projection as a curl-divergence dual pair,
unified under constraint topology in £2.

A deeper understanding of this structure will emerge in section 4.4, where charge quantization
and the fine-structure constant a are derived from (2-holonomy. There, the topological quantization
of projection cycles will reinforce the interpretation of u, as an emergent permeability rooted in
closed-loop constraint propagation. In this formulation, &y, yy, and c appear as derived invariants
from the informational geometry of the Q@ — M mapping. They encode the metric and causal
structure of spacetime via projection-resistance across distinct constraint subspaces.

4.2. Projection granularity and the origin of Planck’s constant

Let 0 € Qdenote an identity signature characterized by a set of invariant structural features.
We define a projection sequence as an ordered chain {II;(¢)};ey © F(M) such that each element
corresponds to a locally admissible realization of ¢ under successive constraint configurations. This
sequence is assumed to be locally coherent if the associated field instantiations satisfy compatibility
conditions imposed by (-derived constraint classes.

Following its introduction in 3.1.1., we define the projection latency t(o) as the infimum
temporal interval between two successive realizations of ¢ that preserve structural coherence:

©(0) = inf{ti;; — t; | T;(0) < [1j4,(0), [;;1(0) € Adm(C), C < Q"}, (16)

where < denotes structural precedence in projection order, and Adm(C) denotes the set of
projections compatible with constraint class C.

To relate projection latency to energy, we introduce the notion of projection curvature, denoted
k(o) , defined as the informational deviation induced in a local constraint manifold by the
instantiation of o . Let C(x) € denote the constraint fiber above x € M. Then k(o) =
IV:Vc11(0)||? is defined as shown in 3.1.1,, with V. denoting the derivative along directions of
constraint deformation in f2-space. The quantity ¥ measures the tension required to embed o in
local field geometry.

We now define the minimal projection action associated with a signature o € Q as: §(o) ==
7(0) - k(o). This quantity reflects the minimal informational area required to support coherent
projection of ¢ across its local realization domain. We postulate that Planck’s constant arises as the
infimum action over all projectable signatures:

h:=inf§ (o) = ;relg[r(a) -k (0)]. (17)
This definition gives 7 a precise structural meaning. Planck’s constant # is the smallest possible

product of latency and curvature that allows a signature to be coherently projected into spacetime.
In this context, # is a fundamental quantum of projection coherence. It sets the lower bound on the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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informational complexity of any realizable identity transformation within spacetime. Projection
events violating this lower bound either fragment structurally or fail to stabilize.

The canonical commutation relation [x,p] = ih is reinterpreted as a non-commutativity of
projection orderings within Q-constrained configurations. Specifically, position-like observables
correspond to projection localization in configuration space, while momentum-like observables
correspond to projection curvature in constraint space. Their non-commutativity reflects the fact that
the sequential instantiation of position and curvature-dependent projections leads to path-dependent
informational structures. Thus, i governs the non-commutative algebra of identity realization.

Furthermore, the Heisenberg uncertainty principle follows from the structure of projection
latency itself. For a signature o € £, the minimal resolvable energy-time window follows as AE - At
> h, with At > t(0) and AE ~ k(0) interpreted as the minimal curvature modulation needed to support
a localized excitation. In this sense, the uncertainty principle reflects a hard limit on informational
resolution in the Q& - M mapping, rather than a statistical indeterminacy intrinsic to state vectors.
Planck’s constant appears as the foundational granularity of the projection architecture. It encodes
the irreducible action-area required for coherent identity instantiation and reveals the minimal scale
at which information can structure spacetime without decohering or fragmenting.

4.3. Constraint curvature and the emergence of Newton’s constant

Let us consider a region U © M of the emergent spacetime manifold populated by projections
II(oy) of identity signatures o; € Q. As these projections instantiate, they deform the local
informational environment, modifying the constraint topology that governs further projection. This
deformation is encoded directly in the projection resistance structure. We interpret this resistance as
the source of an emergent curvature over the projection bundle, reflecting informational deformation
of constraint geometry.

As previously developed in Section 3.2, the symmetric projection impedance tensor Z,, (x)
defines an effective impedance metric g, (x) « Z,,(x) over spacetime, by quantifying directional
resistance to field instantiation. To define curvature, we consider the second variation of projection
compatibility under constraint deformation. The projection curvature tensor R%,, is defined by
analogy with the Riemann tensor, constructed from the impedance connection coefficients I'%,
derived from Z,,. Contraction yields the Ricci tensor R,,, which quantifies projection curvature as
experienced by compatible identity chains. The scalar curvature, R := Z¥'R,,, defines the net strain
induced by constraint saturation over a region.

Projection strain arises when a region of M experiences dense, latency-synchronized identity
realization. To quantify this, we define the projection strain tensor as the directional informational

flux at point x € M:

TP = ) (31@) @I@®), a8)
TEQN,
where [T(o)(x) denotes the projected field value of identity signature o at point x. This tensor
captures how constraint-saturated regions induce curvature in the impedance geometry and serves
as a structural analogue of the energy-momentum tensor, independent of matter fields or dynamics.
We now postulate that the balance between curvature and strain is given by a structural field
equation:

1
guv = :Ruv - EZ;LVR =G- T;Eg)- (19)

Here, G,, is the (-Einstein tensor, and G emerges as a scaling coefficient quantifying the
projection coupling strength between curvature and informational stress. This equation expresses a
geometric equilibrium between curvature induced by projection impedance and the structural strain
of constraint-saturated identity realization. This follows the fact that regions with high projection
strain, like dense, coherent constraint configurations, necessarily exhibit high curvature in the
projection impedance landscape. The resulting field equation mirrors the form of Einstein’s equations
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but offers a different ontology. Curvature and “stress” are no longer fundamental entities but emerge
from the geometry of constraint compatibility and the density of coherent projection.

We interpret G as an informational elasticity modulus of the projection manifold. Newton’s
constant G quantifies the ratio of curvature induction to projection strain — effectively, the
compliance of the projection manifold. Its smallness reflects the high structural stiffness of the 0 —
M mapping: only the collective effect of many coherent, low-latency projections can yield
measurable curvature. Moreover, because mass and inertia have already been identified with
projection latency in earlier work, the equivalence of inertial and gravitational mass follows directly.
Both types of mass reflect resistance to reconfiguration within the constraint topology of Q.
Gravitational effects occur when such latency gradients modulate impedance curvature. There is no
need for a field-based graviton or metric quantization.

Finally, the universality of G across all forms of matter reflects the universality of constraint
geometry itself. All identity signatures that satisfy projection conditions do so within the same Q-
defined topology. In this view, Newton’s constant is not a parameter of gravitational interaction, but
a structural invariant of informational geometry, encoding the universal stiffness of the spacetime
projection substrate.

4.4. Topological quantization and the emergence of charge and the fine-structure constant

In conventional field theory, electric charge is treated as a fundamental conserved quantity and
the fine-structure constant a is a dimensionless empirical input governing electromagnetic
interaction strength. Within the Q-framework, both quantities arise from topological invariants of
identity signatures and constraint class geometry under projection.

Let 0 € Q be an identity signature characterized by the tuple ¢ = (w,€,%,¢,C), where C
Q" is the minimal constraint class required for admissible projection. A projection [1(c) € F, is
allowed at x € M only if the local compatibility conditions imposed by C are met.

We define the charge content of a signature o as a topological invariant associated with the
obstruction to trivial factorization of its constraint embedding. Let mw: Q — € denote the projection
to the space of constraint classes and let y © C be a closed loop generated by adiabatic variation of
environmental projection conditions. Then, we define the net topological charge of ¢ as the
holonomy class:

1
n(o) = fy A, (20)

where A isa U(1)-valued connection over C that encodes phase rotation symmetry in Q-signature
projection. This expression mirrors the Berry phase formalism but is defined over structural
constraint space rather than Hilbert space. The quantization of 7 arises from the requirement that
the holonomy group be compact and discrete under projection compatibility.

The elementary charge e is then defined as the minimal non-zero holonomy among projectable
identity signatures:

e:= min @l e

where (), denotes the set of projection-neutral (trivial-holonomy) signatures.

To explore how topological tension interacts with the geometric structure of projection, we
introduce a dimensionless structural action ratio Z within the Q-framework. The ratio = is a
structural necessity. In any projection-based ontology with quantized topology, impedance-limited
realization, and minimal action thresholds, a dimensionless measure of projection-limited topological
embedding must exist [8,9]. This ratio is constructed from quantities that capture three key aspects
of projection behavior:

e  The topological cost of charged projection (via discontinuities in constraint class embeddings);
e  The geometric permeability of the projection interface;

¢  The minimal action required to stably instantiate charged identity signatures.
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We define:

(AC)?
Zg * Trin * K vmax'

g (22)
where AC corresponds to the topological tension introduced by projecting a non-neutral signature,
while Zg, Ty -k and vp,x describe the permeability, minimal projection action, and causal
admissibility of the projection substrate. Together, they define a normalized measure of projection
efficiency for embedding charged identity. The inclusion of x alongside Ty, reflects the fact that
minimal projection action involves not only a temporal threshold, but also a structural curvature cost.
Whereas T, captures the time-scale resolution of projection events, k accounts for the intrinsic
geometric tension required to instantiate topologically nontrivial configurations. Their product
defines the projection grain 7, - & ~ f, which governs the minimal coherent action scale in the
Q — M interface. A more mathematically detailed derivation is shown in Appendix A.

We now show how the structural ratio £ in the Q-topology translates into observable reality in
spacetime. We have already established that:
e AC? ~ €2, the square of the minimal holonomy class defect;
e Z.1~ g, electric vacuum admittance;
®  Tnn -k ~ h, projection action threshold;
®  Vnax ~ ¢, the maximal propagation speed.

Substituting these identifications into Equation (22), the structural ratio = collapses into the
standard expression:

(AC) 2 substitution e?

E= = q, (23)
ZS *Tmin " K * Vmax £0flC

demonstrating that the fine-structure constant emerges as a necessary ratio of projection-theoretic
quantities.

In this view, @ quantifies the normalized informational cost of embedding non-neutral
topologies into spacetime. Its small value (~1/137) reflects the high selectivity of the projection
interface for topologically charged configurations. It encodes the fine balance between topological
tension and impedance-permitted realization, and thereby explains the relative weakness of
electromagnetic interaction and the high coherence required for charge-bearing states to persist.

Charge conservation follows directly. The constraint cohomology H*(C,Z) is invariant under
continuous Q-projection morphisms, and hence the topological class [n(0)] € H*(C,Z) is conserved.
This yields a structural explanation for Gauss’s law and charge conservation in the projection
framework.

Finally, the local U(1) gauge symmetry of electrodynamics arises naturally from the
automorphism group of phase-rotation-preserving transformations of constraint classes. Gauge
freedom corresponds to fiberwise equivalence classes of projections under internal U(1)-rotation,
consistent with the Q-framework’s foundational ontology.

In summary, electric charge emerges as a quantized topological obstruction to constraint
trivialization, and the fine-structure constant quantifies the normalized projection cost of embedding
such obstructions into a causal, impedance-limited geometric substrate. Both are derived, not
assumed, and are fixed by the global structure of the Q — M projection map.

4.5. Constants as Projection Invariants: Structure and Dimensional Analysis

The preceding sections have demonstrated that the constants fundamental to physical theory,
€, Wo, ¢, i, G, e, and &, emerge in the Q-framework. They arise from the interplay between projection
geometry, constraint topology and informational granularity as structural invariants. Their values,
roles, and dimensional structure can now be reinterpreted as expressions of deeper projection-
theoretic properties.

We summarize the origin, interpretation, and dimensional form of each constant in the table
below, which also serves to unify the derivations from Chapters 4.1 to 4.4.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1840.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1840.v1

11 of 15

Table 2. Projection-theoretic origins and dimensional structure of fundamental constants.

Physical

Constant Structural Origin in Q Projection Expression . )
Dimension

Admittance to electric

£ projection across constraint gi=As= 27! [AZ-s*- kg m7]
gradients
Admittance to magnetic

Uo projection under rotational Uo=Az=2Z3 ! kg -m-s2- A2
constraint topology
Maximal coherent

c projection rate n c= (22, (m - s1]
impedance-balanced

constraint space

Minimum action required

f for  coherent  identity h= g&f)(’f(ﬁ) -1(0)) [kg - m?-s71]
projection
Coupling between

G projection  strain  and Gu=G-T SV_D [me - kgt - 5]
curvature  induced  in

impedance geometry

Minimal holonomy class
e defect in constraint class €= min-(fcﬂ [C]

U(1) bundle

Ratio of charge topological

projection to granularity, o2

i _ e Dimensionless
impedance, and velocity TEghe

scales

Each constant is rendered as the projection-invariant output of a single informational
architecture and not as a free-standing input to physical law. The projection latency 7, curvature «,
and constraint topology C together yield a closed system from which the constants” dimensions and
relations arise necessarily.

This unification reveals the fundamental constants as spectral signatures of identity coherence
under projection. They emerge from the algebraic and topological structure of constraint geometry,
encoding how informational identity becomes stable, measurable structure in spacetime.

5. Structural Universality of @ Across Theoretical Frameworks

The fine-structure constant a derived in Section 4.4, occupies a special position among the
constants emerging from the () -framework. As a dimensionless invariant, it encapsulates the
normalized projection cost of topologically charged identity realization. Its structure, balancing
constraint discontinuity against geometric latency, impedance, and causal limit, provides a template
for interpreting other coupling constants as emergent features of the projection interface. In this
chapter, we examine how this interpretation of a contrasts with its treatment in other major
frameworks and what this implies for the structural role of physical constants more broadly.
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5.1. Contrast with holographic duality

In AdS/CFT correspondence, coupling constants such as a are typically encoded in boundary
correlation functions, often appearing as prefactors in the Lagrangian of the boundary theory. For
example, the Yang-Mills coupling g¢y ~ a governs interaction strength in the conformal field
theory, with its scale-dependence captured by the renormalization group [10].

In the Q-framework, by contrast, « is not a dynamical coupling in the Lagrangian sense. It is an
emergent invariant, independent of scale transformations and defined without reference to
variational principles. Rather than arising from boundary correlators, it emerges from the internal
structure of the projection map as a measure of the impedance-weighted cost of embedding
topologically charged signatures. Its constancy follows from the stability of the projection geometry
itself and not from renormalization invariance.

Mathematically, this distinction may be formalized by treating the projection interface IT: Q -
M as an operator algebra homomorphism, with Q-constraint classes representing structural operator
families and their realizations in M acting as bulk observables. In this analogy, a corresponds to the
spectral norm of a transfer operator encoding the obstruction to unitarity during identity propagation
with constraint torsion, being a deviation from symmetry-preserving realization under projection.

5.2. Contrast with causal set theory

Causal set theory introduces discreteness at the level of spacetime events, with causal order
encoded in a partially ordered set. While this structure naturally reproduces Lorentzian causality and
volume measures, dimensionless coupling constants such as a are not derived but must be inserted
phenomenologically [11].

In the Q-framework, time-ordering arises from the partial ordering of admissible projections,
and interaction strength emerges from the topology of constraint embeddings. Rather than counting
elements or links, we interpret o as a cohomological threshold on admissibility, a minimal projection
tension required for non-neutral configurations to stabilize. Formally, one may define a mapping
f:€ - M(Q) such that x; <x; & [(0;) < (0;), and identify the projection latency 7(o) with the
minimum temporal separation needed to maintain coherence along such chains. In this setting, a
appears as a universal bound on the informational load per causal link — not a function of graph
connectivity, but a quantized threshold in constraint cohomology.

5.3. Contrast with quantum information geometry

Tensor network approaches, such as MERA or PEPS, model spatial geometry and quantum
correlations via entanglement structure. Coupling constants in these models reflect bond dimensions,
network depth, and information flows [12].

In the Q-framework, this logic is reversed. Entanglement is not a primitive construct but an
emergent consequence of shared constraint compatibility. The fine-structure constant does not track
entanglement strength but rather the resistance to embedding non-factorizable constraint overlaps.
A larger o would indicate easier co-projection of charged identities. A smaller a, as observed in
nature, reflects the high structural selectivity for such instantiation.

Projection fidelity can be defined via:

dimgec I (0
F(C) = Lo 1(0) (24)

dimgec Q
measuring the coherence fraction of projectable configurations within a constraint class. In tensor
network terms, this aligns with the minimal bond coherence necessary to realize topologically
nontrivial projections. The fine-structure constant then emerges as the lowest F(C) for which

electromagnetically charged identities can stably exist.
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5.4. Structural Universality of

Within the Q-framework, a acts as a structural selector, a dimensionless equilibrium ratio that
balances topological twist, impedance resistance, projection latency, and causal admissibility. Its
small magnitude reflects the exceptionally high informational cost of realizing topologically charged
states and the delicate coherence required for their persistence in spacetime.

Unlike in field-theoretic models, where changes in a suggest altered interaction strengths,
variations in a here would imply deformation of the projection substrate itself — such as changes in
the topology, impedance tensor, or cohomological structure of C. The empirical constancy of a thus
signifies the global stability of the (0 - M projection architecture.

This reframes o as a geometric and cohomological invariant: a fixed point in the interplay
between constraint class topology, projection granularity, and identity realization bandwidth. In this
capacity, a plays a role analogous to a moduli index, characterizing the admissible structure of
reality itself.

6. Discussion

This work has developed a structural derivation of the fundamental constants of nature from an
informational ontology rooted in projection from a non-spatiotemporal identity space, Q. By
formalizing projection latency, constraint curvature, and impedance geometry, we have shown how
constants such as #,G, e, &y, iy, and a emerge as invariant quantities within the mapping/l : Q —
M, where M denotes the observable spacetime manifold.

Each constant corresponds to a distinct structural feature of this projection process: latency and
curvature give rise to the quantum of action; impedance tensors determine electromagnetic response
and causal limits; constraint holonomy induces charge quantization and the fine-structure constant
appears as a dimensionless ratio unifying these features. These constants are consequences of deeper
algebraic and topological constraints on projection and not free parameters. The Q-framework thus
reframes the constants of physics as structural invariants at the interface between informational
identity and spacetime realization. Rather than modifying physical law, it offers an ontological
foundation in which both the constants and the spacetime framework they inhabit arise as emergent
phenomena.

The results presented here do not merely suggest that physical constants might be emergent but
demonstrate this emergence explicitly. The Q-framework stands as a mathematically structured,
conceptually coherent foundation in which spacetime and its constants arise as necessary projections
of informational identity.

Funding: This research received no external funding

Abbreviations

The following abbreviations are used in this manuscript:

MERA Multiscale Entanglement Renormalization Ansatz
PEPS Projected Entangled Pair States

TQFT Topological Quantum Field Theory

Appendix A

Mathematical Interpretation of the Projection Ratio Z

The dimensionless ratio =, introduced in Section 4.4 as a measure of the structural cost of
projecting topologically charged identity signatures into spacetime, admits a natural interpretation
as a normalized cohomological action invariant.

Let Q denote the non-spatiotemporal identity space and let € be the associated space of
constraint classes. Given a signature o € (, let n(o) € H*(C,Z) denote its topological charge class,
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defined as a U(1)-holonomy invariant over closed loops y c C. The minimal class discontinuity AC
defines a quantized jump in constraint compatibility.
The denominator of Z consists of structural quantities defining the admissible projection
bandwidth:
e Zg projection impedance (informational permeability);
®  Tnyin: Projection granularity (temporal resolution);
e  k:intrinsic curvature of projection embedding (structural tension);
® V., Maximum causal propagation rate (spatiotemporal coherence bound).

-

We may then express Z as:

_llscl

= = m € + (25)

where ||6C||is a normed representative of a cohomology class difference in H*(C), and A(IT) is a
generalized projection action density functional encoding resistance along compatible chains. This
expression mirrors the structure of topological invariants in gauge theory and TQFT, where
dimensionless observables arise from the interaction of discrete class structure with continuous
transport geometry [8,9].

Thus, Z isnot merely a heuristic efficiency ratio, but a genuine structural invariant that captures
the informational and geometric tension of nontrivial identity realization within the Q -
M projection map.
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