Pre prints.org

Article Not peer-reviewed version

Revisiting the Nexus Between Energy
Consumption, Economic Growth, and
CO2 Emissions in India and China.
Insights from the Long Short-Term
Memory (LSTM) Model

Bartosz Jozwik , Siba Prasada Panda , Aruna Kumar Dash , Pritish Kumar Sahu , Robert Szwed

Posted Date: 23 May 2025
doi: 10.20944/preprints202505.1744 1

Keywords: energy consumption; economic growth; carbon emissions; machine learning forecasting; Long
Short-Term Memory (LSTM)

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently
5 available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/1639708
https://sciprofiles.com/profile/4472578
https://sciprofiles.com/profile/2520807

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2025 doi:10.20944/preprints202505.1744.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Revisiting the Nexus Between Energy Consumption,
Economic Growth, and CO, Emissions in India and
China. Insights from the Long Short-Term Memory
(LSTM) Model

Bartosz Jozwik +*, Siba Prasada Panda 2, Aruna Kumar Dash 3, Pritish Kumar Sahu ¢
and Robert Szwed 5

1 Department of International Economics, Institute of Economics and Finance, The John Paul II Catholic
University of Lublin, 20-950 Lublin, Poland

2 Department of Data Science, Mukesh Patel School of Technology Management, NMIMS University,
Mumbai, Pin-400 056, India

3 Department of Economics, ICFAI School of Social Sciences, ICFAI Foundation for Higher Education (IFHE),
Hyderabad, Pin-501 203, India

4 Finance and Economics, International Management Institute, Bhubaneswar-751003, India

5 Department of Media Culture, Institute of Journalism and Management, The John Paul II Catholic
University of Lublin, 20-950 Lublin, Poland

* Correspondence: bjozwik@kul.pl

Abstract: Understanding how energy use and economic activity shape carbon emissions is pivotal
for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated
energy consumption, economic growth, and CO, emissions in India and China—two economies that
together account for more than one-third of global emissions. Using annual data from 1990 to 2021,
we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional
linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990—
2013) and testing (2014-2021) intervals to ensure rigorous out-of-sample validation. Results reveal
stark national differences. For India, coal, natural gas consumption, and economic growth are the
strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating
effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum
use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts.
Longer-lag specifications markedly improve forecast accuracy, underscoring the cumulative nature
of energy-emissions dynamics. Policy simulations suggest that accelerated coal-to-clean transitions,
aggressive energy-efficiency standards, and grid upgrades for higher renewable penetration are
essential. Finally, leveraging multilateral platforms—such as the Asian Development Bank, and the
Green Climate Fund —can mobilize the green finance and technology transfers required for India’s
2070 and China’s 2060 carbon-neutrality pledges.

Keywords: energy consumption; economic growth; carbon emissions; machine learning forecasting;
Long Short-Term Memory (LSTM)

1. Introduction

Energy consumption has long been recognized as a central pillar of economic development and
societal advancement. It is an essential input that powers industrial activity, fuels transportation,
supports infrastructure, and enhances human well-being. This is particularly evident in rapidly
growing economies such as India and China, which are central to the focus of this study. These two
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nations have emerged as dominant global players not only in economic output but also in energy
demand and environmental impact. Understanding their energy profiles is essential to grasp the
broader dynamics of global sustainability. Disparities in energy usage have shaped the development
trajectories of countries and have often contributed to widening the gap between developed and
developing nations. Reliable energy access drives industrial growth, fosters employment, and
underpins human development [1-3]. Simultaneously, energy acts as a strategic geopolitical asset
that has historically influenced war outcomes, trade patterns, and environmental challenges [4].

In recent decades, the global energy landscape has undergone rapid transformation. Worldwide
energy demand has escalated dramatically, largely driven by population growth, urbanization, and
industrialization —especially in developing economies [5,6]. A majority of this increased demand has
been met through the consumption of fossil fuels such as coal, oil, and natural gas. As a result, CO,
emissions have surged, contributing significantly to the intensification of climate change. For
instance, global CO, emissions increased by approximately 30% from the nineteenth to the twentieth
century [7], underscoring the correlation between industrial progress and environmental
degradation [8-11]. The Intergovernmental Panel on Climate Change [12] notes that approximately
80% of global CO, emissions stem from human activities. The environmental consequences of this
trend include more frequent and intense droughts, rising sea levels, glacial melt, habitat loss, and
increased incidence of extreme weather phenomena.

The imperative to explore and understand the complex interplay between energy use, economic
growth, and environmental degradation has intensified. This challenge has been globally
acknowledged through multilateral agreements and institutional frameworks. The United Nations
Sustainable Development Goals (SDGs) specifically call for urgent climate action (SDG 13) and the
promotion of clean and affordable energy for all (SDG 7) [13,14]. These goals emphasize the need to
transition toward sustainable energy systems that support economic growth while reducing
environmental harm [15]. Policymakers faced with the delicate balance of sustaining economic
momentum without compromising long-term ecological stability.

Analyzing the nexus between energy consumption, economic growth, and CO, emissions in the
Indian and Chinese contexts is critical because these two nations are not only among the world’s top
energy consumers and largest CO, emitters, but also key influencers of global climate trajectories.
Their rapid industrialization and urbanization have significantly altered their energy and emissions
profiles, positioning them as pivotal case studies for examining the challenges and opportunities of
sustainable development. Moreover, both countries are actively engaged in ambitious policy
experimentation aimed at transitioning toward low-carbon economies, making them important
laboratories for observing the effectiveness of renewable energy promotion, energy efficiency
strategies, and emissions reduction commitments. As signatories to major international climate
agreements, their ability to achieve or fall short of emissions targets carries substantial global
consequences. Understanding their unique trajectories provides valuable insights into how large,
rapidly developing economies can balance growth with environmental responsibility and contributes
to the design of more effective and scalable climate policies worldwide.

Despite the growing volume of literature on this topic, existing studies predominantly rely on
traditional econometric tools such as Granger causality tests, vector error correction models (VECM),
and cointegration techniques. These models, while useful, often rely on assumptions such as linearity,
stationarity, and symmetric relationships that may not reflect real-world complexities. They may also
struggle to accurately forecast outcomes in the presence of non-linear interactions and long-range
dependencies. To address these shortcomings, this study leverages advances in artificial intelligence
and data science, employing the Long Short-Term Memory (LSTM) model—a class of recurrent
neural networks particularly suited to analyzing time-series data with memory components. The
LSTM framework enables the modeling of non-linear, non-stationary, and high-dimensional
relationships, offering superior performance in forecasting and interpretability.

This study contributes to the literature on the energy-growth-emissions nexus in several
important ways. First, it focuses on India and China—two of the world’s largest emerging economies
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and most significant CO, emitters—thereby offering critical insights into global sustainability
challenges from a developing country perspective. Second, it provides a disaggregated analysis of
energy consumption by distinguishing between renewable, non-renewable, and nuclear energy
sources, allowing for a more nuanced understanding of their respective environmental impacts.
Third, the study utilizes a Long Short-Term Memory (LSTM) neural network model, a form of deep
learning particularly well-suited to modeling temporal and non-linear dynamics. This
methodological innovation addresses the limitations of conventional econometric models and
enhances predictive accuracy. Finally, the research offers data-driven evidence to support
policymaking by identifying the most influential energy types and economic factors driving CO,
emissions, ultimately informing sustainable development strategies aligned with national and
international climate goals.

Building on these motivations, the primary objective of this study is to quantify and compare
the long-run and short-run impacts of disaggregated energy consumption and economic growth on
CO; emissions in India and China. By leveraging an LSTM framework, we seek to provide more
accurate forecasts and richer causal insights than those obtainable from traditional linear econometric
models. To achieve this goal, we compile an annual panel spanning 1990-2021 that includes CO;
emissions, real GDP, and five energy-consumption indicators—coal, natural gas, petroleum,
renewable, and nuclear —sourced from the U.S. Energy Information Administration (EIA) and the
World Development Indicators (WDI). The data period is chosen based on the latest data availability
of all the variables used in our analysis. This balanced dataset enables a consistent comparative
analysis of the two countries over three decades of rapid economic transformation. For modelling
purposes, the Indian and Chinese series were divided into a training set covering 1990-2013 (24
observations) and a testing set spanning 2014-2021 (8 observations).

The remainder of this paper is structured as follows. Section 2. reviews the relevant literature
and theoretical underpinnings. Section 3. outlines the research methodology, including model
specifications, performance metrics, and data preprocessing techniques. Section 4. presents the
dataset and variables. Section 5. discusses the empirical findings and their implications. Finally,
Section 6. offers conclusions and policy recommendations aimed at guiding sustainable development
in India and China.

2. Literature Review
2.1. Economic Growth, Energy Demand, and Emissions. A Dual Challenge for Emerging Economies

There is broad agreement that economic expansion is frequently associated with greater energy
consumption, which in turn contributes to higher levels of CO, emissions. However, the precise
nature of this relationship varies by country, economic structure, and energy mix. While clean energy
sources such as wind, solar, and hydropower are widely recognized as part of the solution, their
scalability and integration into national energy grids remain a challenge [16]. Meanwhile,
international commitments such as the Kyoto Protocol and the Paris Agreement have established
ambitious decarbonization targets: most industrialized countries have pledged carbon neutrality by
2050, while China aims for 2060, and India by 2070 [17,18]. Meeting these targets requires a deeper
understanding of how energy and growth dynamics intersect with emissions in the real world.

India and China are at the heart of this global sustainability effort. In 2023, India surpassed China
in population, becoming the world’s most populous nation with 1.44 billion people, and
simultaneously ranked as the third-largest global energy consumer (EIA). China remains the largest
energy producer and consumer, with its energy policies heavily influencing global emissions trends.
Together, the two countries accounted for about 33.6% of global CO, emissions in 2022 [19] . Notably,
China’s per capita emissions have surpassed those of many advanced economies, while India’s
remain less than half the world average, indicating divergent trajectories that merit comparative
analysis.
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Both nations are navigating a delicate path between economic development and environmental
stewardship. India has launched several landmark initiatives to encourage renewable energy
adoption and electric mobility, including the National Solar Mission and the Faster Adoption and
Manufacturing of Hybrid and Electric Vehicles (FAME) scheme. China has likewise implemented the
“Dual Carbon” strategy, with goals of peaking carbon emissions by 2030 and achieving carbon
neutrality by 2060. These policies are backed by massive investments in green infrastructure,
technological innovation, and regulatory reforms. However, curtailing energy consumption can pose
risks to industrial productivity and employment, which makes it imperative to understand the long-
term trade-offs and synergies among carbon emissions, energy consumption, and economic growth.

Asia, home to 60% of the global population, remains the world’s largest emitter of greenhouse
gases. It accounted for 53% of global emissions in 2022, with China alone responsible for over 58% of
Asia’s CO, emissions [12,20,21]. The heavy dependence on fossil fuels has intensified biodiversity
loss, degraded water and air quality, and undermined public health. Additionally, climate change
has triggered more frequent natural disasters, such as floods, wildfires, and heatwaves, especially in
densely populated and vulnerable regions of South and East Asia [22-24].

2.2. Key Findings From Previous Studies

The inter-relationship among climate change, energy consumption (EC), and sustainable
economic growth (EG) has become one of the most vigorously debated topics in energy economics
and environmental policy. Since Kraft and Kraft’s [25] seminal contribution, a substantial empirical
literature —spanning engineering, economics, and interdisciplinary outlets —has examined the EC—
EG nexus. Despite this prolific output, consensus remains elusive. Results diverge because authors
adopt contrasting econometric strategies (single-equation time-series models, heterogeneous-panel
estimators, structural-VAR frameworks, or increasingly, machine-learning pipelines), access
dissimilar data vintages and emission inventories, and focus on countries occupying very different
points along the development spectrum [26,27]. Time-series studies, by design, foreground
idiosyncratic national dynamics—capturing, for instance, country-specific policy shocks or fuel-mix
transitions—whereas multi-country panels emphasise cross-sectional contrasts. The two approaches
therefore tend to deliver different verdicts on both the direction and the strength of causal linkages
between EC and EG.

To clarify the debate and guide the subsequent synthesis, scholars usually interpret findings
through four rival hypotheses: feedback (EC and EG reinforce each other), conservation (growth
drives energy demand), growth (energy use propels output), and neutrality (no significant causal
link). Empirical support is mixed —bidirectional feedback dominates in many emerging markets, the
conservation view prevails in high-income OECD economies, growth effects surface in fuel-exporting
or rapidly industrialising states, and neutrality occasionally appears in service-oriented countries
with high renewable penetration —underscoring that causality hinges on the energy mix, institutional
quality, and stage of development.

A second robust insight concerns the moderating role of renewable energy (RE). Analyses that
employ non-linear autoregressive distributed-lag (ARDL) models, frequency-domain causality tests,
and wavelet-based decompositions reach a common conclusion: as the share of renewable energy
(RE) rises, the traditional EC-EG-CO; linkage weakens. The driver is a systematic fall in the carbon
intensity of each kilowatt-hour produced [17,28]. Advanced decomposition analysis shows that in
economies where the RE share exceeds approximately 30 %, the long-run elasticity of CO, with
respect to EC drops by half relative to fossil-fuel-dependent peers. Conversely, fossil-fuel-locked
exporters continue to display strong EC-CO; elasticities, pointing to the urgency of diversifying their
energy portfolios. Nuclear power, though controversial, is flagged as a potential large-scale,
low-carbon growth engine in India and selected OECD members [29], while green-hydrogen pilots
in Chile and Saudi Arabia promise to blur the traditional boundary between producer and consumer
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nations. While the fuel mix is pivotal, geography is equally crucial. The next subsection explores
regional heterogeneity and contextual nuance.

Regional patterns further nuance the global picture. In Latin America, Altinoz et al. [30] report
that both EC and CO, curb growth, corroborating evidence that commodity-export volatility and
under-investment in modern energy infrastructure can make energy spending less productive.
Muhammad [31], however, documents an energy-driven yet emission-intensive expansion cycle
across a wider set of Latin American and Caribbean economies, underscoring the region’s structural
diversity. In Sub-Saharan Africa, Gershon et al. [32] find that higher EC boosts output but its effect
on emissions hinges on renewable penetration and governance quality —a reminder that institutional
capacity can magnify or mute the environmental footprint of energy use. In South Asia, Rehman and
Rehman [33] confirm EC as a primary emissions driver, while wavelet-based analysis suggests India’s
GDP-EC link is partly offset by efficiency gains and rapid solar deployment [34]. Meanwhile,
post-Soviet transition economies Chen et al. [35] show heterogeneous responses across the income
distribution, with coal-rich regions locked in high-carbon paths and gas-oriented areas benefiting
from cleaner fuel substitution.

Beyond geographic context, methodological design also shapes empirical conclusions. The
conclusions scholars draw depend not only on geography but also on methodological choices.
Models that allow for structural breaks, asymmetric adjustments, or thick-tailed shock
distributions—such as Threshold-ARDL, Quantile-on-Quantile regressions, or Bayesian-VARs—
often paint a more nuanced picture than standard linear cointegration tests. Recent meta-analysis
indicates that studies incorporating at least one form of non-linearity are 35 % less likely to reject the
conservation hypothesis, reflecting the fact that energy intensity tends to decline at higher income
levels.

Table 1 condenses fifteen representative studies published between 2021 and 2025 and previews
a key takeaway: cross-country differences in renewable-energy penetration and methodological
sophistication largely account for the divergent causal patterns observed. They span five continents,
deploy a wide array of estimation strategies, and reach dissimilar (sometimes conflicting)
conclusions. Collectively, they illustrate how methodological choices and country circumstances
shape the observed EC-EG-CO, relationships. Notably, the balance of recent evidence tilts toward
feedback or RE-mediated decoupling, although classic growth-type findings persist in
energy-constrained, fossil-fuel-intensive settings.

Table 1. Comparative Evidence on the Energy—Growth—Emissions Nexus.

Study Sample Method Key Finding
Radmehr et al. [36] EU, 1995-2014 P-SSE EG & CO,; REN — CO,
)
Alam & Hossain [17] CHN, 1990-2019 ARDL / ARCH-LM / REN — CO; (-)
BG-LM
Rahman et al. [37] CHN, 1985-2021 Wavelet Coherence EC from fossil fuels 1
Analysis COy;
Agboola et al. [38] SAU, 1971-2016 MWT (T-Y) EC — CO; 1 % AGDP = 1
% ACO,
Namahoro et al. [28] 41 WIND, 1997-2018 CS-DL/CS-ARDL/  WIND 1 EG; WIND —
CCE-P CO: (-)
Ozgur et al. [29] IND, 1970-2016 Fourier ARDL NUC 1 clean EG
Rehman & Rehman [33] CHN+4, 2001-2014 GRA / TOPSIS EC major driver of CO,
Eldowma et al. [39] SDN, 1971-2019 ARDL CO; — EG — Electricity 1
Wen et al. [40] SA, 1985-2018 FMOLS NRE — Pollution 1
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6
Rahman et al. [41,42] NICs, 1979-2017 CI/DOLS/FMOLS/ EC & EXP 1 ENV deg.
PMG
Gershon et al. [32] 17 AFR, 2000-2017 Static Panel EC — CO, (-); EC - EG
(+)
Khan et al. [43] PAK, 1965-2015 ARDL EC & EG — CO; (+)
Chen et al. [35] 6 TE, 1970-2021 QQ EC — CO, (+); EC — EG
(+)
Pradhan et al. [44] G7+5A, 19962021 Sim-Reg/Panel ARDL EC — EG; CO, — EG
Salari et al. [45] USA, 1997-2016 Static & Dyn panel =~ REN — CO; (-); NRE —
CO; (+)
Afjal [46] 37 OECD, 1995-2020 PVAR GDP + CO; (neutral)
Liu et al. [47] 46 BRI countries, Driscoll-Kraay Est. REN — CO; (-); EKC
2005-2018 supported
Shah et al. [48] 49 green bond Simultaneous Equation fossil-fuel-driven EG 1
countries, 2007-2019 Model GHG
emissions;

Notes: <> = bidirectional causality; — = unidirectional (Granger) causality; (+)/(-) indicate positive/negative
effects; REN = renewable energy; NRE = non-renewable energy; WIND = wind energy; ENV = environment; CI
= cointegration; P-SSE = panel spatial simultaneous equations; MWT (T-Y) = Modified Wald test (Toda-
Yamamoto); CS-DL = cross-sectional distributed lag; CS-ARDL = cross-section-augmented ARDL; CCE-P =
common correlated effects—pooled; GRA = grey relation analysis; TOPSIS = Technique for Order Preference by
Similarity to Ideal Solution; FMOLS = fully modified OLS; DOLS = dynamic OLS; PMG = pooled mean group;

QQ = quantile-on-quantile; PVAR = panel vector autoregression).

The foregoing review suggests four broad stylised facts. First, the direction of causality between
energy consumption and growth is not immutable but evolves alongside structural change, shifts in
the fuel mix, and policy interventions. Second, economies that expand the share of renewables—or,
where socially acceptable, low-carbon nuclear power—consistently weaken the elasticity of
emissions with respect to energy use, pointing to a viable route for green growth. Third, governance
quality and institutional capacity are decisive: the same increment in energy supply can yield either
sustainable or unsustainable outcomes depending on how effectively governments channel
investment and enforce environmental standards. Finally, empirical verdicts are highly sensitive to
methodological flexibility; models that allow for asymmetry, thresholds, or distributional
heterogeneity tend to produce more conservative estimates of energy dependence, underscoring the
need for nuanced, context-specific policy design. Together, these insights caution against
one-size-fits-all prescriptions and highlight the importance of tailoring policy toolkits to national
endowments, institutional strength, and the maturity of domestic energy markets.

Recognition of these stylised facts motivates the search for more adaptable modelling
frameworks. Long Short-Term Memory (LSTM) networks belong to the recurrent-neural family and
are expressly designed for sequential data. Their gating architecture allows the model to retain or
discard information over time, making them well suited to capture delayed energy—growth
interactions, structural breaks such as the 2008 financial crisis or the post-COVID-19 energy shock,
and the long-range dependence ubiquitous in environmental and macroeconomic series. Crucially,
LSTMs learn complex, non-linear functional forms endogenously rather than imposing a priori
restrictions, and they scale smoothly to multivariate settings that include disaggregated fuel types,
technology indices, and policy dummies.

Performance benchmarks confirm these theoretical advantages. Benchmark studies comparing
LSTMs with ARIMA and random-forest baselines report forecasting-error reductions of roughly 25
% and markedly better turning-point detection—improvements that arise because classic linear
models struggle with non-stationarity, regime shifts, and complex feedback loops [49]. By providing
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accurate out-of-sample predictions and allowing scenario analysis that is hard to implement in
traditional frameworks, LSTMs offer a versatile addition to the EC-EG-CO, toolkit—one capable of
illuminating the path-dependent, non-stationary dynamics that govern the energy-growth—
environment triad.

In sum, the contemporary literature presents a highly context-dependent and dynamically
evolving EC-EG-CO; nexus. Progress toward the Paris targets and the Sustainable Development
Goals will hinge on swift, context-aware energy transitions coupled with data-driven modelling
frameworks —such as LSTMs—that can faithfully track and anticipate the complex interplay among
energy demand, economic prosperity, and environmental quality. Against this backdrop, the present
article sets out to develop an LSTM-based model for India and China (1990-2024) with the explicit
goal of testing whether rising renewable penetration has already begun to decouple growth from
emissions and of generating forward-looking scenarios to inform policy design.

3. Methods and Models

This section outlines the methodological framework employed to examine the dynamic
relationships between energy consumption, economic growth, and CO, emissions in India and China.
Given the complex and time-dependent nature of these variables, we adopted a data-driven
modeling approach utilizing Long Short-Term Memory (LSTM) neural networks [50]. LSTM models
are particularly well-suited for time-series analysis due to their ability to capture long-range
dependencies and non-linear interactions.

In recent years, LSTM models have gained increasing popularity across the fields of economics,
finance, and environmental science due to their ability to effectively capture complex temporal
dependencies in sequential data. For instance, In the environmental domain, LSTM has been
extensively applied to forecast air pollution indicators such as PM2.5 concentrations.
Nourmohammad and Rashidi [51] compared LSTM with ARIMA and XGBoost models to predict
daily and monthly PM2.5 levels in Tehran. While XGBoost achieved the highest accuracy for daily
forecasts, LSTM demonstrated stable performance across various input configurations, underscoring
its flexibility in handling multivariate environmental datasets. Similarly, Waqas et al. [52] evaluated
six predictive models and ranked LSTM as the second-best performing deep learning algorithm for
forecasting PM2.5 in Islamabad, Pakistan —outperforming traditional machine learning approaches
during the testing phase. Moreover, Noynoo et al. [53] integrated LSTM into a hybrid forecasting
framework with the WRF-Chem model to enhance the accuracy of PM2.5 predictions in southern
Thailand. Their hybrid LSTM-based model significantly improved forecasting metrics and
demonstrated strong predictive power up to 72 hours in advance.

LSTM models are increasingly applied in economics and finance for forecasting complex,
nonlinear financial time series. Sun [54] used a Bayesian-optimized LSTM to predict stock prices in
China’s major indices, demonstrating superior accuracy over traditional models. Peng et al. [55]
developed a hybrid model combining empirical mode decomposition and an attention-enhanced
LSTM, improving predictive accuracy and reducing error. Their results confirm that LSTM networks,
especially when integrated with advanced techniques, effectively capture dynamic financial patterns.
These applications underscore LSTM’s value in enhancing the reliability of stock market predictions
and supporting data-driven financial decision-making.

LSTM models are increasingly used across finance, economics, and environmental science to
forecast complex, time-dependent phenomena. Jiang et al. [56] applied a VMD-LSTM model to assess
the impact of climate risk on China’s renewable energy market, finding that incorporating climate
uncertainty indices significantly enhanced forecasting accuracy across various time horizons. In the
energy sector, Lu et al. [57] examined the effects of electricity policy uncertainty and carbon emission
prices on electricity demand in China. While mixed-frequency models outperformed LSTM, the
LSTM model still captured key nonlinear patterns. In environmental modeling, Liu et al. [58]
developed a high-resolution forecast of emissions in China’s cement industry through 2035. Their
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findings showed that fuel and clinker substitution could significantly reduce SO, and CO, emissions,
with notable co-benefits for PM2.5 and NOx.

The LSTM methodology comprises four core components: model evaluation metrics, LSTM
network architecture, data preprocessing techniques, and model design strategy.

3.1. Evaluation Metrics

To evaluate the predictive performance of the Long Short-Term Memory (LSTM) model, we
employed three standard error metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE) [50]. These metrics offer a comprehensive assessment of
forecast accuracy by quantifying the average error and the magnitude of larger deviations between
predicted and actual values. MAE captures the average magnitude of errors without considering
their direction, MSE penalizes larger deviations more heavily due to the squaring function, and RMSE
provides a normalized measure of error in the same units as the target variable, making it more
interpretable.

The respective formulas are given below:

1 n
MAE = — E ly: = i1, (D
n i=1
1o 2
MSE = — E i = 9% (2)
im

n i=1

1
RMSE = J;Zizl(yi -90%.3)

where, y denotes the observed value, 9; is the predicted value, and is the total number of

observations. Together, these metrics help evaluate model performance from both an average error
and dispersion perspective.

3.2. Subsection Long Short-Term Memory (LSTM) Model

The LSTM network, introduced by Hochreiter and Schmidhuber [50], was developed to address
the limitations of standard recurrent neural networks (RNNs), particularly their inability to learn
long-term dependencies due to the vanishing gradient problem. LSTMs incorporate internal memory
cells and gate mechanisms that allow them to retain, update, or discard information over extended
sequences. Each LSTM cell contains an internal memory cell state C; and a set of gates that regulate
the flow of information into, within, and out of this cell: i; — input gate (determines which new
information should be stored in the current cell state); f; — forget gate (decides what information
from the previous cell state should be removed); o, — output gate (controls what part of the cell state
is passed to the next time step); and g, — change gate (called the candidate cell state, helps the LSTM
decide what new information to store in memory). These gates are themselves small neural networks
trained jointly with the rest of the model, which means the network can learn when to remember,
when to forget, and what to output.

The computational steps are as follows:

i; = sigmoid (Wy; - x; + Wy - hy—q + b;), (4)
fi = sigmoid(fo “Xp + Wy hy_q + bf), (5)
oy = sigmoid(Wy, * x; + Wy - he—q + b,), (6)
gr = tanh(Wyy - X, + Wyg - hey + by), (7)
ct = (ft  ce1) + (it " o), (8)
9¢ = he = o, - tanh(c,)- (9)
where sigmoid is the sigmoid activation function, tanh is the hyperbolic tangent function, W
represents weight matrices, and b represents bias terms.

3.3. Data Processing and Model Design
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This study uses time-series data that includes CO, emissions, real GDP (RGDP), and
disaggregated energy consumption data (e.g., coal, natural gas, petroleum, renewable, nuclear). CO,
emissions are measured in metric tons per capita, RGDP in constant 2015 USD, and energy
consumption in quadrillion British thermal units (BTUs). The data were sourced from two
authoritative open access databases: the U.S. Energy Information Administration (EIA) and the
World Bank’s World Development Indicators (WDI).

To maintain the integrity of the time-series structure, the dataset was divided into an 80:20
training-to-testing ratio. This straightforward split was preferred over k-fold cross-validation, which
may disrupt temporal continuity. All variables were normalized using Min-Max scaling to a [0, 1]
range to improve convergence during training and ensure comparability across features:

x' = x — min (x)/max(x) — min (x) (10)
where x is the original value, and min (x), max (x) are the minimum and maximum values of the
variable, respectively.

To explore the relationship between energy consumption, economic growth, and CO; emissions,
we developed a sequential set of LSTM model configurations with increasing levels of complexity
and explanatory power. The first model included only lagged values of CO, emissions to serve as a
baseline for prediction. Each model was estimated using lag lengths of 1, 2, and 3 years, allowing us
to assess both immediate and delayed effects of the predictors. Seven LSTM model configurations
were constructed as follows:

Model1. €O, = f(COy ),

Model 2.  CO, = f(COy—p, CC_yp),

Model 3. €0, = f(COy_p, CCr_p, NG,_,),

Model4. €Oy = f(COy—p, CCL_p, NG;_y, PC,_yp),

Model5. €O, = f(COy—y, CCr_p, NGy_p, PC,_p, RC;_,),

Model 6. €O, = f(COs_p, CCyp, NGy_p, PCy_p RCo_p NEC,_y),

Model7. €O, = f(COy;—y,CCr_p, NG;_yp, PC,_p, RC,_y, NEC;_,, RGDP,_,).
where £€{1,2,3} denote the lag length applied to each input variable.

Model accuracy was compared using MAE, MSE, and RMSE, and results were interpreted with
respect to policy implications. Overall, this methodology enables the detection of both linear and
nonlinear patterns in the data and provides rigorous empirical insights into how energy use and
economic activity shape environmental outcomes.

4. Data Description and Variable Specification

This section outlines the key variables used to examine the relationship between energy
consumption, economic growth, and CO, emissions in India and China. Specifically, the selection of
variables is grounded in existing theoretical frameworks and supported by an extensive body of
empirical literature. To begin with, fossil fuels—such as coal, oil, and natural gas—are widely
acknowledged as major contributors to CO, emissions due to their carbon-intensive combustion [59-
62]. Indeed, the European Commission Joint Research Centre estimates that approximately 90 % of
global CO, emissions stem from fossil-fuel use [63]. Nevertheless, while fossil fuels remain essential
to economic growth and industrial development, their environmental costs are substantial, thereby
underscoring the need for sustainable alternatives [10].

Conversely, renewable energy has emerged as a vital solution for reducing global CO,
emissions. Notably, it is widely recognized for its environmental benefits and economic advantages
[64,65]. Furthermore, annual consumption of renewable sources is growing rapidly, and these
resources are increasingly positioned as key tools for balancing economic growth with environmental
sustainability [66]. In contrast, nuclear energy —though sometimes contentious —offers a low-carbon
option for electricity generation because it does not emit CO, during operation. Empirical evidence
indicates that increased nuclear deployment can substantially lower the carbon intensity of the power
sector, particularly in countries heavily dependent on fossil fuels.
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With respect to economic factors, the study captures growth through real GDP. Typically,
economic expansion leads to higher emissions via increased demand for energy, transport, and
industrial output; however, many countries can decouple this link through cleaner technologies [67]
and improved efficiency [68]. Accordingly, this study integrates both energy and economic indicators
to provide a holistic analysis. Each variable is defined, measured using standardized units, and
sourced from internationally recognized databases. As summarized in Table 2, the variables and their
expected directional impact on emissions are presented for reference.

Table 2. Variable Specifications for LSTM Model.

Variable Symbol Unit Expected Sign Source
CO; Emissions CO; Metric tons per capita - WDI
Coal Consumption CcC Quadrillion BTUs Positive EIA
Natural Gas Consumption NG Quadrillion BTUs Positive EIA
Petroleum Consumption PC Quadrillion BTUs Positive EIA
Renewable Energy Consumption RC Quadrillion BTUs Negative EIA
Nuclear Energy Consumption NEC Quadrillion BTUs Negative EIA
Real GDP RGDP Constant 2015 USD  Positive/Negative WDI

Source: Compiled by the authors using data from the U.S. Energy Information Administration (EIA) and World
Development Indicators (WDI).

5. Results and Discussion
5.1. Influence of Energy Consumption and Economic Growth on CO, Emissions in India

The analysis for India draws on a 32-year sample from 1990 to 2021, a period marked by rapid
economic liberalization, industrialization, and substantial changes in the energy sector. This period
is highly relevant for understanding India’s evolving energy-emissions nexus. The dataset was
divided into a training set (1990-2013) and a testing set (2014-2021). Table 3 presents the Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Median Absolute Error (MedAE) for various
model configurations and lag structures.

Table 3. Influence of Energy Consumption and Economic Growth on CO, Emissions in India.

Title 1 Modell Model2 Model3 Model4 Model5 Model6 Model?7
Lag1
MSE_train 0.0240 0.011 0.006 0.005 0.003 0.003 0.002
MAE_Train 0.1420 0.095 0.062 0.061 0.044 0.044 0.039
MedAE_train 0.1358 0.083 0.053 0.047 0.034 0.040 0.031
MSE_test 0.0590 0.013 0.012 0.009 0.011 0.013 0.014
MAE_Test 0.2330 0.105 0.016 0.090 0.084 0.084 0.082
MedAE_test 0.2460 0.099 0.102 0.092 0.057 0.055 0.051
Lag 2
MSE_train 0.010 0.005 0.003 0.002 0.001 0.001 0.001
MAE_Train 0.100 0.061 0.041 0.037 0.025 0.028 0.025
MedAE_train 0.098 0.061 0.030 0.032 0.016 0.025 0.021
MSE_test 0.008 0.009 0.008 0.007 0.016 0.017 0.011
MAE_Test 0.098 0.069 0.068 0.069 0.087 0.089 0.077
MedAE_test 0.094 0.049 0.048 0.052 0.051 0.050 0.043
Lag 3
MSE_train 0.008 0.003 0.001 0.001 0.001 0.001 0.001
MAE_Train 0.080 0.050 0.032 0.026 0.018 0.024 0.019
MedAE_train 0.084 0.044 0.025 0.024 0.013 0.023 0.016
MSE_test 0.007 0.013 0.008 0.006 0.011 0.015 0.008
MAE_Test 0.057 0.090 0.063 0.065 0.077 0.090 0.065
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MedAE _test 0.029 0.064 0.048 0.043 0.045 0.044 0.041

Incorporating independent variables (IVs) consistently reduced all error metrics at lag 1, except
in the case of nuclear energy consumption (NEC). The testing dataset reflected similar trends,
although including real GDP slightly increased the MSE. For lag 2, most IVs significantly impacted
CO; emissions, with NEC remaining statistically insignificant. Results for lag 3 confirmed that NEC
does not have a meaningful effect. Increasing lag lengths reduced error metrics, suggesting a long-
term influence of IVs on CO, emissions in India. Coal consumption, natural gas consumption, and
real GDP emerged as the most influential predictors across different lag structures.

These findings provide actionable guidance for India’s decarbonization strategy. Because coal
and natural gas are the dominant drivers of emissions, policies that accelerate the retirement of coal-
fired power plants, promote cleaner alternatives, and improve gas-burn efficiency will yield the
greatest near-term impact. The persistent role of real GDP underscores the need to decouple
economic growth from energy intensity through industrial energy-efficiency standards and
technology upgrades. Interestingly, the stronger model performance at longer lags implies that early,
sustained interventions can compound over time, reinforcing the importance of long-term policy
commitments and consistent regulatory signals.

These results are broadly consistent with the extant literature, which identifies fossil-fuel
combustion as the principal driver of global CO, emissions [30,31]. In particular, the dominant effects
of coal and natural gas corroborate the country-specific evidence reported by Khochian and Nademi
[34] and Dash et al. [69], whereas the negligible contribution of nuclear energy mirrors the findings
of Ozgur et al. [29]. Moreover, the positive association between real GDP and emissions lends
empirical support to the feedback hypothesis posited by Saidi et al. [27] and Namahoro et al. [28],
underscoring the intricate linkage between economic expansion and environmental degradation in
emerging economies.

5.2. Influence of Energy Consumption and Economic Growth on CO, Emissions in China

The analysis for China also uses a 32-year sample from 1990 to 2021, employing the same train-
test split. Unlike India, China’s results show a stronger and more consistent impact from coal and
petroleum consumption, reflecting differences in energy dependency and economic structure. Table
4 summarizes the key error metrics.

Table 3. Influence of Energy Consumption and Economic Growth on CO, Emissions in China.

Title 1 Modell Model2 Model3 Model4 Model5 Model6 Model?7
Lag1
MSE_train 0.031 0.014 0.010 0.010 0.009 0.009 0.008
MAE_Train 0.160 0.100 0.092 0.086 0.085 0.083 0.080
MedAE_train 0.180 0.100 0.100 0.097 0.096 0.092 0.091
MSE_test 0.037 0.010 0.004 0.003 0.023 0.056 0.045
MAE_Test 0.193 0.096 0.049 0.049 0.140 0.220 0.200
MedAE_test 0.196 0.100 0.045 0.044 0.130 0.200 0.190
Lag2
MSE_train 0.0152 0.0077 0.0075 0.0058 0.0061 0.0061 0.0047
MAE_Train 0.106 0.076 0.079 0.068 0.071 0.071 0.062
MedAE_train 0.11 0.075 0.089 0.071 0.082 0.077 0.068
MSE_test 0.004 0.002 0.009 0.007 0.027 0.048 0.03
MAE_Test 0.0603 0.03862 0.0893 0.0828 0.162 0.213 0.171
MedAE_test 0.0625 0.0492 0.0864 0.0804 0.15 0.195 0.1619
Lag 3
MSE_train 0.011 0.006 0.006 0.004 0.005 0.005 0.004
MAE_Train 0.920 0.070 0.074 0.057 0.063 0.066 0.053
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MedAE_train 0.080 0.081 0.087 0.071 0.071 0.074 0.062
MSE_test 0.001 0.002 0.011 0.067 0.023 0.044 0.018
MAE_Test 0.031 0.034 0.100 0.078 0.150 0.200 0.130
MedAE_test 0.027 0.020 0.100 0.077 0.150 0.190 0.130

The training dataset at lag 1 revealed that all IVs significantly influenced CO, emissions.
However, in the testing set, the influence of renewable and nuclear energy consumption was less
consistent. Coal, petroleum, and real GDP consistently had strong impacts across all lag structures.
Real GDP demonstrated a particularly robust relationship with CO, emissions across training and
testing datasets.

These findings carry several implications for China’s decarbonization pathway. First, the
outsized contribution of coal and petroleum underscores the urgency of accelerating China’s coal-to-
clean transition and electrifying transport, particularly heavy industry and freight sectors that are
petroleum-intensive. Second, the persistent sensitivity of emissions to economic growth highlights
the need to improve the carbon intensity of GDP by scaling low-carbon manufacturing, investing in
circular-economy practices, and tightening efficiency standards. Third, the weaker and inconsistent
effect of renewable and nuclear energy suggests that, although capacity additions are substantial,
grid integration, curtailment, and technology deployment barriers still prevent these sources from
fully displacing fossil fuels. Therefore, policy should prioritize grid modernization, storage, and
market reforms that facilitate higher renewable penetration. Finally, because model accuracy
improves with longer lags, early and sustained mitigation actions are likely to generate compounding
benefits over time, reinforcing China’s “Dual-Carbon” targets for 2030 peak and 2060 neutrality.

These findings resonate with the broader empirical literature documenting the carbon-intensive
growth trajectories of large industrial economies such as China [34,69]. The pronounced and
persistent impact of coal and petroleum consumption parallels the evidence reported by Radmehr et
al. [36], underscoring the centrality of fossil fuels in the country’s current energy portfolio.
Conversely, the comparatively modest influence of renewable and nuclear energy accords with the
results of Wen et al. [40] and Ozgur et al. [29], which highlight the structural and technological
barriers that continue to hamper large-scale clean-energy deployment. Finally, the robust positive
association between real GDP and CO, emissions corroborates the growth—environment nexus
identified by Rahman et al. [70] and Pradhan et al. [44], reaffirming that China’s rapid economic
expansion remains tightly coupled with elevated carbon emissions.

5.3. LSTM Model Validation

Table 5 presents the detailed configuration of the LSTM model used in this study. This specific
configuration was selected to balance model complexity with training efficiency, ensuring the
network effectively captures non-linear and sequential patterns in the data.

Table 5. LSTM Model Structure and Parameters.

Data normalization MinMaxScaler
Activation function Tanh
Optimizers Adam
Loss Function MSE
Input dimension (1, timesteps*features)
Output dimension 1 (forecast)
Hidden layers [8,16,32]
Dropouts 0.1
Learning rate 0.001
Batch Size 32
Training epochs 1000
Activation function Tanh
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The LSTM model employs the tanh activation function across three hidden layers (32, 16, and 8
neurons, respectively) and uses the Adam optimizer with a learning rate of 0.001. The model was
trained over 1000 epochs with a batch size of 32, minimizing the MSE during training to enhance
predictive accuracy.

Summarize, the LSTM estimates indicate that, for India, coal and natural-gas consumption
together with real GDP constitute the dominant determinants of CO, emissions, whereas renewable
energy exhibits a statistically significant but mitigating effect and nuclear energy remains negligible.
By contrast, in China the emissions trajectory is driven primarily by coal and petroleum use and by
aggregate economic activity, with renewable and nuclear sources displaying weak and inconsistent
coefficients. These cross-country differences reinforce the central role of fossil fuels in shaping the
carbon footprints of emerging and industrial economies, as documented in the preceding literature
review. Moreover, the superior performance of longer-lag models underscores the importance of
temporal dynamics when analysing the energy—growth—emissions nexus, suggesting that policy
interventions enacted today will exert compounded effects on environmental outcomes over the
medium and long term.

3. Conclusion and Policy Recommendations

Employing Long Short-Term Memory neural networks, this study systematically examined the
interplay between energy consumption, economic growth, and CO, emissions in India and China
from 1990 to 2021. The LSTM framework, which captures non-linearities and temporal dependencies
more effectively than conventional econometric models, revealed distinct national profiles. For India,
coal and natural-gas consumption, together with economic growth, emerged as the principal drivers
of emissions, whereas renewable energy exerted a statistically significant mitigating effect and
nuclear energy remained negligible. For China, coal and petroleum consumption, along with
economic growth, dominated the emissions trajectory; in contrast, renewable and nuclear sources
displayed weak and inconsistent effects. These findings corroborate extant evidence on the carbon-
intensive growth paths of large emerging economies and highlight the continued centrality of fossil
fuels despite rapid expansions in renewable capacity.

Crucially, the superior performance of models that incorporate longer lags underscores the
cumulative nature of energy—-emissions dynamics: policy interventions launched today will yield
compounding environmental benefits —or costs —over time. Thus, sustained, long-horizon strategies
rather than short-term fixes are imperative for effective decarbonisation.

The empirical evidence underscores the imperative for both India and China to accelerate a
decisive shift away from coal and, in China’s case, petroleum. Generally, policymakers should:
introduce or strengthen carbon-pricing mechanisms; phase out fossil-fuel subsidies; and redirect
public and private investment toward renewable generation, grid modernisation, and large-scale
storage. Simultaneously, demand-side measures—stringent industrial energy-efficiency standards,
electrification of transport and heat, and incentives for circular-economy practices—can lower the
carbon intensity of GDP without constraining growth.

Although nuclear power currently plays a minor role, targeted investments in next-generation
reactor technologies, robust safety regulation, and public-engagement programmes could enhance
its future contribution to low-carbon supply. Strengthening institutional capacity for data-driven
environmental governance will improve policy coherence and monitoring. Finally, deeper regional
and international collaboration —through institutions such as the BRICS-based New Development
Bank, the Asian Development Bank, the Asian Infrastructure Investment Bank, and global
mechanisms like the Green Climate Fund and the International Solar Alliance, leveraged via
dedicated green-finance platforms, structured technology-transfer agreements, and coordinated
research programmes—will enable India and China to mobilise the financial, technological, and
knowledge resources required to meet their 2070 and 2060 carbon-neutrality targets, respectively,
while reinforcing broader global climate-change mitigation efforts.
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Although the study offers robust insights, several constraints should be acknowledged. First,
the analysis is confined to macro-level indicators; sector-specific drivers, technological innovation
metrics, institutional variables, and policy stringency indices were not included. Second, the LSTM
model, while powerful, operates as a black box, limiting interpretability. Third, the dataset ends in
2021, thereby excluding the most recent policy shifts and post-pandemic recovery patterns. Fourth,
the relatively small shares of renewable and nuclear energy in both countries during the study period
restrict the ability to gauge their full mitigation potential. Finally, although multiple lag structures
were explored, explicit feedback loops between economic growth and emissions were not modelled.
Addressing these gaps will refine future assessments of the energy—growth—emissions nexus.

Future inquiries should integrate broader variable sets—such as technological-innovation
indices, regulatory-quality measures, and disaggregated sectoral energy data—to obtain finer-
grained insights. Applying explainable-Al techniques could enhance transparency in neural-network
inference, bridging the gap between accuracy and interpretability. Extending the temporal coverage
to incorporate data after 2021, including the effects of post-COVID recovery packages and new
climate pledges, will improve policy relevance. Comparative analyses encompassing additional
emerging and advanced economies can illuminate regional heterogeneities, while hybrid machine-
learning—econometric frameworks may better capture dynamic feedback loops and structural breaks.
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Abbreviations

The following abbreviations are used in this manuscript:

ADB Asian Development Bank

AlIB Asian Infrastructure Investment Bank

ARCH Autoregressive Conditional Heteroscedasticity
ARDL Autoregressive Distributed Lag

BG-LM Breusch—Godfrey Lagrange Multiplier Test
CC Coal Consumption

CCE-P Common Correlated Effects—Pooled Estimator
CO, Carbon Dioxide

CS-ARDL  Cross-Sectionally Augmented ARDL
CS-DL Cross-Sectionally Augmented Distributed Lag

DOLS Dynamic Ordinary Least Squares

EIA U.S. Energy Information Administration
EG Economic Growth

EC Energy Consumption

FMOLS Fully Modified Ordinary Least Squares
GDP/ Gross Domestic Product / Real GDP
RGDP

GHG Greenhouse Gas

JRC Joint Research Centre

LSTM Long Short-Term Memory

MAE Mean Absolute Error
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MSE Mean Squared Error
MedAE Median Absolute Error
NDB New Development Bank (BRICS)
NEC Nuclear Energy Consumption
NG Natural Gas Consumption
OECD Organisation for Economic Co-operation and Development
pPC Petroleum Consumption
PMG Pooled Mean Group
PVAR Panel Vector Autoregression
RC Renewable Energy Consumption
RMSE Root Mean Squared Error

SDG(s) Sustainable Development Goal(s)
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

WDI World Development Indicators
XAI Explainable Artificial Intelligence
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