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Abstract: Understanding how energy use and economic activity shape carbon emissions is pivotal 

for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated 

energy consumption, economic growth, and CO₂ emissions in India and China—two economies that 

together account for more than one-third of global emissions. Using annual data from 1990 to 2021, 

we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional 

linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–

2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal 

stark national differences. For India, coal, natural gas consumption, and economic growth are the 

strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating 

effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum 

use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. 

Longer-lag specifications markedly improve forecast accuracy, underscoring the cumulative nature 

of energy-emissions dynamics. Policy simulations suggest that accelerated coal-to-clean transitions, 

aggressive energy-efficiency standards, and grid upgrades for higher renewable penetration are 

essential. Finally, leveraging multilateral platforms—such as the Asian Development Bank, and the 

Green Climate Fund—can mobilize the green finance and technology transfers required for India’s 

2070 and China’s 2060 carbon-neutrality pledges. 

Keywords: energy consumption; economic growth; carbon emissions; machine learning forecasting; 

Long Short-Term Memory (LSTM) 

 

1. Introduction 

Energy consumption has long been recognized as a central pillar of economic development and 

societal advancement. It is an essential input that powers industrial activity, fuels transportation, 

supports infrastructure, and enhances human well-being. This is particularly evident in rapidly 

growing economies such as India and China, which are central to the focus of this study. These two 
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nations have emerged as dominant global players not only in economic output but also in energy 

demand and environmental impact. Understanding their energy profiles is essential to grasp the 

broader dynamics of global sustainability. Disparities in energy usage have shaped the development 

trajectories of countries and have often contributed to widening the gap between developed and 

developing nations. Reliable energy access drives industrial growth, fosters employment, and 

underpins human development [1–3]. Simultaneously, energy acts as a strategic geopolitical asset 

that has historically influenced war outcomes, trade patterns, and environmental challenges [4]. 

In recent decades, the global energy landscape has undergone rapid transformation. Worldwide 

energy demand has escalated dramatically, largely driven by population growth, urbanization, and 

industrialization—especially in developing economies [5,6]. A majority of this increased demand has 

been met through the consumption of fossil fuels such as coal, oil, and natural gas. As a result, CO₂ 

emissions have surged, contributing significantly to the intensification of climate change. For 

instance, global CO₂ emissions increased by approximately 30% from the nineteenth to the twentieth 

century [7], underscoring the correlation between industrial progress and environmental 

degradation [8–11]. The Intergovernmental Panel on Climate Change [12] notes that approximately 

80% of global CO₂ emissions stem from human activities. The environmental consequences of this 

trend include more frequent and intense droughts, rising sea levels, glacial melt, habitat loss, and 

increased incidence of extreme weather phenomena. 

The imperative to explore and understand the complex interplay between energy use, economic 

growth, and environmental degradation has intensified. This challenge has been globally 

acknowledged through multilateral agreements and institutional frameworks. The United Nations 

Sustainable Development Goals (SDGs) specifically call for urgent climate action (SDG 13) and the 

promotion of clean and affordable energy for all (SDG 7) [13,14]. These goals emphasize the need to 

transition toward sustainable energy systems that support economic growth while reducing 

environmental harm [15]. Policymakers faced with the delicate balance of sustaining economic 

momentum without compromising long-term ecological stability. 

Analyzing the nexus between energy consumption, economic growth, and CO₂ emissions in the 

Indian and Chinese contexts is critical because these two nations are not only among the world’s top 

energy consumers and largest CO₂ emitters, but also key influencers of global climate trajectories. 

Their rapid industrialization and urbanization have significantly altered their energy and emissions 

profiles, positioning them as pivotal case studies for examining the challenges and opportunities of 

sustainable development. Moreover, both countries are actively engaged in ambitious policy 

experimentation aimed at transitioning toward low-carbon economies, making them important 

laboratories for observing the effectiveness of renewable energy promotion, energy efficiency 

strategies, and emissions reduction commitments. As signatories to major international climate 

agreements, their ability to achieve or fall short of emissions targets carries substantial global 

consequences. Understanding their unique trajectories provides valuable insights into how large, 

rapidly developing economies can balance growth with environmental responsibility and contributes 

to the design of more effective and scalable climate policies worldwide. 

Despite the growing volume of literature on this topic, existing studies predominantly rely on 

traditional econometric tools such as Granger causality tests, vector error correction models (VECM), 

and cointegration techniques. These models, while useful, often rely on assumptions such as linearity, 

stationarity, and symmetric relationships that may not reflect real-world complexities. They may also 

struggle to accurately forecast outcomes in the presence of non-linear interactions and long-range 

dependencies. To address these shortcomings, this study leverages advances in artificial intelligence 

and data science, employing the Long Short-Term Memory (LSTM) model—a class of recurrent 

neural networks particularly suited to analyzing time-series data with memory components. The 

LSTM framework enables the modeling of non-linear, non-stationary, and high-dimensional 

relationships, offering superior performance in forecasting and interpretability. 

This study contributes to the literature on the energy-growth-emissions nexus in several 

important ways. First, it focuses on India and China—two of the world’s largest emerging economies 
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and most significant CO₂ emitters—thereby offering critical insights into global sustainability 

challenges from a developing country perspective. Second, it provides a disaggregated analysis of 

energy consumption by distinguishing between renewable, non-renewable, and nuclear energy 

sources, allowing for a more nuanced understanding of their respective environmental impacts. 

Third, the study utilizes a Long Short-Term Memory (LSTM) neural network model, a form of deep 

learning particularly well-suited to modeling temporal and non-linear dynamics. This 

methodological innovation addresses the limitations of conventional econometric models and 

enhances predictive accuracy. Finally, the research offers data-driven evidence to support 

policymaking by identifying the most influential energy types and economic factors driving CO₂ 

emissions, ultimately informing sustainable development strategies aligned with national and 

international climate goals. 

Building on these motivations, the primary objective of this study is to quantify and compare 

the long-run and short-run impacts of disaggregated energy consumption and economic growth on 

CO₂ emissions in India and China. By leveraging an LSTM framework, we seek to provide more 

accurate forecasts and richer causal insights than those obtainable from traditional linear econometric 

models. To achieve this goal, we compile an annual panel spanning 1990–2021 that includes CO₂ 

emissions, real GDP, and five energy-consumption indicators—coal, natural gas, petroleum, 

renewable, and nuclear —sourced from the U.S. Energy Information Administration (EIA) and the 

World Development Indicators (WDI). The data period is chosen based on the latest data availability 

of all the variables used in our analysis. This balanced dataset enables a consistent comparative 

analysis of the two countries over three decades of rapid economic transformation. For modelling 

purposes, the Indian and Chinese series were divided into a training set covering 1990–2013 (24 

observations) and a testing set spanning 2014–2021 (8 observations). 

The remainder of this paper is structured as follows. Section 2. reviews the relevant literature 

and theoretical underpinnings. Section 3. outlines the research methodology, including model 

specifications, performance metrics, and data preprocessing techniques. Section 4. presents the 

dataset and variables. Section 5. discusses the empirical findings and their implications. Finally, 

Section 6. offers conclusions and policy recommendations aimed at guiding sustainable development 

in India and China. 

2. Literature Review 

2.1. Economic Growth, Energy Demand, and Emissions. A Dual Challenge for Emerging Economies 

There is broad agreement that economic expansion is frequently associated with greater energy 

consumption, which in turn contributes to higher levels of CO₂ emissions. However, the precise 

nature of this relationship varies by country, economic structure, and energy mix. While clean energy 

sources such as wind, solar, and hydropower are widely recognized as part of the solution, their 

scalability and integration into national energy grids remain a challenge [16]. Meanwhile, 

international commitments such as the Kyoto Protocol and the Paris Agreement have established 

ambitious decarbonization targets: most industrialized countries have pledged carbon neutrality by 

2050, while China aims for 2060, and India by 2070 [17,18]. Meeting these targets requires a deeper 

understanding of how energy and growth dynamics intersect with emissions in the real world. 

India and China are at the heart of this global sustainability effort. In 2023, India surpassed China 

in population, becoming the world’s most populous nation with 1.44 billion people, and 

simultaneously ranked as the third-largest global energy consumer (EIA). China remains the largest 

energy producer and consumer, with its energy policies heavily influencing global emissions trends. 

Together, the two countries accounted for about 33.6% of global CO₂ emissions in 2022 [19] . Notably, 

China’s per capita emissions have surpassed those of many advanced economies, while India’s 

remain less than half the world average, indicating divergent trajectories that merit comparative 

analysis. 
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Both nations are navigating a delicate path between economic development and environmental 

stewardship. India has launched several landmark initiatives to encourage renewable energy 

adoption and electric mobility, including the National Solar Mission and the Faster Adoption and 

Manufacturing of Hybrid and Electric Vehicles (FAME) scheme. China has likewise implemented the 

“Dual Carbon” strategy, with goals of peaking carbon emissions by 2030 and achieving carbon 

neutrality by 2060. These policies are backed by massive investments in green infrastructure, 

technological innovation, and regulatory reforms. However, curtailing energy consumption can pose 

risks to industrial productivity and employment, which makes it imperative to understand the long-

term trade-offs and synergies among carbon emissions, energy consumption, and economic growth. 

Asia, home to 60% of the global population, remains the world’s largest emitter of greenhouse 

gases. It accounted for 53% of global emissions in 2022, with China alone responsible for over 58% of 

Asia’s CO₂ emissions [12,20,21]. The heavy dependence on fossil fuels has intensified biodiversity 

loss, degraded water and air quality, and undermined public health. Additionally, climate change 

has triggered more frequent natural disasters, such as floods, wildfires, and heatwaves, especially in 

densely populated and vulnerable regions of South and East Asia [22–24]. 

2.2. Key Findings From Previous Studies 

The inter-relationship among climate change, energy consumption (EC), and sustainable 

economic growth (EG) has become one of the most vigorously debated topics in energy economics 

and environmental policy. Since Kraft and Kraft’s [25] seminal contribution, a substantial empirical 

literature—spanning engineering, economics, and interdisciplinary outlets—has examined the EC–

EG nexus. Despite this prolific output, consensus remains elusive. Results diverge because authors 

adopt contrasting econometric strategies (single-equation time-series models, heterogeneous-panel 

estimators, structural-VAR frameworks, or increasingly, machine-learning pipelines), access 

dissimilar data vintages and emission inventories, and focus on countries occupying very different 

points along the development spectrum [26,27]. Time-series studies, by design, foreground 

idiosyncratic national dynamics—capturing, for instance, country-specific policy shocks or fuel-mix 

transitions—whereas multi-country panels emphasise cross-sectional contrasts. The two approaches 

therefore tend to deliver different verdicts on both the direction and the strength of causal linkages 

between EC and EG. 

To clarify the debate and guide the subsequent synthesis, scholars usually interpret findings 

through four rival hypotheses: feedback (EC and EG reinforce each other), conservation (growth 

drives energy demand), growth (energy use propels output), and neutrality (no significant causal 

link). Empirical support is mixed—bidirectional feedback dominates in many emerging markets, the 

conservation view prevails in high-income OECD economies, growth effects surface in fuel-exporting 

or rapidly industrialising states, and neutrality occasionally appears in service-oriented countries 

with high renewable penetration—underscoring that causality hinges on the energy mix, institutional 

quality, and stage of development. 

A second robust insight concerns the moderating role of renewable energy (RE). Analyses that 

employ non-linear autoregressive distributed-lag (ARDL) models, frequency-domain causality tests, 

and wavelet-based decompositions reach a common conclusion: as the share of renewable energy 

(RE) rises, the traditional EC–EG–CO₂ linkage weakens. The driver is a systematic fall in the carbon 

intensity of each kilowatt-hour produced [17,28]. Advanced decomposition analysis shows that in 

economies where the RE share exceeds approximately 30 %, the long-run elasticity of CO₂ with 

respect to EC drops by half relative to fossil-fuel-dependent peers. Conversely, fossil-fuel-locked 

exporters continue to display strong EC–CO₂ elasticities, pointing to the urgency of diversifying their 

energy portfolios. Nuclear power, though controversial, is flagged as a potential large-scale, 

low-carbon growth engine in India and selected OECD members [29], while green-hydrogen pilots 

in Chile and Saudi Arabia promise to blur the traditional boundary between producer and consumer 
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nations. While the fuel mix is pivotal, geography is equally crucial. The next subsection explores 

regional heterogeneity and contextual nuance. 

Regional patterns further nuance the global picture. In Latin America, Altinoz et al. [30] report 

that both EC and CO₂ curb growth, corroborating evidence that commodity-export volatility and 

under-investment in modern energy infrastructure can make energy spending less productive. 

Muhammad [31], however, documents an energy-driven yet emission-intensive expansion cycle 

across a wider set of Latin American and Caribbean economies, underscoring the region’s structural 

diversity. In Sub-Saharan Africa, Gershon et al. [32] find that higher EC boosts output but its effect 

on emissions hinges on renewable penetration and governance quality—a reminder that institutional 

capacity can magnify or mute the environmental footprint of energy use. In South Asia, Rehman and 

Rehman [33] confirm EC as a primary emissions driver, while wavelet-based analysis suggests India’s 

GDP–EC link is partly offset by efficiency gains and rapid solar deployment [34]. Meanwhile, 

post-Soviet transition economies Chen et al. [35] show heterogeneous responses across the income 

distribution, with coal-rich regions locked in high-carbon paths and gas-oriented areas benefiting 

from cleaner fuel substitution. 

Beyond geographic context, methodological design also shapes empirical conclusions. The 

conclusions scholars draw depend not only on geography but also on methodological choices. 

Models that allow for structural breaks, asymmetric adjustments, or thick-tailed shock 

distributions—such as Threshold-ARDL, Quantile-on-Quantile regressions, or Bayesian-VARs—

often paint a more nuanced picture than standard linear cointegration tests. Recent meta-analysis 

indicates that studies incorporating at least one form of non-linearity are 35 % less likely to reject the 

conservation hypothesis, reflecting the fact that energy intensity tends to decline at higher income 

levels. 

Table 1 condenses fifteen representative studies published between 2021 and 2025 and previews 

a key takeaway: cross-country differences in renewable-energy penetration and methodological 

sophistication largely account for the divergent causal patterns observed. They span five continents, 

deploy a wide array of estimation strategies, and reach dissimilar (sometimes conflicting) 

conclusions. Collectively, they illustrate how methodological choices and country circumstances 

shape the observed EC–EG–CO₂ relationships. Notably, the balance of recent evidence tilts toward 

feedback or RE-mediated decoupling, although classic growth-type findings persist in 

energy-constrained, fossil-fuel-intensive settings. 

Table 1. Comparative Evidence on the Energy–Growth–Emissions Nexus. 

Study Sample Method Key Finding 

Radmehr et al. [36] EU, 1995–2014 P-SSE EG  CO₂; REN → CO₂ 

(–) 

Alam & Hossain [17]  CHN, 1990–2019 ARDL / ARCH-LM / 

BG-LM 

REN → CO₂ (–) 

Rahman et al. [37]  CHN, 1985–2021 Wavelet Coherence 

Analysis 

EC from fossil fuels ↑ 

CO₂;  

Agboola et al. [38] SAU, 1971–2016 MWT (T-Y) EC → CO₂; 1 % ΔGDP ≈ 1 

% ΔCO₂ 

Namahoro et al. [28] 41 WIND, 1997–2018 CS-DL / CS-ARDL / 

CCE-P 

WIND ↑ EG; WIND → 

CO₂ (–) 

Ozgur et al. [29] IND, 1970–2016 Fourier ARDL NUC ↑ clean EG 

Rehman & Rehman [33]  CHN+4, 2001–2014 GRA / TOPSIS EC major driver of CO₂ 

Eldowma et al. [39] SDN, 1971–2019 ARDL CO₂ → EG → Electricity ↑ 

Wen et al. [40]  SA, 1985–2018 FMOLS NRE → Pollution ↑ 
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Rahman et al. [41,42]  NICs, 1979–2017 CI / DOLS / FMOLS / 

PMG 

EC & EXP ↑ ENV deg. 

Gershon et al. [32]  17 AFR, 2000–2017 Static Panel EC → CO₂ (–); EC → EG 

(+) 

Khan et al. [43] PAK, 1965–2015 ARDL EC & EG → CO₂ (+) 

Chen et al. [35] 6 TE, 1970–2021 QQ EC → CO₂ (+); EC → EG 

(+) 

Pradhan et al. [44] G7+SA, 1996–2021 Sim-Reg / Panel ARDL EC → EG; CO₂ → EG 

Salari et al. [45]  USA, 1997–2016 Static & Dyn panel REN → CO₂ (–); NRE → 

CO₂ (+) 

Afjal [46]  37 OECD, 1995–2020 PVAR GDP ↛ CO₂ (neutral) 

Liu et al. [47]  46 BRI countries, 

2005–2018 

Driscoll–Kraay Est. REN → CO₂ (–); EKC 

supported 

Shah et al. [48] 49 green bond 

countries, 2007–2019 

Simultaneous Equation  

Model 

fossil-fuel-driven EG ↑ 

GHG  

emissions;  

Notes:  = bidirectional causality; → = unidirectional (Granger) causality; (+)/(–) indicate positive/negative 

effects; REN = renewable energy; NRE = non-renewable energy; WIND = wind energy; ENV = environment; CI 

= cointegration; P-SSE = panel spatial simultaneous equations; MWT (T-Y) = Modified Wald test (Toda–

Yamamoto); CS-DL = cross-sectional distributed lag; CS-ARDL = cross-section-augmented ARDL; CCE-P = 

common correlated effects–pooled; GRA = grey relation analysis; TOPSIS = Technique for Order Preference by 

Similarity to Ideal Solution; FMOLS = fully modified OLS; DOLS = dynamic OLS; PMG = pooled mean group; 

QQ = quantile-on-quantile; PVAR = panel vector autoregression). 

The foregoing review suggests four broad stylised facts. First, the direction of causality between 

energy consumption and growth is not immutable but evolves alongside structural change, shifts in 

the fuel mix, and policy interventions. Second, economies that expand the share of renewables—or, 

where socially acceptable, low-carbon nuclear power—consistently weaken the elasticity of 

emissions with respect to energy use, pointing to a viable route for green growth. Third, governance 

quality and institutional capacity are decisive: the same increment in energy supply can yield either 

sustainable or unsustainable outcomes depending on how effectively governments channel 

investment and enforce environmental standards. Finally, empirical verdicts are highly sensitive to 

methodological flexibility; models that allow for asymmetry, thresholds, or distributional 

heterogeneity tend to produce more conservative estimates of energy dependence, underscoring the 

need for nuanced, context-specific policy design. Together, these insights caution against 

one-size-fits-all prescriptions and highlight the importance of tailoring policy toolkits to national 

endowments, institutional strength, and the maturity of domestic energy markets. 

Recognition of these stylised facts motivates the search for more adaptable modelling 

frameworks. Long Short-Term Memory (LSTM) networks belong to the recurrent-neural family and 

are expressly designed for sequential data. Their gating architecture allows the model to retain or 

discard information over time, making them well suited to capture delayed energy–growth 

interactions, structural breaks such as the 2008 financial crisis or the post-COVID-19 energy shock, 

and the long-range dependence ubiquitous in environmental and macroeconomic series. Crucially, 

LSTMs learn complex, non-linear functional forms endogenously rather than imposing a priori 

restrictions, and they scale smoothly to multivariate settings that include disaggregated fuel types, 

technology indices, and policy dummies. 

Performance benchmarks confirm these theoretical advantages. Benchmark studies comparing 

LSTMs with ARIMA and random-forest baselines report forecasting-error reductions of roughly 25 

% and markedly better turning-point detection—improvements that arise because classic linear 

models struggle with non-stationarity, regime shifts, and complex feedback loops [49]. By providing 
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accurate out-of-sample predictions and allowing scenario analysis that is hard to implement in 

traditional frameworks, LSTMs offer a versatile addition to the EC–EG–CO₂ toolkit—one capable of 

illuminating the path-dependent, non-stationary dynamics that govern the energy–growth–

environment triad. 

In sum, the contemporary literature presents a highly context-dependent and dynamically 

evolving EC–EG–CO₂ nexus. Progress toward the Paris targets and the Sustainable Development 

Goals will hinge on swift, context-aware energy transitions coupled with data-driven modelling 

frameworks—such as LSTMs—that can faithfully track and anticipate the complex interplay among 

energy demand, economic prosperity, and environmental quality. Against this backdrop, the present 

article sets out to develop an LSTM-based model for India and China (1990–2024) with the explicit 

goal of testing whether rising renewable penetration has already begun to decouple growth from 

emissions and of generating forward-looking scenarios to inform policy design. 

3. Methods and Models 

This section outlines the methodological framework employed to examine the dynamic 

relationships between energy consumption, economic growth, and CO₂ emissions in India and China. 

Given the complex and time-dependent nature of these variables, we adopted a data-driven 

modeling approach utilizing Long Short-Term Memory (LSTM) neural networks [50]. LSTM models 

are particularly well-suited for time-series analysis due to their ability to capture long-range 

dependencies and non-linear interactions. 

In recent years, LSTM models have gained increasing popularity across the fields of economics, 

finance, and environmental science due to their ability to effectively capture complex temporal 

dependencies in sequential data. For instance, In the environmental domain, LSTM has been 

extensively applied to forecast air pollution indicators such as PM2.5 concentrations. 

Nourmohammad and Rashidi [51] compared LSTM with ARIMA and XGBoost models to predict 

daily and monthly PM2.5 levels in Tehran. While XGBoost achieved the highest accuracy for daily 

forecasts, LSTM demonstrated stable performance across various input configurations, underscoring 

its flexibility in handling multivariate environmental datasets. Similarly, Waqas et al. [52] evaluated 

six predictive models and ranked LSTM as the second-best performing deep learning algorithm for 

forecasting PM2.5 in Islamabad, Pakistan—outperforming traditional machine learning approaches 

during the testing phase. Moreover, Noynoo et al. [53] integrated LSTM into a hybrid forecasting 

framework with the WRF-Chem model to enhance the accuracy of PM2.5 predictions in southern 

Thailand. Their hybrid LSTM-based model significantly improved forecasting metrics and 

demonstrated strong predictive power up to 72 hours in advance. 

LSTM models are increasingly applied in economics and finance for forecasting complex, 

nonlinear financial time series. Sun [54] used a Bayesian-optimized LSTM to predict stock prices in 

China’s major indices, demonstrating superior accuracy over traditional models. Peng et al. [55] 

developed a hybrid model combining empirical mode decomposition and an attention-enhanced 

LSTM, improving predictive accuracy and reducing error. Their results confirm that LSTM networks, 

especially when integrated with advanced techniques, effectively capture dynamic financial patterns. 

These applications underscore LSTM’s value in enhancing the reliability of stock market predictions 

and supporting data-driven financial decision-making. 

LSTM models are increasingly used across finance, economics, and environmental science to 

forecast complex, time-dependent phenomena. Jiang et al. [56] applied a VMD-LSTM model to assess 

the impact of climate risk on China’s renewable energy market, finding that incorporating climate 

uncertainty indices significantly enhanced forecasting accuracy across various time horizons. In the 

energy sector, Lu et al. [57] examined the effects of electricity policy uncertainty and carbon emission 

prices on electricity demand in China. While mixed-frequency models outperformed LSTM, the 

LSTM model still captured key nonlinear patterns. In environmental modeling, Liu et al. [58] 

developed a high-resolution forecast of emissions in China’s cement industry through 2035. Their 
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findings showed that fuel and clinker substitution could significantly reduce SO₂ and CO₂ emissions, 

with notable co-benefits for PM2.5 and NOx. 

The LSTM methodology comprises four core components: model evaluation metrics, LSTM 

network architecture, data preprocessing techniques, and model design strategy. 

3.1. Evaluation Metrics 

To evaluate the predictive performance of the Long Short-Term Memory (LSTM) model, we 

employed three standard error metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and Root Mean Squared Error (RMSE) [50]. These metrics offer a comprehensive assessment of 

forecast accuracy by quantifying the average error and the magnitude of larger deviations between 

predicted and actual values. MAE captures the average magnitude of errors without considering 

their direction, MSE penalizes larger deviations more heavily due to the squaring function, and RMSE 

provides a normalized measure of error in the same units as the target variable, making it more 

interpretable. 

The respective formulas are given below: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1
, (1) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2,
𝑛

𝑖=1
 (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
. (3) 

where, y denotes the observed value, 𝑦̂𝑖  is the predicted value, and is the total number of 

observations. Together, these metrics help evaluate model performance from both an average error 

and dispersion perspective. 

3.2. Subsection Long Short-Term Memory (LSTM) Model 

The LSTM network, introduced by Hochreiter and Schmidhuber [50], was developed to address 

the limitations of standard recurrent neural networks (RNNs), particularly their inability to learn 

long-term dependencies due to the vanishing gradient problem. LSTMs incorporate internal memory 

cells and gate mechanisms that allow them to retain, update, or discard information over extended 

sequences. Each LSTM cell contains an internal memory cell state 𝐶𝑡 and a set of gates that regulate 

the flow of information into, within, and out of this cell: 𝑖𝑡  – input gate (determines which new 

information should be stored in the current cell state); 𝑓𝑡 – forget gate (decides what information 

from the previous cell state should be removed); 𝑜𝑡 – output gate (controls what part of the cell state 

is passed to the next time step); and 𝑔𝑡 – change gate (called the candidate cell state, helps the LSTM 

decide what new information to store in memory). These gates are themselves small neural networks 

trained jointly with the rest of the model, which means the network can learn when to remember, 

when to forget, and what to output. 

The computational steps are as follows: 

𝑖𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥𝑖 ∙ 𝑥𝑡 + 𝑊ℎ𝑖 ∙ ℎ𝑡−1 + 𝑏𝑖), (4) 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥𝑓 ∙ 𝑥𝑡 + 𝑊ℎ𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓), (5) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥𝑜 ∙ 𝑥𝑡 + 𝑊ℎ𝑜 ∙ ℎ𝑡−1 + 𝑏𝑜), (6) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑔 ∙ 𝑥𝑡 + 𝑊ℎ𝑔 ∙ ℎ𝑡−1 + 𝑏𝑔), (7) 

𝑐𝑡 = (𝑓𝑡 ∙ 𝑐𝑡−1) + (𝑖𝑡 ∙ 𝑔𝑡), (8) 

𝑦̂𝑡 = ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝑐𝑡). (9) 

where 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  is the sigmoid activation function, 𝑡𝑎𝑛ℎ  is the hyperbolic tangent function, 𝑊 

represents weight matrices, and 𝑏 represents bias terms. 

3.3. Data Processing and Model Design 
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This study uses time-series data that includes CO₂ emissions, real GDP (RGDP), and 

disaggregated energy consumption data (e.g., coal, natural gas, petroleum, renewable, nuclear). CO₂ 

emissions are measured in metric tons per capita, RGDP in constant 2015 USD, and energy 

consumption in quadrillion British thermal units (BTUs). The data were sourced from two 

authoritative open access databases: the U.S. Energy Information Administration (EIA) and the 

World Bank’s World Development Indicators (WDI). 

To maintain the integrity of the time-series structure, the dataset was divided into an 80:20 

training-to-testing ratio. This straightforward split was preferred over k-fold cross-validation, which 

may disrupt temporal continuity. All variables were normalized using Min-Max scaling to a [0, 1] 

range to improve convergence during training and ensure comparability across features: 

𝑥′ = 𝑥 − min (𝑥) max(𝑥) − min (𝑥)⁄  (10) 

where 𝑥 is the original value, and min (𝑥), max (𝑥) are the minimum and maximum values of the 

variable, respectively. 

To explore the relationship between energy consumption, economic growth, and CO₂ emissions, 

we developed a sequential set of LSTM model configurations with increasing levels of complexity 

and explanatory power. The first model included only lagged values of CO₂ emissions to serve as a 

baseline for prediction. Each model was estimated using lag lengths of 1, 2, and 3 years, allowing us 

to assess both immediate and delayed effects of the predictors. Seven LSTM model configurations 

were constructed as follows: 

Model 1.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ), 

Model 2.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ, 𝐶𝐶𝑡−ℓ), 

Model 3.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ, 𝐶𝐶𝑡−ℓ, 𝑁𝐺𝑡−ℓ), 

Model 4.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ, 𝐶𝐶𝑡−ℓ, 𝑁𝐺𝑡−ℓ, 𝑃𝐶𝑡−ℓ), 

Model 5.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ, 𝐶𝐶𝑡−ℓ, 𝑁𝐺𝑡−ℓ, 𝑃𝐶𝑡−ℓ, 𝑅𝐶𝑡−ℓ), 

Model 6.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ, 𝐶𝐶𝑡−ℓ, 𝑁𝐺𝑡−ℓ, 𝑃𝐶𝑡−ℓ, 𝑅𝐶𝑡−ℓ, 𝑁𝐸𝐶𝑡−ℓ), 

Model 7.  𝐶𝑂2𝑡 = 𝑓(𝐶𝑂2𝑡−ℓ, 𝐶𝐶𝑡−ℓ, 𝑁𝐺𝑡−ℓ, 𝑃𝐶𝑡−ℓ, 𝑅𝐶𝑡−ℓ, 𝑁𝐸𝐶𝑡−ℓ, 𝑅𝐺𝐷𝑃𝑡−ℓ). 

where ℓ∈{1,2,3} denote the lag length applied to each input variable. 

Model accuracy was compared using MAE, MSE, and RMSE, and results were interpreted with 

respect to policy implications. Overall, this methodology enables the detection of both linear and 

nonlinear patterns in the data and provides rigorous empirical insights into how energy use and 

economic activity shape environmental outcomes. 

4. Data Description and Variable Specification 

This section outlines the key variables used to examine the relationship between energy 

consumption, economic growth, and CO₂ emissions in India and China. Specifically, the selection of 

variables is grounded in existing theoretical frameworks and supported by an extensive body of 

empirical literature. To begin with, fossil fuels—such as coal, oil, and natural gas—are widely 

acknowledged as major contributors to CO₂ emissions due to their carbon-intensive combustion [59–

62]. Indeed, the European Commission Joint Research Centre estimates that approximately 90 % of 

global CO₂ emissions stem from fossil-fuel use [63]. Nevertheless, while fossil fuels remain essential 

to economic growth and industrial development, their environmental costs are substantial, thereby 

underscoring the need for sustainable alternatives [10]. 

Conversely, renewable energy has emerged as a vital solution for reducing global CO₂ 

emissions. Notably, it is widely recognized for its environmental benefits and economic advantages 

[64,65]. Furthermore, annual consumption of renewable sources is growing rapidly, and these 

resources are increasingly positioned as key tools for balancing economic growth with environmental 

sustainability [66]. In contrast, nuclear energy—though sometimes contentious—offers a low-carbon 

option for electricity generation because it does not emit CO₂ during operation. Empirical evidence 

indicates that increased nuclear deployment can substantially lower the carbon intensity of the power 

sector, particularly in countries heavily dependent on fossil fuels. 
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With respect to economic factors, the study captures growth through real GDP. Typically, 

economic expansion leads to higher emissions via increased demand for energy, transport, and 

industrial output; however, many countries can decouple this link through cleaner technologies [67] 

and improved efficiency [68]. Accordingly, this study integrates both energy and economic indicators 

to provide a holistic analysis. Each variable is defined, measured using standardized units, and 

sourced from internationally recognized databases. As summarized in Table 2, the variables and their 

expected directional impact on emissions are presented for reference. 

Table 2. Variable Specifications for LSTM Model. 

Variable Symbol Unit Expected Sign Source 

CO₂ Emissions CO₂ Metric tons per capita - WDI 

Coal Consumption CC Quadrillion BTUs Positive EIA 

Natural Gas Consumption NG Quadrillion BTUs Positive EIA 

Petroleum Consumption PC Quadrillion BTUs Positive EIA 

Renewable Energy Consumption RC Quadrillion BTUs Negative EIA 

Nuclear Energy Consumption NEC Quadrillion BTUs Negative EIA 

Real GDP RGDP Constant 2015 USD Positive/Negative WDI 

Source: Compiled by the authors using data from the U.S. Energy Information Administration (EIA) and World 

Development Indicators (WDI). 

5. Results and Discussion 

5.1. Influence of Energy Consumption and Economic Growth on CO₂ Emissions in India 

The analysis for India draws on a 32-year sample from 1990 to 2021, a period marked by rapid 

economic liberalization, industrialization, and substantial changes in the energy sector. This period 

is highly relevant for understanding India’s evolving energy-emissions nexus. The dataset was 

divided into a training set (1990–2013) and a testing set (2014–2021). Table 3 presents the Mean 

Squared Error (MSE), Mean Absolute Error (MAE), and Median Absolute Error (MedAE) for various 

model configurations and lag structures. 

Table 3. Influence of Energy Consumption and Economic Growth on CO₂ Emissions in India. 

Title 1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7  
Lag 1 

   MSE_train 0.0240 0.011 0.006 0.005 0.003 0.003 0.002 

   MAE_Train 0.1420 0.095 0.062 0.061 0.044 0.044 0.039 

   MedAE_train 0.1358 0.083 0.053 0.047 0.034 0.040 0.031 

   MSE_test 0.0590 0.013 0.012 0.009 0.011 0.013 0.014 

   MAE_Test 0.2330 0.105 0.016 0.090 0.084 0.084 0.082 

   MedAE_test 0.2460 0.099 0.102 0.092 0.057 0.055 0.051  
Lag 2 

   MSE_train 0.010 0.005 0.003 0.002 0.001 0.001 0.001 

   MAE_Train 0.100 0.061 0.041 0.037 0.025 0.028 0.025 

   MedAE_train 0.098 0.061 0.030 0.032 0.016 0.025 0.021 

   MSE_test 0.008 0.009 0.008 0.007 0.016 0.017 0.011 

   MAE_Test 0.098 0.069 0.068 0.069 0.087 0.089 0.077 

   MedAE_test 0.094 0.049 0.048 0.052 0.051 0.050 0.043  
Lag 3 

   MSE_train 0.008 0.003 0.001 0.001 0.001 0.001 0.001 

   MAE_Train 0.080 0.050 0.032 0.026 0.018 0.024 0.019 

   MedAE_train 0.084 0.044 0.025 0.024 0.013 0.023 0.016 

   MSE_test 0.007 0.013 0.008 0.006 0.011 0.015 0.008 

   MAE_Test 0.057 0.090 0.063 0.065 0.077 0.090 0.065 
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   MedAE_test 0.029 0.064 0.048 0.043 0.045 0.044 0.041 

Incorporating independent variables (IVs) consistently reduced all error metrics at lag 1, except 

in the case of nuclear energy consumption (NEC). The testing dataset reflected similar trends, 

although including real GDP slightly increased the MSE. For lag 2, most IVs significantly impacted 

CO₂ emissions, with NEC remaining statistically insignificant. Results for lag 3 confirmed that NEC 

does not have a meaningful effect. Increasing lag lengths reduced error metrics, suggesting a long-

term influence of IVs on CO₂ emissions in India. Coal consumption, natural gas consumption, and 

real GDP emerged as the most influential predictors across different lag structures. 

These findings provide actionable guidance for India’s decarbonization strategy. Because coal 

and natural gas are the dominant drivers of emissions, policies that accelerate the retirement of coal-

fired power plants, promote cleaner alternatives, and improve gas-burn efficiency will yield the 

greatest near-term impact. The persistent role of real GDP underscores the need to decouple 

economic growth from energy intensity through industrial energy-efficiency standards and 

technology upgrades. Interestingly, the stronger model performance at longer lags implies that early, 

sustained interventions can compound over time, reinforcing the importance of long-term policy 

commitments and consistent regulatory signals. 

These results are broadly consistent with the extant literature, which identifies fossil-fuel 

combustion as the principal driver of global CO₂ emissions [30,31]. In particular, the dominant effects 

of coal and natural gas corroborate the country-specific evidence reported by Khochian and Nademi 

[34] and Dash et al. [69], whereas the negligible contribution of nuclear energy mirrors the findings 

of Ozgur et al. [29]. Moreover, the positive association between real GDP and emissions lends 

empirical support to the feedback hypothesis posited by Saidi et al. [27] and Namahoro et al. [28], 

underscoring the intricate linkage between economic expansion and environmental degradation in 

emerging economies. 

5.2. Influence of Energy Consumption and Economic Growth on CO₂ Emissions in China 

The analysis for China also uses a 32-year sample from 1990 to 2021, employing the same train-

test split. Unlike India, China’s results show a stronger and more consistent impact from coal and 

petroleum consumption, reflecting differences in energy dependency and economic structure. Table 

4 summarizes the key error metrics. 

Table 3. Influence of Energy Consumption and Economic Growth on CO₂ Emissions in China. 

Title 1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7  
Lag 1 

   MSE_train 0.031 0.014 0.010 0.010 0.009 0.009 0.008 

   MAE_Train 0.160 0.100 0.092 0.086 0.085 0.083 0.080 

   MedAE_train 0.180 0.100 0.100 0.097 0.096 0.092 0.091 

   MSE_test 0.037 0.010 0.004 0.003 0.023 0.056 0.045 

   MAE_Test 0.193 0.096 0.049 0.049 0.140 0.220 0.200 

   MedAE_test 0.196 0.100 0.045 0.044 0.130 0.200 0.190  
Lag 2 

   MSE_train 0.0152 0.0077 0.0075 0.0058 0.0061 0.0061 0.0047 

   MAE_Train 0.106 0.076 0.079 0.068 0.071 0.071 0.062 

   MedAE_train 0.11 0.075 0.089 0.071 0.082 0.077 0.068 

   MSE_test 0.004 0.002 0.009 0.007 0.027 0.048 0.03 

   MAE_Test 0.0603 0.03862 0.0893 0.0828 0.162 0.213 0.171 

   MedAE_test 0.0625 0.0492 0.0864 0.0804 0.15 0.195 0.1619  
Lag 3 

   MSE_train 0.011 0.006 0.006 0.004 0.005 0.005 0.004 

   MAE_Train 0.920 0.070 0.074 0.057 0.063 0.066 0.053 
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   MedAE_train 0.080 0.081 0.087 0.071 0.071 0.074 0.062 

   MSE_test 0.001 0.002 0.011 0.067 0.023 0.044 0.018 

   MAE_Test 0.031 0.034 0.100 0.078 0.150 0.200 0.130 

   MedAE_test 0.027 0.020 0.100 0.077 0.150 0.190 0.130 

The training dataset at lag 1 revealed that all IVs significantly influenced CO₂ emissions. 

However, in the testing set, the influence of renewable and nuclear energy consumption was less 

consistent. Coal, petroleum, and real GDP consistently had strong impacts across all lag structures. 

Real GDP demonstrated a particularly robust relationship with CO₂ emissions across training and 

testing datasets. 

These findings carry several implications for China’s decarbonization pathway. First, the 

outsized contribution of coal and petroleum underscores the urgency of accelerating China’s coal-to-

clean transition and electrifying transport, particularly heavy industry and freight sectors that are 

petroleum-intensive. Second, the persistent sensitivity of emissions to economic growth highlights 

the need to improve the carbon intensity of GDP by scaling low-carbon manufacturing, investing in 

circular-economy practices, and tightening efficiency standards. Third, the weaker and inconsistent 

effect of renewable and nuclear energy suggests that, although capacity additions are substantial, 

grid integration, curtailment, and technology deployment barriers still prevent these sources from 

fully displacing fossil fuels. Therefore, policy should prioritize grid modernization, storage, and 

market reforms that facilitate higher renewable penetration. Finally, because model accuracy 

improves with longer lags, early and sustained mitigation actions are likely to generate compounding 

benefits over time, reinforcing China’s “Dual-Carbon” targets for 2030 peak and 2060 neutrality. 

These findings resonate with the broader empirical literature documenting the carbon-intensive 

growth trajectories of large industrial economies such as China [34,69]. The pronounced and 

persistent impact of coal and petroleum consumption parallels the evidence reported by Radmehr et 

al. [36], underscoring the centrality of fossil fuels in the country’s current energy portfolio. 

Conversely, the comparatively modest influence of renewable and nuclear energy accords with the 

results of Wen et al. [40] and Ozgur et al. [29], which highlight the structural and technological 

barriers that continue to hamper large-scale clean-energy deployment. Finally, the robust positive 

association between real GDP and CO₂ emissions corroborates the growth–environment nexus 

identified by Rahman et al. [70] and Pradhan et al. [44], reaffirming that China’s rapid economic 

expansion remains tightly coupled with elevated carbon emissions. 

5.3. LSTM Model Validation 

Table 5 presents the detailed configuration of the LSTM model used in this study. This specific 

configuration was selected to balance model complexity with training efficiency, ensuring the 

network effectively captures non-linear and sequential patterns in the data. 

Table 5. LSTM Model Structure and Parameters. 

Data normalization MinMaxScaler 

   Activation function Tanh 

   Optimizers Adam 

   Loss Function MSE 

   Input dimension (1, timesteps*features) 

   Output dimension 1 (forecast) 

   Hidden layers [8,16,32] 

   Dropouts 0.1 

   Learning rate 0.001 

   Batch Size 32 

   Training epochs 1000 

   Activation function Tanh 
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The LSTM model employs the tanh activation function across three hidden layers (32, 16, and 8 

neurons, respectively) and uses the Adam optimizer with a learning rate of 0.001. The model was 

trained over 1000 epochs with a batch size of 32, minimizing the MSE during training to enhance 

predictive accuracy. 

Summarize, the LSTM estimates indicate that, for India, coal and natural-gas consumption 

together with real GDP constitute the dominant determinants of CO₂ emissions, whereas renewable 

energy exhibits a statistically significant but mitigating effect and nuclear energy remains negligible. 

By contrast, in China the emissions trajectory is driven primarily by coal and petroleum use and by 

aggregate economic activity, with renewable and nuclear sources displaying weak and inconsistent 

coefficients. These cross-country differences reinforce the central role of fossil fuels in shaping the 

carbon footprints of emerging and industrial economies, as documented in the preceding literature 

review. Moreover, the superior performance of longer-lag models underscores the importance of 

temporal dynamics when analysing the energy–growth–emissions nexus, suggesting that policy 

interventions enacted today will exert compounded effects on environmental outcomes over the 

medium and long term. 

3. Conclusion and Policy Recommendations 

Employing Long Short-Term Memory neural networks, this study systematically examined the 

interplay between energy consumption, economic growth, and CO₂ emissions in India and China 

from 1990 to 2021. The LSTM framework, which captures non-linearities and temporal dependencies 

more effectively than conventional econometric models, revealed distinct national profiles. For India, 

coal and natural-gas consumption, together with economic growth, emerged as the principal drivers 

of emissions, whereas renewable energy exerted a statistically significant mitigating effect and 

nuclear energy remained negligible. For China, coal and petroleum consumption, along with 

economic growth, dominated the emissions trajectory; in contrast, renewable and nuclear sources 

displayed weak and inconsistent effects. These findings corroborate extant evidence on the carbon-

intensive growth paths of large emerging economies and highlight the continued centrality of fossil 

fuels despite rapid expansions in renewable capacity. 

Crucially, the superior performance of models that incorporate longer lags underscores the 

cumulative nature of energy–emissions dynamics: policy interventions launched today will yield 

compounding environmental benefits—or costs—over time. Thus, sustained, long-horizon strategies 

rather than short-term fixes are imperative for effective decarbonisation. 

The empirical evidence underscores the imperative for both India and China to accelerate a 

decisive shift away from coal and, in China’s case, petroleum. Generally, policymakers should: 

introduce or strengthen carbon-pricing mechanisms; phase out fossil-fuel subsidies; and redirect 

public and private investment toward renewable generation, grid modernisation, and large-scale 

storage. Simultaneously, demand-side measures—stringent industrial energy-efficiency standards, 

electrification of transport and heat, and incentives for circular-economy practices—can lower the 

carbon intensity of GDP without constraining growth. 

Although nuclear power currently plays a minor role, targeted investments in next-generation 

reactor technologies, robust safety regulation, and public-engagement programmes could enhance 

its future contribution to low-carbon supply. Strengthening institutional capacity for data-driven 

environmental governance will improve policy coherence and monitoring. Finally, deeper regional 

and international collaboration—through institutions such as the BRICS-based New Development 

Bank, the Asian Development Bank, the Asian Infrastructure Investment Bank, and global 

mechanisms like the Green Climate Fund and the International Solar Alliance, leveraged via 

dedicated green-finance platforms, structured technology-transfer agreements, and coordinated 

research programmes—will enable India and China to mobilise the financial, technological, and 

knowledge resources required to meet their 2070 and 2060 carbon-neutrality targets, respectively, 

while reinforcing broader global climate-change mitigation efforts. 
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Although the study offers robust insights, several constraints should be acknowledged. First, 

the analysis is confined to macro-level indicators; sector-specific drivers, technological innovation 

metrics, institutional variables, and policy stringency indices were not included. Second, the LSTM 

model, while powerful, operates as a black box, limiting interpretability. Third, the dataset ends in 

2021, thereby excluding the most recent policy shifts and post-pandemic recovery patterns. Fourth, 

the relatively small shares of renewable and nuclear energy in both countries during the study period 

restrict the ability to gauge their full mitigation potential. Finally, although multiple lag structures 

were explored, explicit feedback loops between economic growth and emissions were not modelled. 

Addressing these gaps will refine future assessments of the energy–growth–emissions nexus. 

Future inquiries should integrate broader variable sets—such as technological-innovation 

indices, regulatory-quality measures, and disaggregated sectoral energy data—to obtain finer-

grained insights. Applying explainable-AI techniques could enhance transparency in neural-network 

inference, bridging the gap between accuracy and interpretability. Extending the temporal coverage 

to incorporate data after 2021, including the effects of post-COVID recovery packages and new 

climate pledges, will improve policy relevance. Comparative analyses encompassing additional 

emerging and advanced economies can illuminate regional heterogeneities, while hybrid machine-

learning–econometric frameworks may better capture dynamic feedback loops and structural breaks. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ADB Asian Development Bank 

AIIB Asian Infrastructure Investment Bank 

ARCH Autoregressive Conditional Heteroscedasticity 

ARDL Autoregressive Distributed Lag 

BG-LM Breusch–Godfrey Lagrange Multiplier Test 

CC Coal Consumption 

CCE-P Common Correlated Effects–Pooled Estimator 

CO₂ Carbon Dioxide 

CS-ARDL Cross-Sectionally Augmented ARDL 

CS-DL Cross-Sectionally Augmented Distributed Lag 

DOLS Dynamic Ordinary Least Squares 

EIA U.S. Energy Information Administration 

EG Economic Growth 

EC Energy Consumption 

FMOLS Fully Modified Ordinary Least Squares 

GDP / 

RGDP 

Gross Domestic Product / Real GDP 

GHG Greenhouse Gas 

JRC Joint Research Centre 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 
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MSE Mean Squared Error 

MedAE Median Absolute Error 

NDB New Development Bank (BRICS) 

NEC Nuclear Energy Consumption 

NG Natural Gas Consumption 

OECD Organisation for Economic Co-operation and Development 

PC Petroleum Consumption 

PMG Pooled Mean Group 

PVAR Panel Vector Autoregression 

RC Renewable Energy Consumption 

RMSE Root Mean Squared Error 

SDG(s) Sustainable Development Goal(s) 

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 

WDI World Development Indicators 

XAI Explainable Artificial Intelligence 
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