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Abstract: Patient safety is a critical global health priority, with surgical errors, including in-hospital
infections and procedural mishaps, causing over 7 million adverse events and 1 million deaths
annually. This study evaluates machine learning (ML) to predict medical error risks in the general
surgery department of a Greek Tertiary/University Hospital. Leveraging a 10-year dataset of 19,965
patient records, we applied different ML algorithms, achieving 94.3 % accuracy in detecting errors
such as healthcare-associated infections, medication errors, and equipment-related failures. Key
predictors included hospitalization duration and initial diagnosis, enabling targeted risk
identification. These findings suggest ML can pinpoint risks stemming from staff performance,
equipment malfunctions, or clinical management errors, facilitating the development of department-
specific safety guidelines. Integration with tools like the WHO Surgical Safety Checklist could
enhance proactive error prevention. Such Al-driven models can be seamlessly integrated into future
internet-enabled healthcare systems for real-time, proactive patient safety management. However,
limitations, including potential data biases from retrospective records and challenges in embedding
ML into clinical workflows, may hinder applicability. Ethical concerns, such as patient data privacy,
algorithmic fairness, and clinician trust in predictive models, require careful consideration. By
combining ML-driven predictive analytics with clinician expertise, healthcare systems can transit
from reactive to proactive error mitigation, improving patient outcomes and reducing costs. Future
multi-center studies are needed to validate these findings across diverse settings, ensuring
generalizability and equitable implementation in resource-constrained environments like Greece and
will benefit from scalable, internet-based platforms for data aggregation and model deployment.

Keywords: Artificial intelligence; Machine learning; Patient safety; Medical error; Surgery
department

1. Introduction

Medical errors, broadly encompassing procedural adverse events, in-hospital infections, and
various other malfunctions and malpractices including even time-delays, constitute a significant and
persistent global challenge in healthcare, affecting up to 25% of inpatient operations in industrialized
countries [1]. These errors lead to over 7 million disabling adverse events and 1 million deaths
annually, escalating costs and eroding trust in healthcare systems [2]. Unlike high-risk industries like
aviation, which use systematic error prevention [3], surgery lags in adopting proactive strategies,
necessitating innovative solutions like machine learning (ML) to enhance patient safety [4]. This
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research investigates the potential of ML to predict and mitigate surgical errors, focusing specifically
on preventable adverse events in general surgery. These malpractices and malfunctions threaten
patient safety, escalate healthcare expenses, and undermine public confidence in medical institutions
[5]. Unlike high-risk sectors such as aviation and the military —where errors are accepted as
unavoidable but controllable through systematic prevention measures [3]—healthcare has been
slower to adopt similarly rigorous strategies, despite the severe human and financial consequences
[6]. Industries like aviation employ simulations and controlled environments to analyze and prevent
errors [7], yet such approaches are less prevalent in surgery, where risks are high and environments
unpredictable [2]. While medication-related errors have been widely studied, surgical errors —often
tied to procedural adverse events or chaotic operating conditions [8] —remain a persistent challenge.
Initiatives like the UK’s National Patient Safety Agency (NPSA) have sought to improve safety, but
the inherently volatile nature of surgery continues to hinder progress [5]. The 1999 To Err Is Human
report by the Institute of Medicine (IOM) underscored the scale of medical errors, urging systemic
reforms [6]. Later research has further confirmed these concerns, calling for novel interventions [9,
10]. Surgical errors stem from diverse causes, including technical failures, miscommunication, and
flawed decision-making [5]. Surgeons’ fatigue, excessive workloads, and skill disparities also
contribute significantly [5], with recent studies emphasizing procedural lapses and communication
failures [8]. This study hypothesizes that ML can accurately predict the risk of preventable surgical
adverse events, enabling proactive interventions. Conventional error analysis, such as retrospective
reviews, offers limited predictive power, leaving gaps in proactive risk mitigation.

1.1. Global and European Surgical Error Rates

Medical error rates, mainly in surgery departments, are a complex issue. Global estimates
suggest that up to 25% of inpatient operations in industrialized countries experience adverse events,
a substantial portion of which may be preventable. The World Health Organization (WHO) reports
over 300 million surgical procedures annually, with at least 7 million people experiencing disabling
adverse events and over 1 million deaths linked to surgical care [1]. In Europe, recent research, such
as a 2024 study published in the BMJ, found that more than one-third of surgical patients in hospital
settings experience adverse events, with at least 20% attributable to preventable medical errors [11].
This highlights a significant overlap between global and European trends, emphasizing the
widespread nature of the problem. The EU also reports around 3.2 million patients annually
acquiring healthcare-associated infections (HAIs) linked to surgery, resulting in 37,000 deaths,
highlighting the ongoing challenge [1]. Efforts like the WHO’s Surgical Safety Checklist have shown
promise, reducing adverse events by over 30% in some settings. However, factors such as
communication failures, fatigue, and complex procedures continue to drive error rates, making it a
persistent concern as of today.

1.2. Detailed Analysis and Supporting Information

A 2023 WHO report further noted that crude mortality rates after major surgery range from 0.5%
to 5%, underscoring the variability and severity of outcomes. Additional insights come from studies
like one conducted in California, published in JAMA Network Open in 2021, which examined
surgical "never events" and found persistent issues despite safety protocols [12]. While this US-based
study provides a comparative perspective on systemic challenges contributing to error rates globally,
the focus of this paper remains on the European context. A 2024 study published in the BM]J, led by
researchers from Harvard University and analyzing outcomes for 1,009 surgical patients in
Massachusetts hospitals in 2018, found that 38% of patients experienced at least one adverse event,
with about 10% of these events being definitely preventable [11]. While conducted in the US, the
study’s findings, as noted in the accompanying editorial, show similarities with European patterns,
suggesting broader applicability. The study also highlighted that common adverse events included
surgery-related issues, medication errors, and healthcare-associated infections, with the highest rates
in procedures involving the heart, lungs, gut, digestive system, and bones/joints.
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1.3. European Context and Specific Studies

In Europe, recent data provides a more granular view of surgical error rates. The WHO
European Health Report 2024, while not providing specific surgical error rates in the sections
reviewed, emphasizes ongoing challenges in patient safety, including healthcare-associated
infections (HAIs), which affect around 3.2 million patients annually in the EU, resulting in 37,000
deaths [1]. This underscores the significant contribution of surgical errors to these broader patient
safety concerns. Additionally, a 2022 analysis of wrong-site surgery in Europe, identified in seven
studies between 2006 and 2022, reported incidents at a rate of 2.01 per 100,000 procedures in some
reports, indicating rare but impactful errors.

Table 1. Statistical Overview and Comparative Analysis.

Region Metric Value

Global (WHO) Annual surgical procedures Over 300 million
Patients with disabling surgical adverse .

Global (WHO) At least 7 million annually
events

Global (WHO) Deaths from surgical adverse events Over 1 million annually
Complication rate in industrialized . .

Global (WHO) . Up to 25% of inpatient ops
countries

Europe (BM] 2024) |Patients with adverse events 38% (383/1,009 patients)

Europe (BM] 2024)  |Definitely preventable events ~10% (103/1,009 patients)

Europe (EU) Annual HAIs linked to surgery 3.2 million patients

Europe (EU) Deaths from HAIs 37,000 annually

These statistics illustrate the scale of the issue, with Europe showing high rates of adverse events,
consistent with global trends. However, the lack of standardized reporting across regions makes
precise comparisons challenging, as noted in the BMJ study, which acknowledged limitations such
as reliance on electronic medical records and focus on inpatient settings.

Consequently, medical error rates in surgery departments remain a significant concern both
worldwide and in Europe, with rates ranging from 10-25% for adverse events globally and over one-
third of patients experiencing adverse events in European hospital settings. While interventions like
the WHO Surgical Safety Checklist have made progress, systemic and human factors continue to pose
challenges. The lack of standardized data collection across regions highlights the need for further
research and international collaboration to improve patient safety in surgery.

1.4. Patient Safety and the Role of Machine Learning in Reducing Surgical Errors

Machine learning (ML), a branch of artificial intelligence (AI), excels at detecting complex
patterns in large datasets. In healthcare, ML shows promise for diagnostics and predictive analytics
[13]. Within surgery, it could enhance clinical decision-making by minimizing human error and
ensuring adherence to best practices [14]. ML offers transformative potential for surgical safety by
identifying risk patterns in large datasets [4]. Algorithms like random forests and neural networks
can predict adverse events with high accuracy, as shown by Elfanagely et al. (2021), who
outperformed traditional models in surgical decision-making [15]. Natural language processing
(NLP) further enhances ML by analyzing clinical notes for error patterns [16]. However, challenges
remain, including data biases, high costs, and ethical concerns—such as patient privacy and
algorithmic fairness—and the need for model interpretability to ensure clinical trust [17, 18]. Patient
safety is a critical global health priority, impacting nations across all development levels. As a core
measure of healthcare quality, it remains a pressing concern, with millions of patients harmed or
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dying annually due to preventable in-hospital incidents. Over recent decades, healthcare systems
have prioritized quality and safety improvements, spurred by landmark studies from the U.S. [19, 6]
revealing the alarming prevalence and adverse effects of medical errors. Research suggests such
errors may rank as the third-leading cause of death in the U.S. [2], affecting up to 10% of hospitalized
patients through medication mistakes, misdiagnoses, or procedural failures [20]. Surgical errors, in
particular, carry severe consequences for patients, clinicians, and institutions [21]. Given the
complexity and high-risk nature of surgery, errors in this field demand targeted attention. Early work
by Havens and Boroughs (2000) advocated for systematic safety strategies and cultural reforms, while
Sarker and Vincent (2005) identified contributing factors like communication breakdowns and
technical flaws [6, 5]. These studies underscore the unpredictable challenges of surgical
environments. The World Health Organization has since classified unsafe medical practices among
the top global causes of death, urging immediate action. Surgeon-related factors—such as fatigue,
burnout, cognitive overload, and skill variability —significantly influence error rates [22, 21]. Marsh
et al. (2022) further emphasized systemic gaps in surgical care, advocating for standardized protocols
to mitigate risks [8]. Traditional error analysis methods (e.g., retrospective reviews) lack predictive
power, limiting proactive solutions. Machine learning (ML) offers transformative potential by
identifying risk patterns and preventing errors preemptively. In healthcare, ML aids decision-making
by analyzing diverse variables, from patient demographics to intraoperative dynamics [23]. For
instance, Elfanagely et al. (2021) demonstrated ML’s superiority over conventional models in guiding
surgical decisions [15]. Natural language processing (NLP) extends ML'’s utility by extracting insights
from unstructured clinical notes, improving outcomes like mortality prediction and diagnosis [16].

Despite its promise, ML adoption faces hurdles: high costs, implementation barriers, ethical
concerns (e.g., liability, overreliance on algorithms), and data quality issues [24]. Model
interpretability is equally critical to clinician trust [18]. Addressing these challenges requires
collaboration across surgery, data science, and policy. Emerging applications, such as deep learning
for surgical site infection prediction [25], highlight ML’s capacity to augment traditional safety
measures. In summary, while surgical errors persist as a public health crisis, ML presents a promising
approach to improving patient safety, provided challenges in data, ethics, and integration are
effectively addressed. By harnessing ML’s predictive power, healthcare systems can advance patient
safety and surgical outcomes.

This paper investigates the impact of implementing ML algorithms to predict medical errors in
a main general surgical department. It aims to provide a comprehensive evaluation of leveraging
machine learning-powered technologies to advance patient safety in surgical care, focusing on the
prediction of preventable adverse events.

2. Material and Methods

This study applied machine learning (ML) to predict adverse events in the general surgery
department of a Tertiary/University Hospital in Patras, Greece, using a 10-year dataset of 19,965 full
patient records, including financial details. The dataset included variables such as patient
demographics, surgical procedures, medication details, and possible events were detected, identified
as outlier days of hospitalization in accordance to their initial diagnosis and hospitalization days
according to their initial diagnosis. The latter was additionally established using final total charges
deviation from mean charge per type of hospitality type (Fig. 1). We employed decision tree and
Random Forest algorithms, implemented in WEKA, with data preprocessing techniques including
handling missing values using imputation and outlier removal using robust statistical methods.
Model performance was evaluated using accuracy, sensitivity, and specificity as well as ROC area
(Fig. 2). A final decision tree (Fig. 3) identified key risk factors as days of hospitality and entry or
initial diagnosis.

The study adhered to ethical guidelines, with anonymized data approved by both the
University’s and Hospital’s Ethics Committees. The methods used to carry out the present study are
Machine Learning (ML) approaches on hospital information systems for the identification of
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complications according to the patient database of the general surgery department in a
Tertiary/University Hospital in Greece during the last 10 years, consisting of about 20,000 records.

3. Results and Discussions

For better interpretation of our hypothesis about the importance of A.lL. as a patient adverse
incidents predictor, different ML algorithms were used. The main approach was ensemble learning,
a machine learning technique combining multiple models (regression models, neural networks, and
decision trees) to enhance predictive accuracy [26]. This approach integrates several individual
models to achieve better results than a single model alone [27]. Research has validated the
effectiveness of ensemble learning in machine learning and convolutional neural networks (CNNs).
Each machine learning model is influenced by factors including training data, hyperparameters, and
other parameters, impacting the total error. Even with the same training algorithm, different models

emerge with distinct levels of bias, variance, and irreducible error.
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Figure 1. Database description. (a) Medical error frequency rates consisted of 2,700 implications cases, according

to the main 19,965 patient data details. (b) Statistical correlation between input and output parameters (part of).

Ensemble methods minimize overall error by merging multiple diverse models, preserving each
model’s strengths. Studies indicate that ensembles with greater diversity yield more accurate
predictions. Ensemble learning effectively mitigates overfitting without significantly increasing
model bias. Ensembles of diverse, under-regularized models can outperform individual regularized
models [26]. Ensemble techniques can also address challenges related to high-dimensional data. In
this study, ensemble algorithms, like vote (integrating decision trees (J48), artificial neural networks
(multilayer perceptron), and Bayes (Naive Bayes)) and random forest, were used. All models were
implemented using the Waikato Environment for Knowledge Analysis (WEKA) platform [28].
WEKA is a widely used machine learning and data analysis free software licensed under the GNU
General Public License. It was developed at the University of Waikato, New Zealand. WEKA version
3.9.0 provides visualization tools and machine learning algorithms for data analysis and predictive
modeling. It features graphical user interfaces and data preprocessing functions. WEKA integrates
various artificial intelligence techniques and statistical methods, supporting core data mining
processes. The platform operates on the principle that data are presented in a structured format,
where each instance consists of a defined set of attributes. Many of WEKA’s standard machine
learning algorithms generate decision trees for classification tasks.
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The first approach was decision trees using the J48 algorithm. Decision trees extract insights and
create predictive models. A decision tree is structured like a flowchart, systematically dividing data
into branches without information loss. It serves as a hierarchical sorting mechanism, predicting
outcomes based on sequential decision-making steps. The tree construction process follows a
structured methodology: each node represents a decision point based on a specific parameter,
determining the progression to the next branch. This iterative process continues until a leaf node is
reached, representing the final predicted outcome (ASIA prediction). To assess the accuracy of the
constructed decision tree, the random tree algorithm was used to generate the model based on the
dataset.

The second approach was WEKA’s Neural Network (multilayer perceptron with a hidden
layer), trained using the error back-propagation algorithm. This intelligent system followed an I-H-
O (input-hidden layers-output layers) format [29]. The training process involved gradually
increasing the number of neurons in the hidden layer and extending the number of training epochs.
With a constant learning rate, a consistent reduction in error per training epoch and improved
classification performance were observed. Optimal results were obtained with seven hidden neurons
and 15,000 training epochs. Bayesian classifiers, a family of classification algorithms based on Bayes’
Theorem, were also employed. The Naive Bayes classifier, one of the simplest and most effective,
allows for rapid model development and fast prediction. Naive Bayes is primarily used for
classification tasks and is particularly well suited for text classification problems. Its computational
efficiency enables swift processing and simplified predictions, even with high-dimensional data. This
model estimates the probability that a given instance belongs to a specific class based on a predefined
set of features (ASIA score). The dataset was randomly divided (66% records for training, 34% records
for testing). Lastly, the random forest algorithm was implemented, building upon the bagging
method by incorporating both bagging and feature randomness to create an ensemble of uncorrelated
decision trees. Feature randomness ensures low correlation among decision trees by generating a
random subset of features. This distinguishes random forest from traditional decision trees, where
all potential feature splits are considered; random forest selects only a subset of features for splitting.
The random forest algorithm requires setting three hyperparameters before training: node size, the
number of trees, and the number of features sampled. Once configured, the classifier can be used for
both regression and classification tasks. The model consists of multiple decision trees, each built from
a bootstrap sample. Approximately one-third of this sample is reserved as test data (the out-of-bag
(OOB) sample), which are later used for validation. Another layer of randomness is introduced
through feature bagging, enhancing dataset diversity and reducing correlation among decision trees.
The prediction process varies based on the problem type: for regression tasks, individual decision
tree outputs are averaged, while for classification tasks, the final class is determined through majority
voting. The OOB sample serves as a form of cross-validation, ensuring a reliable prediction outcome.

We tested and present here different algorithm performances to (a) strengthen our hypothesis
and (b) provide different alternatives, using a simpler model, such as Naive Bayes, or a more
interpretable one, such as J48, instead of random forest or ensemble models. This comparison is very
helpful, especially considering the balance between performance, interpretability, and computational
requirements of each approach [26]. Patient records were divided into training and test sets
randomly. The performance of the machine learning models that were developed using the training
set was evaluated using accuracy, precision, recall, F1-score, and area under the receiver operating
characteristic (ROC) curve (AUC-ROC) in the test set [30]. Part of the results of the models on the
testing set is shown in Fig. 2 and Table 2.

Specific comparisons, referencing Table 2 with predictions divided into Hospitalization details
(as days of stay, hospitalization type, entrance department, type of insurance, address, charges) and
Clinical assessment details (as sex, age, entry diagnosis, surgery type, complication) from patient
records. The results are encouraging (accuracy >90%) for the detection of in-hospital complications
and infections in specific departments. More data are needed, from different hospitals and even
countries, to confirm and to generalize these results (Table 2).
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Table 2. Outcomes derived from statistical accuracy across various risk assessment predictions.

Risk Accuracy (%)/ML algorithms |All Together| Hospitalization| Clinical Assessment

Ensemble Algorithm (Vote) 93.6 85.0 87.7
Random Forest 94.2 89.9 90.5
Decision Tree (J48) 93.1 89.0 90.6
Neural Network (Multilayer

93.8 90.0 91.9
Perceptron)
Bayes (Naive Bayes) 87.7 85.2 86.4

According to Table 2 results, the ML approach, based on Random Forest algorithm, performed
the highest accuracy of 94.3% (Fig. 2). Days of hospitality revealed as the highest ranked predictor of
patient risk for adverse incident (Fig. 3). In Table 3 the final performance of ML models are compared
with related work strengthening our approach of patient risk prediction [31, 32].

Table 3. Comparative performance of ML models.

Model Accuracy (%) Sensitivity (%) AUC-ROC Source
Decision Tree 93.3 92.0 0.95 This study
(J48)
Random Forest 94.3 94.4 0.98 This study
Neural 93.8 91.8 0.94 This study
Network
ACS NSQIP 90.0 82.0 0.88 Bilimoria et al.
Calculator
Bertsimas et al. 92.0 89.0 0.93 Bertsimas et al.
(2018)

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 12820 93.2632 %
Incorrectly Classified Instances 1345 6.7368 %
Kappa statistic 0.8732

Mean absoclute error 0.1003

Root mean squared error 0.227%

Relative absolute error 42.8873 %

Root relative sguared error 66.647 %

Total Number of Instances 158965

=== Detailed RAccuracy By Class ===

TF Rate FP Rate Frecision Recall F-Measure MCC ROC Rrea FPRC Area Class

0,533 0,3%0 0,542 0,983 0,982 0,635 0,851 0,891 0

0,610 0,017 0,849 0,610 0,710 0,635 0,851 0,800 1
Weighted Avg. 0,833 0,339 0,529 0,933 0,523 0,635 0,851 0,865

Figure 2. Machine learning approach statistical results (DT J48) with class “0” the patient cases with no errors

and “1” with errors, including Precision, Recall and ROC Area.
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Figure 3. Final Decision Tree (J48) developed for patient risk prediction.

=== Stratified cross-validation =—

=== Summary ===

Correctly Classified Instances 13841 94.3701 %
Incorrectly Classified Instances 1124 5.6299% %
Kappa statistic 0.7408

Mzan absolute error 0.0736

Root mean squared error 0.1918

Relative absolute error 31.484 %

Root relative sgquared error 56.085¢ &

Total Number of Instances 19965

=== Detailed Accuracy By Class ===

TF Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0,981 0,293 0,955 0,981 0,968 0,745 0,980 0,997 i
0,707 0,019 0,851 0,707 0,773 0,745 0,830 0,599 1

Weighted Zvg. 0,944 0,256 0,841 0,944 0,941 0,745 0,930 0,984

=== Confusion Matrix ===

a =} <-- classified as
16931 334 | a=10
750 1810 | b=1

Figure 4. Visualization of machine learning model performance (Random Forest), including ROC Area and

Confusion Matrix.

Using this structure, an intelligent system could be used to predict patients’ risk offline and
regularly, as hospitality days pass after initial diagnosis and surgery were performed. For high-risk
patients revealed, preventive management could be chosen, or more specific care could be followed.
Our study demonstrates that machine learning (ML) can effectively predict medical error risk in a
surgical department with high accuracy at the level of 94.3% (Fig. 4). This finding aligns with prior
research supporting Al’s role in surgical safety, such as Rajkomar et al. (2019), who highlighted ML'’s
potential to transform clinical decision-making, and Bertsimas et al. (2018), who achieved comparable
results in postoperative complication prediction [33, 32]. The high accuracy of our model, statistically
significant (p<0.05), suggests it could serve as a critical tool for preemptive intervention, addressing
the global burden of surgical errors underscored by the World Health Organization [1].

Key strengths of our model include its training on a large, decade-spanning dataset (n = 19,965),
which likely improved its ability to capture rare but high-risk scenarios (n=2,700). This aligns with
Shilo et al. (2020), who emphasized that robust datasets are essential for generalizable ML models in
healthcare [34]. However, our study has limitations. Retrospective designs, as noted by Vries et al.
(2010), may overlook confounders like intraoperative team dynamics [35]. Additionally, while our
model performs well internally, external validation is needed to ensure applicability across diverse
settings—a challenge highlighted by Topol (2019) in adopting Al clinically [4]. Clinical implications
that must be highlighted include real-time integration of our model into electronic patient health
records, mirroring successes like the ACS NSQIP Surgical Risk Calculator but with enhanced ML-
driven precision. Furthermore, the use of explainable Al tools could address clinician skepticism [37].
For future directions, retrospective trials to assess impact on error rates as well as multi-center studies
to validate generalizability could be performed. From the other side, while ML approaches have the
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potential to revolutionize surgical care by reducing medical errors and improving patient outcomes,
they are not without limitations and biases. Addressing these challenges requires careful
consideration of data quality, algorithmic limitations, deployment challenges, and ethical and legal
concerns [17]. By implementing mitigation strategies such as data curation, model evaluation, and
transparency, we can ensure that ML models are fair, accurate, and reliable in surgical settings [38].

While this study provides compelling evidence for the efficacy of machine learning in predicting
surgical error risks within a specific Greek hospital setting, future research should prioritize
validating these findings across diverse healthcare systems and geographical locations. The
generalizability of these models depends on their performance with varied patient demographics,
healthcare infrastructure, and surgical practices. Future work should involve multi-center studies,
ideally leveraging standardized data collection protocols that can be deployed across a wide network
of hospitals [32]. This would necessitate the development of robust, scalable internet-based platforms
for secure data aggregation and model deployment, ensuring data privacy and interoperability.
Furthermore, exploring the integration of these predictive analytics with emerging internet
technologies, such as blockchain for secure health records or advanced tele-medicine platforms for
remote consultations and interventions, could further enhance patient safety and operational
efficiency on a global scale. Collaborative efforts across networked research institutions will be crucial
to refine these models and facilitate their broader applicability.

Additionally, the predictive models developed in this study, while focused on a single surgical
department, hold significant implications for the evolution of smart healthcare systems within the
broader 'Future Internet' ecosystem. The data collection and analysis, which leverage a substantial
historical dataset, lay the groundwork for real-time, internet-enabled decision support. Imagine a
future where these machine learning models are integrated into hospital information systems
accessible via cloud computing platforms, allowing for continuous monitoring of patient data
streams from various sources, including IoT medical devices. Such integration could facilitate
immediate risk assessments, trigger alerts to surgical teams through networked communication tools,
and even inform adaptive scheduling algorithms to optimize resource allocation across multiple
networked hospital departments. This connectivity and real-time data exchange would transform the
current reactive approach to medical error mitigation into a proactive, internet-driven patient safety
framework, aligning with the journal's focus on innovative Internet technologies for 'Net-Living'
development and improving well-being [33].

4. Conclusions

Our best ML model, based on Random Forest algorithm, with 94.3% accuracy, offers a scalable
solution to predict surgical adverse events, addressing a global crisis causing 7 million adverse events
annually [1, 2]. This statistically significant result (p<0.05) demonstrates the potential of ML to
improve patient safety. By integrating predictive analytics into electronic health records, hospitals
can shift to proactive error prevention, complementing tools like the WHO Surgical Safety Checklist.
Future multi-center trials and investments in data infrastructure are essential to ensure
generalizability and fairness, particularly in resource-limited settings like Greece. While challenges
like workflow integration persist, our work underscores Al's potential to augment surgical safety
protocols. By combining predictive analytics with clinician expertise, healthcare systems can shift
from reactive to proactive error prevention. Furthermore, a well-trained A.L system could assist in
risk management and the detection of medical errors, allowing hospitals to identify errors related to
staff, equipment, and clinical patient management, leading to the development of department-
specific guidelines.
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