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Article 
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Informational Ω-Background of Spacetime 

Milan M. Dlabal 

Independent Researcher, Felsbergstraße 11, 64367 Frankenhausen, Germany; m.dlabal@ghs-griesheim.eu 

Abstract: This paper derives the fundamental physical constants from a projection-based 

informational framework in which spacetime and its fields emerge from constraint-governed 

realization of identity structures defined in a non-metric domain, Ω . In this ontology, identity 

signatures σ ∈  Ω are timeless latent configurations, and projection Π: Ω → M is governed by 

compatibility with constraint classes C ⊂ Ωⁿ. The projection process is characterized by intrinsic 

latency τ, curvature κ, and an impedance tensor Zμν, which together define the emergent geometry 

of observable physics. Constants such as Planck’s constant ℏ, Newton’s constant G, vacuum 

permittivity ε₀, permeability μ₀, elementary charge e, and the fine-structure constant α are shown to 

arise as invariant features of constraint-saturated projection. ℏ corresponds to minimal τ⋅κ coupling, 

G quantifies curvature response to projection strain, and ε₀, μ₀ represent electric and magnetic 

admittances of projection. The fine-structure constant emerges as a ratio of structural asymmetry to 

projection granularity. These results reinterpret fundamental constants as necessary consequences 

of the informational structure underlying spacetime and not as empirical parameters. The 

framework unifies dimensional and dimensionless constants within a single ontological model, 

suggesting that the laws of physics reflect structural limits of admissible identity realization rather 

than imposed dynamical axioms. 

Keywords: emergent spacetime; fundamental constants; projection geometry; informational 

ontology; constraint-based physics 

 

1. Introduction 

The idea that spacetime and its structure may emerge from a deeper, non-geometric substrate 

has gained significant traction in theoretical physics. Notable approaches, such as causal set theory, 

holographic duality, and quantum information geometry, seek to reconstruct continuum physics 

from primitive, often informational, building blocks [1–3]. These models share a core aim: to 

understand the origin of geometry, fields, and physical law from a more fundamental level. Among 

the persistent mysteries in physics, the dimensionless fine-structure constant α ≈ 1/137 stands out 

[4]. It appears across domains, from quantum electrodynamics to atomic structure, yet its value 

remains unexplained. Why this number unites the quantum of action ℏ, the speed of light c, vacuum 

impedance (ε₀, μ₀), and the elementary charge e has no established theoretical basis. 

The present work builds upon the Ω-dimension framework developed in earlier studies [5,6], in 

which spacetime and its physical content emerge through constraint-governed projection from a non-

metric identity domain Ω. Identity signatures 𝜎 ∈  Ω represent latent, timeless structures whose 

realization as fields or particles depends on compatibility with constraint classes C ⊂ Ω𝑛. Observable 

entities arise via projection Π: Ω →  M, as constraint-satisfying instantiations and not as dynamic 

evolutions. Unlike causal set theory [1], where causality orders discrete events, the Ω-framework 

defines causality as a structural precedence relation among projections, grounded in identity 

coherence. In contrast to holographic duality [2], no boundary manifold or conformal field theory is 

assumed. Spacetime structure emerges through projection geometry. While tensor network models 

[3] link geometry to entanglement, we reinterpret entanglement as a byproduct of non-factorizable 

constraint structure in Ω. This study demonstrates that key physical constants, including ℏ, 𝐺, ε₀, μ₀, 
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c, 𝑒 and 𝛼, arise as spectral invariants of the projection process. These constants are reframed as 

geometric and informational consequences of identity realization and not as empirical inputs. The 

result is a unified ontological account of constants, derived from structural properties of the 

projection map𝛱 , and consistent with earlier theoretical and gravitational components of the 

framework [5,6]. 

2. The Ontological Vacuum of Fundamental Constants 

Fundamental constants play a dual role in physical theory. They mediate between unit systems 

and define the structural couplings giving form to physical law. Among them, the speed of light c 

sets the relationship between temporal and spatial measurements, defining the invariant light cone 

that underlies Lorentzian spacetime geometry. Planck’s constant ℏ links energy and frequency 

through the quantum relation 𝐸 =  ℏ𝜔, anchoring the wave-particle duality and setting the scale at 

which classical mechanics gives way to quantum discreteness. The vacuum permittivity ε₀ and 

permeability μ₀ define the normalization of electromagnetic fields in Maxwell’s equations and 

through them, determine the wave impedance and the propagation speed of light in vacuum. 

Newton’s gravitational constant G sets the coupling strength between energy-momentum and 

curvature in general relativity, establishing the response of spacetime geometry to mass and energy 

distributions. The elementary charge e quantizes the interaction strength of electrically charged 

particles and governs the magnitude of electromagnetic forces.[7] 

These constants do not exist in isolation. Their interdependence is captured in dimensionless 

quantities such as the fine-structure constant 𝛼 , which governs the strength of electromagnetic 

interactions relative to the quantum and relativistic structure of spacetime. Though the universal 

constants are fundamental to theoretical physics, their numerical values remain empirical facts. 

Theories rely on them, are structured around them, and predict within their framework, but offer no 

account of why they take the values they do, or why they exist at all. There is no formal reason why 

the speed of light should be approximately 2.997 × 108 m/s , or why the fine-structure constant 

should hover near 1/137. The standard model of particle physics and general relativity each depend 

on these constants as externally imposed parameters, fitted to observation rather than derived from 

first principles. 

In this sense, the fundamental constants are the clearest indicators of the incompleteness of 

current theory. They mark the limits of explanation, the points at which description yields to 

assumption. The challenge (and the opportunity), is to find a deeper structure in which these 

constants are not imposed, but instead emerge as necessary features of an underlying architecture. 

The Ω-framework addresses this challenge by reinterpreting these constants as spectral invariants of 

projection. They are emergent quantities that arise from the way informational identity is filtered into 

observable spacetime through constraint-satisfying mappings. In this view, the empirical role of 

constants is a shadow of their ontological function to quantify the structure and limitation of reality 

as a projection. 

3. Mathematical Framework of the Ω-Theory 

The Ω-dimension, as introduced in [5,6], is conceived as a non-metric, non-dynamical and 

timeless domain encoding all identity structures admissible in the physical universe. In the present 

formulation, we introduce the minimal mathematical formalism necessary to derive physical 

constants as structural invariants of projection from Ω to the emergent manifold𝑀. We work within 

a generalized algebraic-topological setting, with emphasis on projection admissibility, constraint 

class compatibility and curvature-induced informational resistance. A visual overview of the Ω → 

𝑀  projection process, including the role of identity signatures, constraint embeddings, and 

projection latency, is provided in [5], Figures 1, 3–5. These schematics illustrate the structural 

underpinnings of identity realization and entanglement in the projection-based framework. 
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3.1. Ontological Preliminaries 

Let Ω denote a stratified topological space, whose elements σ ∈ Ω represent identity signatures. 

Each σ encodes the intrinsic, timeless structure of a potentially realizable physical entity, be it particle, 

field, or composite configuration, independent of its spacetime trajectory. 

A subset C ⊂ Ω𝑛 is called a constraint class if all n-tuples (𝜎1, … , 𝜎n)  ∈  𝐶 are simultaneously 

projectable to a shared neighborhood in 𝑀. Such classes formalize the idea of co-projectability and 

may carry additional structure such as algebraic closure, topological connectedness, or homotopy 

invariance, depending on the physical domain. 

The projection operator 𝛱 ∶  Ω →  𝑀 is defined as a surjective, structure-preserving map that 

instantiates an identity signature σ ∈ Ω into an admissible field configuration 𝛱(σ) ∈ ℱ𝓍 ⊂ ℱ(𝑀) at 

point 𝑥 ∈  𝑀 , where ℱ(𝑀)  is the space of physically admissible field configurations on 𝑀 . 

Projection is only defined where σ is compatible with the local constraint geometry at x. 

3.1.1. Structural Quantities and Emergent Scales 

The projection latency 𝜏(𝜎)  is the minimal interval between two successive compatible 

instantiations of a signature 𝜎 in 𝑀. It is interpreted as an informational delay reflecting projection 

resistance and gives rise to temporal granularity and inertia. 

The projection curvature 𝜅(𝜎) quantifies second-order variation of projection admissibility. Let 

𝐶𝑥  ⊂  Ω be the fiber of constraint classes over a neighborhood of 𝑥 ∈  𝑀, then: 

𝜅(𝜎) ≔ ‖∇𝐶∇𝐶Π(𝜎)‖
2, (1) 

which captures the local embedding tension of 𝜎 in deformable constraint structures. 

The projection impedance tensor 𝐙𝜇𝜈(𝑥) encodes directional resistance to projection at a point 

𝑥 ∈  𝑀. Formally, for all 𝜎 ∈  Ω𝑥 , where Ω𝑥 ⊂ Ω is the set of signatures admissible at 𝑥, we define: 

𝐙𝜇𝜈(𝑥) ≔ ∑ (
∂2Π(𝜎)

∂𝑥𝜇 ∂𝑥ν
)

𝜎∈Ω𝑥

, (2) 

This tensor represents the resistance of the projection interface to geometric instantiation along 

different spacetime directions. Subcomponents 𝐙𝜇𝜈
(𝐸)  and 𝐙𝜇𝜈

(𝐵)  represent electric and magnetic 

impedance structures respectively. The charactristic projection action associated with a signature 

𝜎 ∈  Ω  is given by: 

𝒮(𝜎) ≔ 𝜏(𝜎) ⋅ 𝜅(𝜎), (3) 

quantifying the effective resistance of Ω → 𝑀 instantiation due to temporal and geometric tension. 

Planck’s constant ℏ is interpreted as the threshold value of admissible projection action, reflecting the 

existence of a discrete lower bound on physically stable projection structures: 

ℏ ≔ 𝑖𝑛𝑓
𝜎∈𝛺

𝒮 (𝜎). (4) 

3.1.2. Constraint Topology and Charge Quantization 

Beyond local projection structure, the global topological behavior of constraint classes 

determines the emergence of quantized observables. Let 𝒞 denote the bundle of constraint classes 

over 𝑀 . A closed path γ ⊂  𝒞  induces a holonomy class [γ] ∈ 𝐻1(𝒞, ℤ)). The associated charge 

content of a signature 𝜎 ∈  Ω  is given by: 

𝑒(𝜎) ≔
1

2𝜋
∮𝒜
𝛾

, (5) 

where 𝒜 is a U(1)-valued connection over 𝒞, encoding phase alignment of projective embeddings. 

The elementary electric charge 𝑒 is the minimal non-zero quantized holonomy compatible with 

projection. 
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3.2. Geometry Induced by Projection Impedance 

The projection impedance tensor 𝐙𝜇𝜈(𝑥) encodes the structural resistance to identity realization 

in different spacetime directions at point 𝑥 ∈  𝑀. As a symmetric bilinear map over the tangent space 

𝑇 ×𝑀 , it satisfies 𝐙𝜇𝜈  =  𝐙𝜈𝜇  and is assumed to be positive-definite under physically realizable 

projection regimes. In this section, we formalize the geometric role of 𝐙𝜇𝜈 by interpreting it as an 

effective metric tensor and define a projection-compatible connection that gives rise to emergent 

curvature within the projection manifold. 

3.2.1. Effective Connection from Projection Impedance 

Given that 𝐙𝜇𝜈  plays the role of a structural metric over spacetime induced by projection 

impedance, we define the associated Levi-Civita–like connection coefficients 𝛤𝜇𝜈
𝜆  by the usual 

metric-compatibility and torsion-free conditions: 

𝛤𝜇𝜈
𝜆 ≔

1

2
𝐙λκ(∂μ𝐙νκ + ∂ν𝐙μκ − ∂κ𝐙μν), (6) 

where 𝐙𝜆𝜅  is the inverse of 𝐙𝜇𝜈 , satisfying 𝐙𝜆𝜅𝐙𝜅𝜌 = 𝛿𝜌
λ . This connection enables us to define 

parallel transport and geodesic deviation directly in terms of projection impedance. The 

interpretation here is geometric. Projection resistance defines not just limits on realization, but 

induces a notion of effective distance and curvature. Hence, 𝐙𝜇𝜈 behaves as a pseudo-metric whose 

Christoffel symbols reflect how projection strain accumulates under coordinate variation in 𝑀. 

3.2.2. Emergent Curvature from Projection Geometry 

Using the connection 𝛤𝜇𝜈
𝜆 , we define the corresponding Riemann curvature tensor: 

𝓡 𝜇𝜈𝜌
𝜎 ≔ 𝜕𝜈𝛤𝜇𝜌

𝜎 − 𝜕𝜌𝛤𝜇𝜈
𝜎 + 𝛤𝜈𝜆

𝜎𝛤𝜇𝜌
𝜆 − 𝛤𝜌𝜆

𝜎𝛤𝜇𝜈
𝜆 . (7) 

From this, the Ricci tensor is obtained by contraction: 𝓡𝜇𝜈 ≔ 𝓡 𝜇𝜆𝜈
𝜆 , and the scalar curvature is 

defined as: 

ℛ ≔ 𝐙𝜇𝜈𝓡𝜇𝜈. (8) 

This curvature is interpreted as the second-order resistance of the projection substrate to 

coherent constraint embedding. Unlike in general relativity, where curvature arises from stress-

energy, here it is a measure of the internal structural response of the projection interface. 

3.2.3. Emergent metric and geodesics 

By construction, 𝐙𝜇𝜈 behaves as an effective metric: 

𝐠𝜇𝜈(𝑥) ≔ 𝐙𝜇𝜈(𝑥). (9) 

This emergent metric determines geodesics as minimal-impedance paths of projection flow: 

𝑑2𝑥𝜆

𝑑𝑠2
+ 𝛤𝜇𝜈

𝜆
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
= 0. (10) 

In the Ω-framework, this geodesic equation describes the default projection trajectory for an 

identity signature 𝜎 ∈  Ω  under unperturbed projection into 𝑀 . Curvature in this geometry 

indicates structural resistance to such realization, and hence aligns with the appearance of 

gravitational phenomena. 

This emergent geometric framework, based entirely on projection-theoretic quantities, will serve 

as the foundation for deriving Newton’s constant and the gravitational field equations in section 5. 

The advantage of this approach is that curvature, causal structure and dynamical interaction all 

emerge from the same primitive: the projection impedance tensor, itself a consequence of constraint 

geometry in Ω. 
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3.3. Axioms of Projection Geometry 

To ground the emergence of geometric structure, causal ordering, and quantized observables 

within a projection-based ontology, we now introduce a minimal set of structural axioms. These 

formal principles define the admissibility, coherence, and constraint-governed nature of identity 

projection from the Ω-domain into the spacetime manifold 𝑀. Rather than prescribing dynamics, the 

axioms characterize how projection conditions give rise to effective temporal structure, embedding 

resistance, and global topological constraints. 

1. Timeless identity: Identity signatures in Ω are non-evolving and persistent. Time arises solely 

from ordering relations between projections 𝛱(𝜎𝑖)  ≺  𝛱(𝜎𝑗)  where structural compatibility 

imposes a partial ordering. 

2. Constraint-governed projection: Projection 𝛱(𝜎 ) is admissible at 𝑥 ∈  𝑀  only if 𝜎 ∈  𝐶𝑥  ⊂

 Ωn for some constraint class compatible with the ambient field structure. 

3. Projection resistance: The probability amplitude for a projection event is modulated by local 

projection impedance 𝐙𝜇𝜈(𝑥)  and decays exponentially with increasing latency–curvature 

action 𝒮(𝜎). 

4. Topological quantization: Holonomy over closed constraint cycles induces discrete topological 

invariants. Projection is only globally coherent when topological class invariants (e.g., charge) 

are preserved. 

3.4. Core Mathematical Entities 

The core mathematical entities introduced above, along with their types and roles within the Ω-

framework, are summarized in the following Table 1 for clarity and reference: 

Table 1. Core mathematical entities and projection-invariant structures in the Ω-framework. Each quantity 

formalizes a structural feature of identity realization from the non-metric domain Ω  into the emergent 

spacetime manifold 𝑀. 

Object Symbol Mathematical Type Interpretation 

Identity space Ω 
Stratified topological 

space 

Domain of static, timeless identity 

signatures 

Identity 

signature 
𝜎 ∈  Ω Element / Section 

Latent configuration encodable as a  

quantum or classical structure 

Constraint class 𝐶 ⊂  Ωn Subset / fiber bundle 

Set of mutually compatible 

signatures,  

co-projectable into 𝑀 

Projection 

operator 
𝛱 ∶  Ω →  ℱ(𝑀) 

Partial morphism / 

functor 

Instantiates 𝜎 as a field realization  

in spacetime 

Latency 𝜏(𝜎) Nonnegative scalar 
Minimal time separation between  

coherent projections 

Curvature 𝜅(𝜎) Positive-definite scalar 
Informational resistance to  

constraint deformation 

Impedance 

tensor 
𝐙𝜇𝜈(𝑥) 

Symmetric bilinear 

form on 𝑇𝑀𝑥 

Projection resistance to identity 

instantiation in spacetime directions 

Projection action 𝒮(𝜎) Scalar 

Minimal informational action 

required  

for stable projection 

Charge 

holonomy 
𝑒(𝜎) Topological invariant 

Quantized twist in constraint bundle  

phase structure 

Emergent metric 𝐠𝜇𝜈(𝑥) ≔ 𝐙𝜇𝜈(𝑥) Riemannian metric 
Metric induced by impedance  

structure over 𝑀 
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4. Projection Mechanics and the Emergence of Constants 

This section reconstructs fundamental constants as structural invariants of admissible identity 

realization. Each constant appears as a spectral feature of projection mechanics, tied to the geometry 

and topology of constraint-saturated identity flow into the observable manifold. 

4.1. Projection impedance and the emergence of electromagnetic constants 

The electromagnetic vacuum parameters 𝜀₀  and 𝜇₀ , as well as the speed of light 𝑐 , are 

interpreted in the Ω-framework as structural features of the projection impedance tensor 𝐙𝜇ν(𝑥). This 

tensor, defined over the tangent bundle of spacetime, quantifies the local resistance of the projection 

interface to directional field instantiation. Its electric and magnetic components, 𝐙𝜇𝜈
(𝐸)  and 𝐙𝜇𝜈

(𝐵) , 

govern the emergence of Maxwell field structure and give rise to the wave impedance and 

propagation speed of light: 

𝑐 =
1

√𝜀0𝜇0
,  𝑍0 = √

𝜇0
𝜀0
. (11) 

We now show how these quantities arise naturally from the tensorial structure of 𝐙𝜇𝜈(𝑥) under 

stable projection regimes. 

Electromagnetic observables correspond to antisymmetric field structures which require dual 

compatibility: both electric and magnetic components must be instantiated coherently. We therefore 

partition the impedance tensor as 

𝐙𝜇𝜈(𝑥) = 𝐙𝜇𝜈
(𝐸)(𝑥) + 𝐙𝜇𝜈

(𝐵)(𝑥), (12) 

where 𝐙𝜇𝜈
(𝐸)  and 𝐙𝜇𝜈

(𝐵)  quantify the projection impedance for electric and magnetic degrees of 

freedom, respectively. Each term can be understood as a functional over constraint gradients: 

𝐙𝜇𝜈
(𝐸)(𝑥) ≔ ∫ 𝒟

Ω𝐸

𝜎  (
δ2Π(𝜎)

δ𝐶2
⋅
∂𝐶

∂𝑥𝜇
∂𝐶

∂𝑥𝜈
), (13) 

with an analogous expression for 𝐙𝜇𝜈
(𝐵), where Ω𝐵  ⊂  Ω denotes the subspace of magnetically active 

signatures. We define the scalar projection impedances associated with electric and magnetic identity 

projection as 𝒵ℰ ≔ 𝑇𝑟(𝐙μν
(𝐸)), 𝒵ℬ ≔ 𝑇𝑟(𝐙μν

(𝐵)),  where each trace quantifies the resistance of the 

projection map 𝛱 to instantiating coherent field structures under the constraints associated with ΩE 

or ΩB, respectively. 

To interpret these quantities in relation to known physical constants, we introduce the associated 

projection admittances 𝒜ℰ ≔ 𝒵ℰ
−1  and 𝒜ℬ ≔ 𝒵ℬ

−1 . These scalars encode the ease with which 

electric and magnetic identity signatures can be coherently instantiated in the projection interface. 

We then identify 𝜀0 ≔ 𝒜ℰ  and 𝜇0 ≔ 𝒜ℬ , where 𝜀0 and 𝜇0 are interpreted as structural measures of 

projection admittance across Ω-compatible field configurations. This identification preserves the 

relationship: 

𝑐 =
1

√ε0μ0
= (𝒵ℰ ⋅ 𝒵ℬ)

−1/2, (14) 

ensuring that the causal structure of spacetime arises as a derived limit on projection coherence, 

constrained jointly by electric and magnetic projection resistance. 

While the expression for 𝒵ℰ  involves standard second-order variations of 𝛱  over spatial 

constraint gradients, the interpretation of 𝒵ℬ  demands further structural clarity. Unlike electric 

projection, which aligns with directional displacements in constraint gradients, magnetic field 

instantiation is fundamentally rotational and nonlocal. In classical theory, magnetic fields arise from 

current loops and are described via the curl of the vector potential, suggesting that magnetic 

projection requires support for cyclic or closed constraint configurations. 
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We therefore interpret 𝐙𝜇𝜈
(𝐵) as encoding rotational projection impedance, which is resistance to 

embedding loop-consistent constraint transitions. Mathematically, we extend the projection 

functional to include variation over constraint holonomy. Let Γ ⊂ 𝒞  be a contractible loop in 

constraint space (or a cycle class in 𝐻1(𝒞, ℤ)) corresponding to a projected magnetic flux tube. We 

then generalize the magnetic projection impedance tensor as: 

𝐙𝜇𝜈
(𝐵)(𝑥) ∼ ∫ 𝒟

Γ⊂Ω𝐵

𝜎 (
δ2𝛱(𝜎)

δ𝛤2
⋅
𝜕𝛤

𝜕𝑥𝜇
𝜕𝛤

𝜕𝑥𝜈
), (15) 

where 
𝛿2𝛱(𝜎)

𝛿𝛤2
 denotes a second-order response to holonomy deformation, analogous to curvature in 

a connection bundle over constraint space. 

This construction captures the magnetic field’s resistance to nontrivial loop embedding in the 

projection structure. It justifies the identification of 𝜇0with 𝒜ℬ, where 𝒵ℬ now includes cyclic and 

topological projection impedance. This naturally complements the interpretation of electric 

projection as local, and magnetic projection as nonlocal, aligning with duality principles in gauge 

theory. The full structure reflects the internal geometry of projection as a curl-divergence dual pair, 

unified under constraint topology in 𝛺. 

A deeper understanding of this structure will emerge in section 4.4, where charge quantization 

and the fine-structure constant 𝛼 are derived from 𝛺-holonomy. There, the topological quantization 

of projection cycles will reinforce the interpretation of 𝜇0  as an emergent permeability rooted in 

closed-loop constraint propagation. In this formulation, 𝜀0, 𝜇0 and 𝑐 appear as derived invariants 

from the informational geometry of the Ω →  𝑀 mapping. They encode the metric and causal 

structure of spacetime via projection-resistance across distinct constraint subspaces. 

4.2. Projection granularity and the origin of Planck’s constant 

Let 𝜎 ∈  Ω denote an identity signature characterized by a set of invariant structural features. 

We define a projection sequence as an ordered chain {𝛱𝑖(𝜎)}𝑖∈ℕ ⊂ ℱ(𝑀) such that each element 

corresponds to a locally admissible realization of 𝜎 under successive constraint configurations. This 

sequence is assumed to be locally coherent if the associated field instantiations satisfy compatibility 

conditions imposed by Ω-derived constraint classes. 

Following its introduction in 3.1.1., we define the projection latency 𝜏(𝜎) as the infimum 

temporal interval between two successive realizations of 𝜎 that preserve structural coherence: 

𝜏(𝜎) ≔ inf{𝑡i+1 − 𝑡𝑖  | 𝛱i(𝜎) ≺ 𝛱i+1(𝜎),  𝛱i+1(𝜎) ∈ Adm(𝐶),  𝐶 ⊂ Ω
n}, (16) 

where ≺ denotes structural precedence in projection order, and Adm(𝐶)  denotes the set of 

projections compatible with constraint class 𝐶. 

To relate projection latency to energy, we introduce the notion of projection curvature, denoted 

𝜅(𝜎) , defined as the informational deviation induced in a local constraint manifold by the 

instantiation of 𝜎 . Let 𝐶(𝑥) ⊂ 𝛺  denote the constraint fiber above 𝑥 ∈  𝑀 . Then 𝜅(𝜎) ≔

 ‖𝛻𝐶𝛻𝐶𝛱(𝜎)‖
2 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 3.1.1., with 𝛻𝐶  denoting the derivative along directions of 

constraint deformation in 𝛺-space. The quantity 𝜅 measures the tension required to embed 𝜎 in 

local field geometry. 

We now define the minimal projection action associated with a signature 𝜎 ∈  Ω as: 𝒮(𝜎) ≔

𝜏(𝜎) ⋅ 𝜅(𝜎).  This quantity reflects the minimal informational area required to support coherent 

projection of 𝜎 across its local realization domain. We postulate that Planck’s constant arises as the 

infimum action over all projectable signatures: 

ℏ ≔ inf
𝜎∈Ω

𝒮 (𝜎) = inf
𝜎∈Ω
[𝜏(𝜎) ⋅ 𝜅(𝜎)]. (17) 

This definition gives ℏ a precise structural meaning. Planck’s constant ℏ is the smallest possible 

product of latency and curvature that allows a signature to be coherently projected into spacetime. 

In this context, ℏ is a fundamental quantum of projection coherence. It sets the lower bound on the 
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informational complexity of any realizable identity transformation within spacetime. Projection 

events violating this lower bound either fragment structurally or fail to stabilize. 

The canonical commutation relation [𝑥, 𝑝]  =  iℏ is reinterpreted as a non-commutativity of 

projection orderings within Ω -constrained configurations. Specifically, position-like observables 

correspond to projection localization in configuration space, while momentum-like observables 

correspond to projection curvature in constraint space. Their non-commutativity reflects the fact that 

the sequential instantiation of position and curvature-dependent projections leads to path-dependent 

informational structures. Thus, ℏ governs the non-commutative algebra of identity realization. 

Furthermore, the Heisenberg uncertainty principle follows from the structure of projection 

latency itself. For a signature σ ∈  Ω, the minimal resolvable energy-time window follows as ΔE ⋅ Δt 

≥ ℏ, with Δt ≥ τ(σ) and ΔE ∼ κ(σ) interpreted as the minimal curvature modulation needed to support 

a localized excitation. In this sense, the uncertainty principle reflects a hard limit on informational 

resolution in the Ω →  𝑀 mapping, rather than a statistical indeterminacy intrinsic to state vectors. 

Planck’s constant appears as the foundational granularity of the projection architecture. It encodes 

the irreducible action-area required for coherent identity instantiation and reveals the minimal scale 

at which information can structure spacetime without decohering or fragmenting. 

4.3. Constraint curvature and the emergence of Newton’s constant 

Let us consider a region 𝑈 ⊂  𝑀 of the emergent spacetime manifold populated by projections 

𝛱(𝜎i) of identity signatures 𝜎i  ∈  Ω . As these projections instantiate, they deform the local 

informational environment, modifying the constraint topology that governs further projection. This 

deformation is encoded directly in the projection resistance structure. We interpret this resistance as 

the source of an emergent curvature over the projection bundle, reflecting informational deformation 

of constraint geometry. 

As previously developed in Section 3.2, the symmetric projection impedance tensor 𝐙𝜇𝜈(𝑥) 

defines an effective impedance metric 𝐠𝜇𝜈(𝑥) ∝ 𝐙𝜇𝜈(𝑥) over spacetime, by quantifying directional 

resistance to field instantiation. To define curvature, we consider the second variation of projection 

compatibility under constraint deformation. The projection curvature tensor 𝓡 𝜇𝜈𝜌
𝜎  is defined by 

analogy with the Riemann tensor, constructed from the impedance connection coefficients Γ𝜇𝜈
𝜆  

derived from 𝐙𝜇𝜈. Contraction yields the Ricci tensor 𝓡𝜇𝜈, which quantifies projection curvature as 

experienced by compatible identity chains. The scalar curvature, ℛ ≔ 𝐙𝜇𝜈𝓡𝜇𝜈, defines the net strain 

induced by constraint saturation over a region. 

Projection strain arises when a region of M experiences dense, latency-synchronized identity 

realization. To quantify this, we define the projection strain tensor as the directional informational 

flux at point 𝑥 ∈  𝑀: 

𝐓𝜇𝜈
(Π)(𝑥) ≔ ∑ (𝜕𝜇𝛱(𝜎)(𝑥)) (𝜕𝜈𝛱(𝜎)(𝑥))

𝜎∈Ω𝑥

, (18) 

where 𝛱(𝜎)(𝑥)  denotes the projected field value of identity signature 𝜎  at point x. This tensor 

captures how constraint-saturated regions induce curvature in the impedance geometry and serves 

as a structural analogue of the energy–momentum tensor, independent of matter fields or dynamics. 

We now postulate that the balance between curvature and strain is given by a structural field 

equation: 

𝓖𝜇𝜈 ≔ 𝓡𝜇𝜈 −
1

2
𝐙𝜇𝜈ℛ = 𝐺 ⋅ 𝐓𝜇𝜈

(𝛱). (19) 

Here, 𝓖𝜇𝜈  is the Ω-Einstein tensor, and 𝐺  emerges as a scaling coefficient quantifying the 

projection coupling strength between curvature and informational stress. This equation expresses a 

geometric equilibrium between curvature induced by projection impedance and the structural strain 

of constraint-saturated identity realization. This follows the fact that regions with high projection 

strain, like dense, coherent constraint configurations, necessarily exhibit high curvature in the 

projection impedance landscape. The resulting field equation mirrors the form of Einstein’s equations 
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but offers a different ontology. Curvature and “stress” are no longer fundamental entities but emerge 

from the geometry of constraint compatibility and the density of coherent projection. 

We interpret 𝐺 as an informational elasticity modulus of the projection manifold. Newton’s 

constant 𝐺  quantifies the ratio of curvature induction to projection strain — effectively, the 

compliance of the projection manifold. Its smallness reflects the high structural stiffness of the Ω →

 𝑀  mapping: only the collective effect of many coherent, low-latency projections can yield 

measurable curvature. Moreover, because mass and inertia have already been identified with 

projection latency in earlier work, the equivalence of inertial and gravitational mass follows directly. 

Both types of mass reflect resistance to reconfiguration within the constraint topology of Ω . 

Gravitational effects occur when such latency gradients modulate impedance curvature. There is no 

need for a field-based graviton or metric quantization. 

Finally, the universality of 𝐺 across all forms of matter reflects the universality of constraint 

geometry itself. All identity signatures that satisfy projection conditions do so within the same Ω-

defined topology. In this view, Newton’s constant is not a parameter of gravitational interaction, but 

a structural invariant of informational geometry, encoding the universal stiffness of the spacetime 

projection substrate. 

4.4. Topological quantization and the emergence of charge and the fine-structure constant 

In conventional field theory, electric charge is treated as a fundamental conserved quantity and 

the fine-structure constant 𝛼  is a dimensionless empirical input governing electromagnetic 

interaction strength. Within the Ω-framework, both quantities arise from topological invariants of 

identity signatures and constraint class geometry under projection. 

Let 𝜎 ∈  Ω be an identity signature characterized by the tuple 𝜎 =  (𝜔, 𝜖, ℓ, 𝜙, 𝐶), where 𝐶 ⊂

 Ωn  is the minimal constraint class required for admissible projection. A projection 𝛱(𝜎) ∈ ℱ𝓍  is 

allowed at 𝑥 ∈  𝑀 only if the local compatibility conditions imposed by 𝐶 are met. 

We define the charge content of a signature 𝜎 as a topological invariant associated with the 

obstruction to trivial factorization of its constraint embedding. Let 𝜋 ∶  Ω →  𝒞 denote the projection 

to the space of constraint classes and let 𝛾 ⊂  𝒞 be a closed loop generated by adiabatic variation of 

environmental projection conditions. Then, we define the net topological charge of 𝜎  as the 

holonomy class: 

𝜂(𝜎) ≔
1

2π
∮𝒜
𝛾

, (20) 

where 𝒜 is a 𝑈(1)-valued connection over 𝒞 that encodes phase rotation symmetry in Ω-signature 

projection. This expression mirrors the Berry phase formalism but is defined over structural 

constraint space rather than Hilbert space. The quantization of 𝜂 arises from the requirement that 

the holonomy group be compact and discrete under projection compatibility. 

The elementary charge 𝑒 is then defined as the minimal non-zero holonomy among projectable 

identity signatures: 

𝑒 ≔ min
𝜎∈Ω∖Ω0

|𝜂(𝜎)|, (21) 

where Ω0 denotes the set of projection-neutral (trivial-holonomy) signatures. 

To explore how topological tension interacts with the geometric structure of projection, we 

introduce a dimensionless structural action ratio 𝛯  within the Ω -framework. The ratio 𝛯  is a 

structural necessity. In any projection-based ontology with quantized topology, impedance-limited 

realization, and minimal action thresholds, a dimensionless measure of projection-limited topological 

embedding must exist [8,9]. This ratio is constructed from quantities that capture three key aspects 

of projection behavior: 

• The topological cost of charged projection (via discontinuities in constraint class embeddings); 

• The geometric permeability of the projection interface; 

• The minimal action required to stably instantiate charged identity signatures. 
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We define: 

𝛯 ≔ 
(Δ𝐶)2

𝒵ℰ ⋅ 𝜏min ⋅ 𝜅 ∙  𝑣max
, (22) 

where Δ𝐶 corresponds to the topological tension introduced by projecting a non-neutral signature, 

while 𝒵ℰ , 𝜏min ⋅ 𝜅 and 𝑣max  describe the permeability, minimal projection action, and causal 

admissibility of the projection substrate. Together, they define a normalized measure of projection 

efficiency for embedding charged identity. The inclusion of 𝜅 alongside 𝜏min reflects the fact that 

minimal projection action involves not only a temporal threshold, but also a structural curvature cost. 

Whereas 𝜏min captures the time-scale resolution of projection events, 𝜅 accounts for the intrinsic 

geometric tension required to instantiate topologically nontrivial configurations. Their product 

defines the projection grain 𝜏min ⋅ 𝜅 ∼  ℏ, which governs the minimal coherent action scale in the 

Ω →  𝑀 interface. A more mathematically detailed derivation is shown in Appendix A. 

We now show how the structural ratio 𝛯 in the Ω-topology translates into observable reality in 

spacetime. We have already established that: 

• Δ𝐶2 ∼ 𝑒2, the square of the minimal holonomy class defect; 

• 𝒵
ℰ−1 ∼ 𝜀0, electric vacuum admittance; 

• 𝜏min ⋅ 𝜅 ∼  ℏ, projection action threshold; 

• 𝑣max ∼ 𝑐, the maximal propagation speed. 

Substituting these identifications into Equation (22), the structural ratio 𝛯 collapses into the 

standard expression: 

𝛯 =
(Δ𝐶)2

𝒵ℰ ⋅ 𝜏min ⋅ 𝜅 ⋅ 𝑣max
 

substitution
→        

𝑒2

𝜀0ℏ𝑐
≈  𝛼, (23) 

demonstrating that the fine-structure constant emerges as a necessary ratio of projection-theoretic 

quantities. 

In this view, 𝛼  quantifies the normalized informational cost of embedding non-neutral 

topologies into spacetime. Its small value (~1/137) reflects the high selectivity of the projection 

interface for topologically charged configurations. It encodes the fine balance between topological 

tension and impedance-permitted realization, and thereby explains the relative weakness of 

electromagnetic interaction and the high coherence required for charge-bearing states to persist. 

Charge conservation follows directly. The constraint cohomology H1(𝒞, ℤ) is invariant under 

continuous Ω-projection morphisms, and hence the topological class [η(σ)] ∈ H1(𝒞, ℤ) is conserved. 

This yields a structural explanation for Gauss’s law and charge conservation in the projection 

framework. 

Finally, the local 𝑈(1) gauge symmetry of electrodynamics arises naturally from the 

automorphism group of phase-rotation-preserving transformations of constraint classes. Gauge 

freedom corresponds to fiberwise equivalence classes of projections under internal 𝑈(1)-rotation, 

consistent with the Ω-framework’s foundational ontology. 

In summary, electric charge emerges as a quantized topological obstruction to constraint 

trivialization, and the fine-structure constant quantifies the normalized projection cost of embedding 

such obstructions into a causal, impedance-limited geometric substrate. Both are derived, not 

assumed, and are fixed by the global structure of the Ω →  𝑀 projection map. 

4.5. Constants as Projection Invariants: Structure and Dimensional Analysis 

The preceding sections have demonstrated that the constants fundamental to physical theory, 

ε0, μ0, c, ℏ, G, e, and α, emerge in the Ω-framework. They arise from the interplay between projection 

geometry, constraint topology and informational granularity as structural invariants. Their values, 

roles, and dimensional structure can now be reinterpreted as expressions of deeper projection-

theoretic properties. 

We summarize the origin, interpretation, and dimensional form of each constant in the table 

below, which also serves to unify the derivations from Chapters 4.1 to 4.4. 
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Table 2. Projection-theoretic origins and dimensional structure of fundamental constants. 

Constant Structural Origin in Ω Projection Expression 
Physical  

Dimension 

𝜀0 

Admittance to electric 

projection across constraint 

gradients 

𝜀0 ≔ 𝒜ℰ = 𝒵ℰ
−1 [A² · s⁴ · kg⁻¹ ·m⁻³]  

𝜇0 

Admittance to magnetic 

projection under rotational 

constraint topology 

𝜇0 ≔ 𝒜ℬ = 𝒵ℬ
−1
 
 [kg ·m · s⁻² ·A⁻²]  

𝑐 

Maximal coherent 

projection rate in 

impedance-balanced 

constraint space 

𝑐 = (𝒵ℰ ⋅ 𝒵ℬ)
−1/2, [m · s⁻¹]  

ℏ 

Minimum action required 

for coherent identity 

projection 

ℏ≔ inf
σ∈Ω
(τ(σ) ⋅ κ(σ)) [kg ·m² · s⁻¹]  

𝐺 

Coupling between 

projection strain and 

curvature induced in 

impedance geometry 

𝓖μν = 𝐺 ⋅ 𝐓μν
(Π) [m³ · kg⁻¹ · s⁻²]  

𝑒 

Minimal holonomy class 

defect in constraint class 

U(1) bundle 

𝑒 ≔ min
σ
∮𝒜

γ

 [C]  

𝛼 

Ratio of charge topological 

projection to granularity, 

impedance, and velocity 

scales 

 𝛼 ≔
𝑒2

4𝜋𝜀0ℏ𝑐
 Dimensionless 

Each constant is rendered as the projection-invariant output of a single informational 

architecture and not as a free-standing input to physical law. The projection latency τ, curvature κ, 

and constraint topology 𝐶 together yield a closed system from which the constants’ dimensions and 

relations arise necessarily. 

This unification reveals the fundamental constants as spectral signatures of identity coherence 

under projection. They emerge from the algebraic and topological structure of constraint geometry, 

encoding how informational identity becomes stable, measurable structure in spacetime. 

5. Structural Universality of 𝜶 Across Theoretical Frameworks 

The fine-structure constant 𝛼  derived in Section 4.4, occupies a special position among the 

constants emerging from the Ω -framework. As a dimensionless invariant, it encapsulates the 

normalized projection cost of topologically charged identity realization. Its structure, balancing 

constraint discontinuity against geometric latency, impedance, and causal limit, provides a template 

for interpreting other coupling constants as emergent features of the projection interface. In this 

chapter, we examine how this interpretation of 𝛼  contrasts with its treatment in other major 

frameworks and what this implies for the structural role of physical constants more broadly. 
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5.1. Contrast with holographic duality 

In AdS/CFT correspondence, coupling constants such as α are typically encoded in boundary 

correlation functions, often appearing as prefactors in the Lagrangian of the boundary theory. For 

example, the Yang–Mills coupling 𝑔YM
2 ∼  α  governs interaction strength in the conformal field 

theory, with its scale-dependence captured by the renormalization group [10]. 

In the Ω-framework, by contrast, α is not a dynamical coupling in the Lagrangian sense. It is an 

emergent invariant, independent of scale transformations and defined without reference to 

variational principles. Rather than arising from boundary correlators, it emerges from the internal 

structure of the projection map as a measure of the impedance-weighted cost of embedding 

topologically charged signatures. Its constancy follows from the stability of the projection geometry 

itself and not from renormalization invariance. 

Mathematically, this distinction may be formalized by treating the projection interface 𝛱 ∶  Ω →

 𝑀 as an operator algebra homomorphism, with Ω-constraint classes representing structural operator 

families and their realizations in 𝑀 acting as bulk observables. In this analogy, α corresponds to the 

spectral norm of a transfer operator encoding the obstruction to unitarity during identity propagation 

with constraint torsion, being a deviation from symmetry-preserving realization under projection. 

5.2. Contrast with causal set theory 

Causal set theory introduces discreteness at the level of spacetime events, with causal order 

encoded in a partially ordered set. While this structure naturally reproduces Lorentzian causality and 

volume measures, dimensionless coupling constants such as α are not derived but must be inserted 

phenomenologically [11]. 

In the Ω-framework, time-ordering arises from the partial ordering of admissible projections, 

and interaction strength emerges from the topology of constraint embeddings. Rather than counting 

elements or links, we interpret α as a cohomological threshold on admissibility, a minimal projection 

tension required for non-neutral configurations to stabilize. Formally, one may define a mapping 

f: 𝒞 → Π(Ω) such that xi ≺ xj  ⇔  Π(σi) ≺ Π(σj), and identify the projection latency 𝜏(𝜎) with the 

minimum temporal separation needed to maintain coherence along such chains. In this setting, α 

appears as a universal bound on the informational load per causal link — not a function of graph 

connectivity, but a quantized threshold in constraint cohomology. 

5.3. Contrast with quantum information geometry 

Tensor network approaches, such as MERA or PEPS, model spatial geometry and quantum 

correlations via entanglement structure. Coupling constants in these models reflect bond dimensions, 

network depth, and information flows [12]. 

In the Ω-framework, this logic is reversed. Entanglement is not a primitive construct but an 

emergent consequence of shared constraint compatibility. The fine-structure constant does not track 

entanglement strength but rather the resistance to embedding non-factorizable constraint overlaps. 

A larger α would indicate easier co-projection of charged identities. A smaller α, as observed in 

nature, reflects the high structural selectivity for such instantiation. 

Projection fidelity can be defined via: 

ℱ(𝐶) ≔
𝑑𝑖𝑚𝜎∈𝐶 𝛱 (𝜎)

𝑑𝑖𝑚𝜎∈𝐶 Ω
, (24) 

measuring the coherence fraction of projectable configurations within a constraint class. In tensor 

network terms, this aligns with the minimal bond coherence necessary to realize topologically 

nontrivial projections. The fine-structure constant then emerges as the lowest ℱ(𝐶)  for which 

electromagnetically charged identities can stably exist. 
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5.4. Structural Universality of α 

Within the Ω-framework, α acts as a structural selector, a dimensionless equilibrium ratio that 

balances topological twist, impedance resistance, projection latency, and causal admissibility. Its 

small magnitude reflects the exceptionally high informational cost of realizing topologically charged 

states and the delicate coherence required for their persistence in spacetime. 

Unlike in field-theoretic models, where changes in α  suggest altered interaction strengths, 

variations in α here would imply deformation of the projection substrate itself — such as changes in 

the topology, impedance tensor, or cohomological structure of 𝐶. The empirical constancy of α thus 

signifies the global stability of the Ω → 𝑀 projection architecture. 

This reframes α as a geometric and cohomological invariant: a fixed point in the interplay 

between constraint class topology, projection granularity, and identity realization bandwidth. In this 

capacity, α plays a role analogous to a moduli index, characterizing the admissible structure of 

reality itself. 

6. Discussion 

This work has developed a structural derivation of the fundamental constants of nature from an 

informational ontology rooted in projection from a non-spatiotemporal identity space, Ω . By 

formalizing projection latency, constraint curvature, and impedance geometry, we have shown how 

constants such as ℏ, 𝐺, 𝑒, 𝜀0, 𝜇0, and 𝛼 emerge as invariant quantities within the mapping𝛱 ∶  Ω →

 𝑀, where 𝑀 denotes the observable spacetime manifold. 

Each constant corresponds to a distinct structural feature of this projection process: latency and 

curvature give rise to the quantum of action; impedance tensors determine electromagnetic response 

and causal limits; constraint holonomy induces charge quantization and the fine-structure constant 

appears as a dimensionless ratio unifying these features. These constants are consequences of deeper 

algebraic and topological constraints on projection and not free parameters. The Ω-framework thus 

reframes the constants of physics as structural invariants at the interface between informational 

identity and spacetime realization. Rather than modifying physical law, it offers an ontological 

foundation in which both the constants and the spacetime framework they inhabit arise as emergent 

phenomena. 

The results presented here do not merely suggest that physical constants might be emergent but 

demonstrate this emergence explicitly. The Ω-framework stands as a mathematically structured, 

conceptually coherent foundation in which spacetime and its constants arise as necessary projections 

of informational identity. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

MERA Multiscale Entanglement Renormalization Ansatz 

PEPS Projected Entangled Pair States 

TQFT  Topological Quantum Field Theory 

Appendix A 

Mathematical Interpretation of the Projection Ratio 𝛯 

The dimensionless ratio 𝛯 , introduced in Section 4.4 as a measure of the structural cost of 

projecting topologically charged identity signatures into spacetime, admits a natural interpretation 

as a normalized cohomological action invariant. 

Let Ω  denote the non-spatiotemporal identity space and let 𝒞  be the associated space of 

constraint classes. Given a signature 𝜎 ∈ Ω, let η(σ) ∈ H1(𝒞, ℤ) denote its topological charge class, 
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defined as a 𝑈(1)-holonomy invariant over closed loops 𝛾 ⊂ 𝒞. The minimal class discontinuity Δ𝒞 

defines a quantized jump in constraint compatibility. 

The denominator of 𝛯  consists of structural quantities defining the admissible projection 

bandwidth: 

• 𝒵ℰ: projection impedance (informational permeability); 

• 𝜏min: projection granularity (temporal resolution); 

• 𝜅: intrinsic curvature of projection embedding (structural tension); 

• 𝑣max: maximum causal propagation rate (spatiotemporal coherence bound). 

We may then express 𝛯 as: 

𝛯 ≔
‖𝛿𝐶‖2

∫ Λ(𝛱)
𝛾

∈ 𝑅+, (25) 

where ‖𝛿𝐶‖ is a normed representative of a cohomology class difference in H1(𝒞), and Λ(𝛱) is a 

generalized projection action density functional encoding resistance along compatible chains. This 

expression mirrors the structure of topological invariants in gauge theory and TQFT, where 

dimensionless observables arise from the interaction of discrete class structure with continuous 

transport geometry [8,9]. 

Thus, 𝛯 is not merely a heuristic efficiency ratio, but a genuine structural invariant that captures 

the informational and geometric tension of nontrivial identity realization within the Ω →

 𝑀 projection map. 
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