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Abstract: In this research, we explore the use of Large Language Models (LLMs) and clustering
techniques to automate the structuring and labeling of disaster-related social media content. With a
gathered dataset comprising millions of tweets related to various disasters, our approach aims to
transform unstructured and unlabeled data into a structured and labeled format that can be readily
used for training machine learning algorithms and enhancing disaster response efforts. We leverage
LLMs to preprocess and understand the semantic content of the tweets, applying several semantic
properties to the data, followed by the application of clustering techniques to identify emerging
themes and patterns that may not be captured by predefined categories and are surfaced through
topic extraction of the clusters. We proceed with manual labeling and evaluation of 10,000 examples
to evaluate the LLMs' ability to understand tweet features. Our methodology is applied to real-world
data for disaster events, with results directly applicable to actual crisis situations.

Keywords: large language models; disaster management; social media analysis; tweet classification;
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1. Introduction

Social media has become an invaluable source of information during disaster events. With
millions of users sharing real-time updates, images, and videos, social media platforms offer a wealth
of data that can be leveraged for various disaster management tasks. The increasing frequency and
severity of natural disasters, due to climate change, necessitates innovative approaches to enhance
preparedness, response, and recovery efforts. According to the EM-DAT International Disaster
Database, both the number and intensity of disaster events have been steadily increasing globally
over the past decades, with significant economic losses and human casualties [1]. This upward trend
highlights the urgent need for more effective disaster management tools and techniques.

The proliferation of social media platforms has created unprecedented opportunities for
gathering real-time information during crisis events [2]. Citizens often become "human sensors,"
providing first-hand accounts and visual documentation of disaster impacts before official
assessments can be conducted. However, the sheer volume and unstructured nature of social media
data pose significant challenges for emergency responders and disaster management agencies trying
to extract actionable insights during time-sensitive situations. The development of structured
ontologies for crisis management, as reviewed by Liu et al. [3], provides a foundation for organizing
this complex information ecosystem.

This paper examines the potential of Large Language Models (LLMs) and Generative Artificial
Intelligence (GenAl) in disaster data management by applying such models to social media data,
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creating a mechanism to produce structured data for disaster analysis through social media. We also
present a comprehensive review of existing applications and studies of LLMs in the field,
contributing to the growing body of literature on Al-assisted disaster management.

2. Literature Review

2.1. Utilization of the Social Media Datasets for Disaster Management

Social media data has emerged as a crucial resource for researchers and practitioners in the field
of disaster management, offering opportunities to enhance various aspects of disaster response and
mitigation [4]. Derived primarily from platforms such as X (formerly Twitter), Facebook, and
Instagram, these datasets capture real-time information shared by individuals experiencing crises,
providing valuable insights into the evolving dynamics of disaster events.

The applications of social media data in disaster management are multifaceted and span the
entire disaster lifecycle. For situational awareness, researchers have leveraged social media data to
track the spread of wildfires [5], monitor flood events [6], and assess damage from earthquakes [7].
The inherent real-time nature of social media updates provides a distinct advantage for gaining rapid
understanding during rapidly unfolding disasters. Similarly, needs assessment benefits from social
media analysis, enabling the identification of urgent requirements for shelter, food, and medical
assistance, particularly after events like hurricanes [8], floods [9] and wildfires [10]. By analyzing the
content of social media posts, disaster relief organizations can gain a nuanced understanding of the
specific needs of affected communities, allowing for a more targeted and effective response.

Crisis communication is another critical area where social media plays a pivotal role. Studies
have investigated the use of social media for disseminating warnings, coordinating evacuations, and
providing critical public information during disasters [4,9,11]. These platforms serve as effective
channels for reaching a broad audience swiftly and facilitating two-way communication between
authorities and the public, fostering a more informed and responsive environment. Researchers have
developed methods to assess damage to infrastructure and buildings using images and videos [12],
proving particularly useful when physical access to affected areas is restricted or traditional
assessment methods are time-consuming.

Furthermore, social media data is increasingly being utilized for predictive modeling.
Researchers are developing models to predict the spread of wildfires [13] and forecast flood events
[6] by incorporating real-time information from individuals acting as "human sensors." This
integration of citizen-generated data has the potential to significantly improve the accuracy of
disaster predictions, enabling earlier warnings and more proactive mitigation strategies. This novel
application demonstrates the potential of advanced Al in leveraging social media data for rapid and
accurate impact assessment. Social media data is also used to assess mental health needs of those
impacted by disasters, such as analyzing twitter posts after wildfires [14]. Recent academic initiatives,
such as in [15], have focused on developing specialized algorithms for detecting natural disasters
from social media signals in real-time, further expanding the utility of these platforms. Social media
analysis using advanced Al methods can enhance situational awareness in disaster management and
assess the impacts of disasters [16].

Social media datasets for disaster management research vary in several key ways. These include
the platform used (most commonly Twitter, but also Facebook, Instagram, and others), the type of
disaster (earthquakes, floods, etc.), the time period covered (single event or longer-term), the
geographic area (local to global), whether the data is labeled (for training machine learning models),
and the specific data points extracted (like hashtags, location, and time), which are used to
understand disaster dynamics.

Several notable social media datasets have been developed for disaster management research.
These include:

e  CrisisNLP: CrisisNLP provides resources for crisis informatics research, including
annotated datasets of tweets and images from disasters, labeled for various attributes. It also offers
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tools for tweet downloading, pre-trained models, benchmarked datasets for classification, and large
COVID-19 tweet datasets, all aimed at developing computational tools for humanitarian aid [17].

¢  HumAID: A dataset of human-annotated disaster incidents from Twitter, covering 19 major
natural disasters from 2016 to 2019. This dataset focuses specifically on identifying and classifying
different types of disaster incidents, providing valuable training data for machine learning models
used in emergency response [18].

e CrisisBench: A consolidated dataset combining eight publicly available disaster-related
datasets, providing over 166,000 tweets for informativeness classification and over 141,000 tweets for
humanitarian classification tasks. By consolidating multiple datasets, CrisisBench offers a larger and
more diverse dataset for training and evaluating machine learning models in disaster management
[19].

* GeoCoV19: A dataset of over 500 million multilingual tweets related to the COVID-19
pandemic, spanning 218 countries and 47,000 cities. This dataset captures the global impact of the
pandemic and provides valuable insights into how social media is used during public health
emergencies [20].

e TBCOV: A dataset comprising over two billion multilingual tweets related to the COVID-
19 pandemic, with sentiment, named entities, geo, and gender labels. The inclusion of these labels
allows for a more nuanced analysis of social media content and enables researchers to study the social
and emotional impact of the pandemic [21].

2.2. Challenges and Limitations

While social media data holds immense promise for improving how we manage and respond to
disasters, it's important to acknowledge that there are several significant challenges to overcome.
These challenges range from questions about the reliability of the information we find to ethical
considerations about how we use people's personal data. Effectively leveraging social media in
disaster situations requires careful thought and strategies to address these limitations.

One major concern revolves around the trustworthiness of social media content. The very nature
of these platforms means that false or inaccurate information can spread rapidly, especially during
times of crisis. This misinformation can create confusion, hinder rescue efforts, and even put people
at further risk [22]. Therefore, it's crucial to develop robust methods for verifying the information we
gather from social media. This involves finding ways to filter out unreliable reports, identify
trustworthy sources, and compare information with other reliable data. Recent hybrid approaches
combining machine learning with rule-based classification have shown promise in extracting
actionable emergency information from social media streams while mitigating issues of
misinformation [23].

Another key limitation is that social media users don't necessarily reflect the entire population.
Certain groups of people might be less likely to use social media due to factors like age, access to
technology, or language barriers [24]. This means that relying solely on social media data could give
us an incomplete or skewed picture of the disaster's impact. For instance, we might miss the needs of
vulnerable populations who are not active online. To ensure our disaster response is fair and
effective, we need to be aware of these biases and find ways to gather information from a wider range
of people.

Furthermore, using social media data raises important ethical questions about privacy. We must
be extremely careful when handling personal information shared on these platforms and always
respect people's privacy [25]. This means following strict ethical guidelines and legal regulations.
Whenever possible, we should seek consent from users and use techniques to anonymize data so that
individuals cannot be easily identified. We must also be mindful of the potential for even anonymized
data to be re-identified and take appropriate precautions.

Finally, the sheer volume of social media data generated during a disaster can be overwhelming.
The speed at which this data is produced also presents a significant technical challenge [26].
Traditional methods of processing data often struggle to keep up with this influx. Therefore, we need
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to develop more efficient and scalable ways to collect, store, and process this information. This
includes creating sophisticated computer programs that can automatically filter relevant data,
identify key topics, and understand the overall sentiment expressed in social media posts. By
overcoming these technical hurdles, we can extract timely and valuable insights to support effective
disaster response efforts.

2.3. Utilization of LLMs and GenAl

Large Language Models (LLMs) are sophisticated Al models built upon deep learning
architectures, primarily the Transformer architecture, which enables them to process and generate
human-like text. Multimodal LLMs integrate and process information from various modalities,
including text and images. The core capabilities of LLMs include a profound understanding of
context, the ability to generate coherent and logical text, and the capacity to tackle complex problems
involving textual and multimodal data.

Unlike traditional AI, which primarily focuses on analyzing existing data, Generative Al can
synthesize new information, offering unique opportunities for innovation across various domains,
including disaster management. The inherent capabilities of LLMs align well with the demands of
disaster management. Their ability to analyze extensive datasets, facilitate communication between
stakeholders, and support critical decision-making processes makes them invaluable in mitigating
the impacts of disasters. Similarly, the strengths of Generative Al in data synthesis, rapid content
creation, and the simulation of various scenarios can address specific challenges encountered in
disaster preparedness, response, and recovery phases [27].

Recent comprehensive surveys have documented the evolution of machine learning methods
specifically for disaster management applications [4]. These studies highlight how machine learning
has progressed from basic classification tasks to sophisticated prediction and decision support
systems tailored to various disaster contexts. The integration of machine learning across the entire
disaster management cycle has been well-documented, with applications ranging from early warning
systems to recovery planning [28]. Research foundations are now developing specialized large
language models specifically fine-tuned for disaster risk reduction applications, demonstrating the
growing recognition of LLMs' potential in this domain [29].

2.4. LLMs and Generative Al for Disaster Management

LLMs and Generative Al are transforming disaster preparedness by enhancing our ability to
understand and plan for potential crises. For instance, LLMs can analyze vast datasets about
infrastructure, identifying patterns and weaknesses that might make certain areas or systems more
vulnerable to specific hazards. This allows for more targeted preventative measures and resource
allocation. Moreover, LLMs can be used to assess the impacts of technological disasters such as
industrial accidents [10]. Furthermore, LLMs can process complex information, such as the Social
Vulnerability Index (SVI), to answer specific questions from communities about their risk factors and
potential impacts [3]. This empowers communities to better understand their vulnerabilities and take
proactive steps.

International organizations have also recognized the potential of machine learning in disaster
risk management, with comprehensive frameworks being developed to guide implementation [30].
These frameworks provide standardized approaches for integrating AI solutions into existing
disaster management systems, ensuring compatibility and effectiveness across different contexts and
regions.

Generative Al tools, like FEMA's PARC initiative [31], are streamlining the often complex
process of hazard mitigation planning for local governments. By automating the generation of plan
sections and providing expert guidance, these tools make it easier for communities, especially those
with limited resources, to develop comprehensive strategies that can ultimately reduce disaster risks.
The broader application of Al in risk assessment, as explored by the UN [32], helps to identify and
understand various threats on a global scale, informing international efforts to build resilience. LLMs
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also act as powerful knowledge synthesizers, capable of extracting crucial information from diverse
sources like news reports, or social media. This extracted knowledge can then be used to answer a
wide range of questions about potential risks, such as the likelihood and severity of wildfires or
floods, providing valuable insights for planning and resource allocation. These models can even offer
tailored advice to individuals and communities on how to mitigate specific risks. Techniques like
RAG allow these Al systems to access and integrate real-time data from sources like geographic
information systems, providing the most up-to-date information for risk assessment, such as in the
context of flood risk [33].

Advancements in early warning systems are becoming increasingly sophisticated thanks to
LLMs and Generative Al For example, Moody's GenAl-powered system for commercial real estate
risk [34] demonstrates how Al can continuously monitor news and integrate proprietary data to
provide timely alerts about potential financial risks in the sector, which can be triggered by disasters.
Similarly, Al offers the potential to significantly improve the speed and accuracy of warnings for
major political or military events, providing policymakers with more lead time to respond and
potentially prevent escalation or mitigate harm. The Northwestern Terror Early Warning System
(NTEWS) [35] shows how machine learning can be applied to model patterns of terrorist behavior,
allowing for the forecasting of potential attacks and enabling preventative actions.

Humanitarian organizations have begun implementing machine learning solutions for
emergency response in remote areas, combining drone technology with advanced analytics [36].
These initiatives demonstrate how machine learning can be deployed in resource-constrained
environments to support disaster monitoring and response. Machine learning models specifically
designed for social media monitoring have demonstrated improved accuracy in wildfire detection
and tracking [37], showcasing the practical applications of these advanced technologies for specific
disaster types.

These advancements are shifting disaster management from a reactive approach to a more
proactive one, where Al plays a key role in anticipating and reducing the impact of various crises.
Academic institutions are developing integrated platforms that combine social media analysis with
Al for accelerating disaster response operations [38], creating ecosystems where various stakeholders
can collaborate effectively during emergencies.

Generative Al also plays a crucial role in enhancing preparedness by creating realistic training
simulations [36]. These simulations allow emergency responders and other stakeholders to practice
their roles and develop more effective strategies for coping with different disaster scenarios. The
UNDP's Crisis Academy [39] is exploring the use of technologies like augmented reality, powered by
Al to create immersive and tailored learning experiences, making training more engaging and
effective. Beyond training, Al is also being used to optimize the allocation of physical resources,
ensuring that the right equipment and personnel are in the right place at the right time to respond
effectively to a disaster.

During an active disaster, LLMs are invaluable for achieving real-time situation awareness. They
can rapidly analyze the massive amounts of data generated from various sources, including social
media, news outlets, and sensor networks, to provide a comprehensive understanding of the
unfolding situation. LLMs can assess the credibility and relevance of information shared on social
media, filter out noise, and categorize the type of assistance needed [40]. This allows for a more
dynamic and informed response, enabling decision-makers to allocate resources effectively and
communicate with affected communities. Advanced LLMs can even classify the type of disaster and
the most pressing humanitarian aid needs based on the data they analyze. Furthermore, multimodal
LLMs enhance this awareness by integrating visual information, such as images and videos shared
on social media, with textual data, leading to more accurate assessments of damage and needs on the
ground [41]. The fusion of multimodal social media data for disaster image classification represents
a promising direction for more comprehensive situational awareness [42], allowing for a more
nuanced understanding of disaster impacts.
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Effective communication is critical during a disaster, and Generative Al is playing a significant
role in improving this aspect. Al can automatically generate emergency alerts and instructions in
multiple languages [43], ensuring that vital, potentially life-saving information reaches diverse
populations, regardless of language barriers. There's also the potential to personalize these updates,
tailoring them to specific geographic areas or even individual needs. Al-powered chatbots, such as
FEMA's Hazard Mitigation Assistance Chatbot [44], are being developed to provide immediate and
context-specific guidance to both emergency responders and the public. These chatbots can answer a
high volume of inquiries about emergency procedures, guidelines, and available assistance, freeing
up human responders to focus on more complex and critical tasks. By providing accessible and timely
information, Generative Al significantly enhances the efficiency and effectiveness of disaster
response efforts.

Several case studies and pilot projects demonstrate the real-world application of these
technologies. FEMA's PARC initiative [31] is actively working to make hazard mitigation planning
more efficient and accessible for local governments. Al-driven early warning systems are already
being implemented, with examples like Google Maps integrating Al for real-time wildfire boundary
tracking [45] and Al forecasting systems in Europe outperforming traditional models in predicting
hurricane systems [46]. These examples show the increasing reliability and practical utility of Al in
providing timely warnings that can save lives and property. The United Nations Development
Programme (UNDDP) is actively leveraging Al in various stages of crisis response. Their RAPIDA tool
[47] uses Al to analyze satellite imagery, social media, and other data to provide rapid insights into
the impact of crises, as seen after the Herat earthquake in Afghanistan. These real-world examples
underscore the tangible benefits and the growing adoption of LLMs and Generative Al as powerful
tools for addressing the complex challenges of disaster management.

3. Methodology

The research utilized a dataset of 10 million tweets collected via the (old) Twitter API. This large
volume of data was intended to provide a comprehensive overview of discussions and information
shared on Twitter during disaster events [27]. The time frame for the gathered tweets spans between
01/2012 and 12/2022. For the purposes of this study we do not utilize the entirety of the dataset, for
reasons of infrastructure cost of the LLM. The processing, including the trial and error period in order
to evaluate the efficacy of the finalized prompt, accumulated to approximately 500,000 processed
tweets.

3.1. Ground Truth Labeling

To evaluate the performance of the automated LLM labeling approach, a subset of the collected
tweets was manually labeled to create a "ground truth" dataset. A pool of 9434 tweets was sampled
from the larger dataset, and these tweets were labeled manually. The labeling schema included the
following categories:

1. main_disaster_type: Categorizing the primary type of disaster being discussed from the
following list:
Earthquake
Tsunami
Flood
Hurricane
Wildfire
Drought
Heatwave
Landslide
Volcano
Tornado

O O O O OO o 0o o o o

Pandemic
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Famine

Conflict

Cyberattack

Blackout

Chemical Spill

Nuclear Accident
Industrial Accident

Mass Shooting

Explosion

Other

N/A

severity: Assessing the perceived severity of the disaster from the following list:
Severe damage

Mild damage

Little or no damage

Don't know or can't judge

W o 0 O 0 MO O O 0O O 0 O 0 O 0 O

informative: Indicating whether the tweet contains informative content related to the disaster.
Boolean value

impact: Describing the type of impact mentioned in the tweet from the following list:
Affected individuals

Infrastructure and utility damage

Injured or dead people

Missing or found people

Rescue, volunteering or donation effort

Vehicle damage

Other relevant information

Not relevant

o 00 0 0 0 0 0 &

location_mentioned: Identifying if a specific location (country or city) is mentioned in the tweet
as free text.
6. sentiment: Classifying the overall sentiment expressed in the tweet as positive, negative, or
neutral.
This manually labeled dataset served as the benchmark against which the automated LLM labels
were compared.

3.2. Automated LLM Labeling

The core of the research involved applying an LLM, specifically gpt-40-mini, to automatically
label the entire dataset (or a significant portion thereof). The process involved the following steps:

3.2.1. Data Preprocessing

A simplified preprocessing function (preprocess_text) was applied to the tweet text to clean it
by converting it to lowercase and removing URLs, mentions, and special characters. This step helps
in standardizing the input for the LLM.

def preprocess_text(text):

""Cleans and preprocesses text data by removing URLs and mentions."""
text = str(text)
text = text.lower()
text = re.sub(r'[*\w\s], ", text)

return text

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1798.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 d0i:10.20944/preprints202505.1798.v1

8 of 19

3.2.2. LLM Prompting

A trial and error-crafted prompt was designed to instruct the gpt-4o-mini model on how to
classify the tweets. The prompt provided context about the task, specified the categories for
classification, and included the lists of keywords for main_disaster_type, severity, informative, and
impact. It also specified the required format for the output (JSON) and constraints for sentiment and
location mentioned.

Prompt Used:

prompt = f"

0"

You are a helpful assistant that classifies disaster-related tweets.

Classify the following tweet into the categories of main_disaster_type, severity, informative, and impact.
Use the provided keywords for each category to determine the appropriate label.

Sentiment must be either positive, negative, or neutral. Location_mentioned should be a country or city
name if mentioned in the tweet.

Respond with the appropriate JSON format.

Disaster Types Values List: {*, " .join(disaster_types)}
Severity Levels Values List: {’, ".join(severity_levels)}
Informative Levels Values List: {’, ".join(informative_levels)}

Impact Values List: {’, ".join(impact)}

Tweet: {text}

v

3.2.3. Output Structuring

A Pydantic schema (TweetClassification) was defined to ensure that the LLM's output was
structured in a consistent and predictable format. This schema specified the data types for each of the
classification categories.

class TweetClassification(BaseModel):

main_disaster_type: str
severity: str
informative: str

impact: str
location_mentioned: str
sentiment: str

The response_format=TweetClassification parameter in the LLM call ensured the structured
form of the output and the parsing according to this schema.

3.3. Evaluation Methodology

The performance of the automated LLM labeling was evaluated by comparing its predictions on
a subset of the data with the manually created ground truth labels. The evaluate_labels function was
used to calculate several standard classification metrics:

*  Accuracy: The proportion of correctly classified instances.
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¢  Precision: The proportion of predicted positive instances that were actually positive.

e Recall: The proportion of actual positive instances that were correctly identified.

*  Fl-score: The harmonic mean of precision and recall, providing a balanced measure of
performance.

These metrics were calculated for each individual label category (main_disaster_type, severity,
informative, impact, location_mentioned, sentiment) as well as an overall performance metric. The
overall accuracy was calculated as the proportion of tweets where all predicted labels matched the
ground truth labels. The overall precision, recall, and Fl-score were calculated as the average of the
category-wise metrics.

3.4. Evaluation Results

The evaluation results from the hold-out validation set (comparing the LLM's output with the
manual labels) are as follows:

Table 1. Evaluation metrics for automated LLM labeling across different categories.

Category Accuracy Precision Recall F1
main_disaster_t 0.7204 0.7275 0.7204 0.7025
ype
severity 0.7087 0.6741 0.7087 0.6601
informative 0.8085 0.8200 0.8085 0.8098
impact 0.7172 0.7004 0.7172 0.6869
location_mentio 0.8360 0.8768 0.8360 0.8464
ned
sentiment 0.8561 0.9052 0.8561 0.8700
overall 0.2896 0.7840 0.7745 0.7626

The evaluation results indicate varying levels of performance across the different labeling
categories. The sentiment and location_mentioned categories show the highest accuracy and F1-
scores, suggesting that the LLM is particularly adept at identifying sentiment and the presence of
location information. The informative category also shows strong performance.

The main_disaster_type, severity, and impact categories have lower accuracy and Fl-scores
compared to the others, indicating that these categories might be more challenging for the LLM to
predict accurately, possibly due to the nuances in language or the complexity of the classification
task.

The overall accuracy of 0.2896 suggests that achieving perfect agreement across all six categories
for a single tweet is challenging. However, the overall precision, recall, and F1-score are significantly
higher, indicating that when considering each category independently (as reflected in the averages),
the model performs reasonably well.
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Further analysis of the misclassifications could provide valuable insights into the specific types
of errors the LLM is making and inform potential improvements to the prompting strategy, keyword
lists, or even the labeling schema itself.

Automated LLM labeling of disaster-related tweets provides significant value by efficiently
processing massive datasets to extract structured information. This approach transforms raw,
unstructured text into actionable data, enabling faster and more scalable analysis compared to
manual methods. By categorizing tweets based on disaster type, severity, impact, sentiment, and
location, the process unlocks the potential for in-depth analysis of disaster events.

The resulting structured data facilitates crucial insights for disaster response, preparedness, and
research. It allows for real-time monitoring potential, understanding public perception, identifying
information needs, and mapping the geographical impact of disasters.

4. Dataset Analysis

This section presents an analysis of a sampled dataset comprising 288,926 tweets, a subset of
125,460 of which were identified and labeled as pertinent to specific disaster events. The subsequent
analysis aims to elucidate the characteristics of these disaster-related communications through an
examination of their type, informativeness, impact, sentiment, and underlying textual patterns
identified via unsupervised learning techniques.

4.1. Descriptive Analysis of Disaster-Related Tweets

The distribution of the main_disaster_type within the labeled subset reveals a heterogeneous
landscape of events captured by the data (Table 2). The overwhelming prevalence of tweets related
to the pandemic (45.74%) underscores the significant impact and widespread discourse surrounding
global health crises during the data collection period. The substantial "other" category (19.76%)
suggests the presence of diverse, less frequently categorized events, warranting further qualitative
investigation to discern the specific nature of these incidents. Notably, industrial accidents (8.82%)
and conflict (4.65%) also constitute significant portions of the dataset, indicating the model's capacity
to identify tweets associated with both sudden and protracted disaster scenarios. The remaining
disaster types, including floods, hurricanes, and nuclear accidents, exhibit lower frequencies,
potentially reflecting the relative infrequency or localized nature of these events within the sampled
timeframe.

Table 2. Distribution of Main Disaster Types.

Disaster Type Count Percentage
Pandemic 57,384 45.74%
Other 24,792 19.76%
Industrial 11,060 8.82%
Accident
Conflict 5,832 4.65%
Flood 5,007 3.99%
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Hurricane 4,197 3.35%
Nuclear 3,328 2.65%
Accident
Wildfire 2,498 1.99%
Chemical Spill 1,942 1.55%
Earthquake 1,586 1.26%
Mass Shooting 1,448 1.15%
Explosion 1,167 0.93%
Tornado 1,084 0.86%
Cyberattack 880 0.70%
Heatwave 870 0.69%
Famine 862 0.69%
Drought 479 0.38%
Tsunami 292 0.23%
Landslide 282 0.22%
Volcano 260 0.21%
Blackout 210 0.17%
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Figure 1. Distribution of main disaster types identified in the analyzed tweets.
The assessment of tweet informativeness reveals that a significant majority (59.69%) were
labeled as informative, suggesting a valuable source of real-time information during disaster events.

Conversely, 40.30% were deemed not informative, potentially encompassing personal opinions,
emotional responses, or irrelevant content.

Distribution of Sentiment

neutral

positive

negative

Figure 2. Proportion of tweets classified as informative versus non-informative.

Analysis of the impact categories provides a granular view of the information conveyed. The
most frequent categories include "not relevant" (184,145). Among the positively labeled impacts,
"other relevant information" (44,123) and "infrastructure and utility damage" (25,738) were
prominent, highlighting the focus on general updates and the state of essential services. Reports
concerning "affected individuals" (10,450), "injured or dead people" (9,473), and "volunteering or
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donation effort" (7,466) underscore the dataset's capacity to capture the humanitarian aspects of
disasters.

The heatmap presented visualizes the impact categories across different main disaster types
reveals distinct patterns in the information shared on Twitter. For instance, while the pandemic
shows a broad impact, affected individuals and death, industrial accidents and chemical spills are
strongly associated with reports of infrastructure damage. Conflicts and floods also correlate with
damage to infrastructure. Notably, wildfires don't show a clear link to environmental impact which
potentially indicates the inability of the model to divulge the impact to the environment.

Impact Categories by Main Disaster Type
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Figure 3. Heatmap showing the relationship between disaster types and impact categories.

Sentiment analysis indicates a predominantly neutral tone (67.15%), which is plausible in the
context of factual reporting and information dissemination. Negative sentiment (24.06%) reflects the
distress and concern associated with disaster events, while positive sentiment (8.78%) may stem from
messages of resilience, recovery, or aid.

4.2. Unsupervised Text Analysis

To uncover latent semantic structures within the textual data, unsupervised learning techniques
were employed following text preprocessing steps involving normalization and tokenization.

4.2.1. Word Cloud Visualization

The word cloud generated from the preprocessed text visually emphasizes the most salient

terms. The prominence of phrases like "public health," "natural disaster," "emergency management,"
and "emergency response" suggests a strong thematic focus on the systemic and organizational
aspects of disaster events. The frequent occurrence of "https" points to the prevalent use of external
links for information sharing. There is a merit in removing the https directly in text preprocessing or
cleaning, but the information of the inclusion of a link or multimedia (link to an image) is useful in
the terms of how much multimedia other than text are present in disaster related tweets, or in fact

tweets in general.
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Figure 4. Word cloud visualization of the most frequent terms in the disaster-related tweets.

4.2.2. K-Means Clustering

K-Means clustering, applied to the TF-IDF transformed text data, partitioned the tweets into four
distinct clusters, each characterized by a set of dominant terms:

*  (Cluster 1: health, public, amp, new

*  C(Cluster 2: damage, property, accident, reported

*  Cluster 3: emergency, response, management, environmental

*  Cluster 4: disaster, natural, relief, help

These clusters offer a preliminary segmentation of the discourse, with Cluster 1 potentially
focusing on public health crises and related news, Cluster 2 on the immediate aftermath and impact
of events involving damage and accidents, Cluster 3 on the operational and environmental
dimensions of disaster response, and Cluster 4 on the broader concepts of natural disasters and
humanitarian aid. By utilizing these clusters, new tweets can be categorized with the clustering
mechanism as well to identify potential relativity to previous events within the same cluster.

4.2.3. Principal Component Analysis (PCA)

To reduce the dimensionality of the TF-IDF feature space and identify the principal sources of
variance in the text data, Principal Component Analysis (PCA) was performed, retaining the top five
components. The explained variance ratio for these components is as follows:

[0.03127214 0.02367425 0.0199147 0.01830832 0.01533562].

The explained variance ratios indicate that the first five principal components capture
approximately 3.13%, 2.37%, 1.99%, 1.83%, and 1.53% of the total variance in the data, respectively.
Cumulatively, these five components account for roughly 10.29% of the variance. While this suggests
that a substantial amount of variance is distributed across a larger number of components, these
initial principal components likely represent the most dominant underlying themes or patterns in the
textual data. The relatively low explained variance for each component individually suggests that the
textual information is complex and multifaceted, with no single dominant theme explaining a large
proportion of the variance. It is interesting that the PCA couldn't converge as much in certain verbal
components, because it goes against the word cloud indication and the clustering indication of strong
health correlation in the dataset.
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5. Discussion

This research provides a comprehensive exploration into the capabilities of Large Language
Models (LLMs), in automating the structuring and labeling of disaster-related social media content.
The evaluation of the automated labeling process against a manually annotated ground truth dataset
of 9,434 tweets reveals promising yet nuanced results. The high accuracy and F1-scores achieved in
sentiment and location_mentioned classification (0.8561/0.8700 and 0.8360/0.8464, respectively)
underscore the LLM's proficiency in discerning subjective tones and identifying geographical
references within concise textual data. Similarly, the strong performance in the informative category
(0.8085/0.8098) suggests the model's ability to effectively differentiate between content offering
pertinent information and that which is less relevant in a disaster context.

However, the comparatively lower performance in categorizing the main_disaster_type,
severity, and impact (accuracies ranging from 0.7087 to 0.7204 and F1-scores from 0.6601 to 0.7025)
warrants further consideration. This suggests that while the LLM demonstrates a strong
understanding of general semantic features, the subtle distinctions and contextual nuances required
for precise categorization in these areas present a greater challenge. The complexity of inferring the
specific disaster type or the perceived severity from short, often emotionally charged social media
posts may contribute to these lower scores. The "impact" category, with its diverse range of potential
manifestations, similarly poses a complex classification task. The overall accuracy of 0.2896, while
seemingly low, highlights the inherent difficulty in achieving perfect agreement across all six diverse
labeling categories for each individual tweet, emphasizing the multi-faceted nature of disaster-
related social media content.

The subsequent analysis of a larger dataset of 288,926 tweets, with 125,460 labeled as disaster-
related, provides valuable insights into the prevalent themes and characteristics of online discourse
during crises. The dominance of pandemic-related tweets (45.74%) reflects the unprecedented global
impact of the COVID-19 pandemic during the data collection period, highlighting the utility of social
media for capturing public discourse during such large-scale events. The prevalence of industrial
accidents and conflict further illustrates the broad applicability of social media data in understanding
various types of crises.

The unsupervised text analysis, employing word clouds and K-Means clustering, offers a
preliminary glimpse into the latent semantic structures within the dataset. The prominence of terms
like "public health," "natural disaster," and "emergency response" in the word cloud aligns with the
descriptive analysis, reinforcing the thematic focus of the collected data. The four distinct clusters
identified through K-Means -- potentially focusing on public health news, immediate impact and
damage, operational and environmental response, and broader disaster relief efforts -- provide a
foundational structure for understanding the diverse facets of disaster-related online communication.
However, the low explained variance ratios observed in the PCA (cumulatively 10.29% for the top
five components) suggest that the textual data is highly complex and multifaceted, with no single
dominant theme explaining a large proportion of the variance. This complexity underscores the
challenges inherent in extracting concise and readily interpretable patterns from large volumes of
social media text.

6. Conclusions

In essence, this research highlights the substantial potential of employing Large Language
Models (LLMs) to analyze the vast quantities of social media data generated during disaster events.
The ability to efficiently extract structured information concerning the type of disaster, its perceived
severity, the nature of its impact, and the sentiment expressed within these online communications
offers a powerful tool for enhancing situational awareness, guiding resource allocation, and refining
communication strategies crucial for effective disaster management.

Looking ahead, several promising avenues for future research warrant exploration. One key
direction involves the fine-tuning of existing LLMs on specialized datasets of disaster-related social
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media content. This targeted training could further optimize their performance for the specific
nuances and vocabulary prevalent in this domain, potentially leading to significant improvements in
classification accuracy, particularly for challenging categories like impact category. Recent work on
instruction fine-tuned LLMs for multi-label social media classification in disaster contexts
(CrisisSense-LLM) represents a promising direction for improved understanding of disaster
communications [48].

Furthermore, exploring advanced prompting strategies remains crucial, including the
incorporation of more detailed contextual information and diverse examples to better guide the
LLM's understanding. Another vital area lies in investigating alternative state-of-the-art LLMs and
architectural innovations, including those designed for multimodal data processing, to leverage the
rich information contained in images and videos shared during disasters. The development of
multimodal datasets combining social media text with remote sensing imagery offers new
possibilities for comprehensive disaster monitoring and response [49]. Emerging research
demonstrates that multimodal LLMs like Gemini can accurately estimate earthquake intensity from
social media posts, potentially revolutionizing rapid damage assessment [50].

The development of more granular and hierarchical labeling schemes could also address the
limitations of broad categorization, allowing for more precise and actionable insights. To enhance the
LLM's ability to adhere to specific labeling guidelines and extract particular types of information,
future work will focus on instruction-tuning techniques. This approach involves training the LLM on
a dataset of instructions paired with desired outputs, thereby improving its capacity to follow
complex classification tasks.

Finally, a comparative analysis of the LLM-based approach with traditional machine learning
algorithms trained on manually labeled data would offer a more comprehensive understanding of
the relative strengths and weaknesses of each method.
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