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Abstract: Patient safety is a critical global health priority, with surgical errors, including in-hospital 

infections and procedural mishaps, causing over 7 million adverse events and 1 million deaths 

annually. This study evaluates machine learning (ML) to predict medical error risks in the general 

surgery department of a Greek Tertiary/University Hospital. Leveraging a 10-year dataset of 19,965 

patient records, we applied different ML algorithms, achieving 94.3 % accuracy in detecting errors 

such as healthcare-associated infections, medication errors, and equipment-related failures. Key 

predictors included hospitalization duration and initial diagnosis, enabling targeted risk 

identification. These findings suggest ML can pinpoint risks stemming from staff performance, 

equipment malfunctions, or clinical management errors, facilitating the development of department-

specific safety guidelines. Integration with tools like the WHO Surgical Safety Checklist could 

enhance proactive error prevention. Such AI-driven models can be seamlessly integrated into future 

internet-enabled healthcare systems for real-time, proactive patient safety management. However, 

limitations, including potential data biases from retrospective records and challenges in embedding 

ML into clinical workflows, may hinder applicability. Ethical concerns, such as patient data privacy, 

algorithmic fairness, and clinician trust in predictive models, require careful consideration. By 

combining ML-driven predictive analytics with clinician expertise, healthcare systems can transit 

from reactive to proactive error mitigation, improving patient outcomes and reducing costs. Future 

multi-center studies are needed to validate these findings across diverse settings, ensuring 

generalizability and equitable implementation in resource-constrained environments like Greece and 

will benefit from scalable, internet-based platforms for data aggregation and model deployment. 

Keywords: Artificial intelligence; Machine learning; Patient safety; Medical error; Surgery 

department 

 

1. Introduction  

Medical errors, broadly encompassing procedural adverse events, in-hospital infections, and 

various other malfunctions and malpractices including even time-delays, constitute a significant and 

persistent global challenge in healthcare, affecting up to 25% of inpatient operations in industrialized 

countries [1]. These errors lead to over 7 million disabling adverse events and 1 million deaths 

annually, escalating costs and eroding trust in healthcare systems [2]. Unlike high-risk industries like 

aviation, which use systematic error prevention [3], surgery lags in adopting proactive strategies, 

necessitating innovative solutions like machine learning (ML) to enhance patient safety [4]. This 
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research investigates the potential of ML to predict and mitigate surgical errors, focusing specifically 

on preventable adverse events in general surgery. These malpractices and malfunctions threaten 

patient safety, escalate healthcare expenses, and undermine public confidence in medical institutions 

[5]. Unlike high-risk sectors such as aviation and the military—where errors are accepted as 

unavoidable but controllable through systematic prevention measures [3]—healthcare has been 

slower to adopt similarly rigorous strategies, despite the severe human and financial consequences 

[6]. Industries like aviation employ simulations and controlled environments to analyze and prevent 

errors [7], yet such approaches are less prevalent in surgery, where risks are high and environments 

unpredictable [2]. While medication-related errors have been widely studied, surgical errors—often 

tied to procedural adverse events or chaotic operating conditions [8]—remain a persistent challenge. 

Initiatives like the UK’s National Patient Safety Agency (NPSA) have sought to improve safety, but 

the inherently volatile nature of surgery continues to hinder progress [5]. The 1999 To Err Is Human 

report by the Institute of Medicine (IOM) underscored the scale of medical errors, urging systemic 

reforms [6]. Later research has further confirmed these concerns, calling for novel interventions [9, 

10]. Surgical errors stem from diverse causes, including technical failures, miscommunication, and 

flawed decision-making [5]. Surgeons’ fatigue, excessive workloads, and skill disparities also 

contribute significantly [5], with recent studies emphasizing procedural lapses and communication 

failures [8]. This study hypothesizes that ML can accurately predict the risk of preventable surgical 

adverse events, enabling proactive interventions. Conventional error analysis, such as retrospective 

reviews, offers limited predictive power, leaving gaps in proactive risk mitigation. 

1.1. Global and European Surgical Error Rates  

Medical error rates, mainly in surgery departments, are a complex issue. Global estimates 

suggest that up to 25% of inpatient operations in industrialized countries experience adverse events, 

a substantial portion of which may be preventable. The World Health Organization (WHO) reports 

over 300 million surgical procedures annually, with at least 7 million people experiencing disabling 

adverse events and over 1 million deaths linked to surgical care [1]. In Europe, recent research, such 

as a 2024 study published in the BMJ, found that more than one-third of surgical patients in hospital 

settings experience adverse events, with at least 20% attributable to preventable medical errors [11]. 

This highlights a significant overlap between global and European trends, emphasizing the 

widespread nature of the problem. The EU also reports around 3.2 million patients annually 

acquiring healthcare-associated infections (HAIs) linked to surgery, resulting in 37,000 deaths, 

highlighting the ongoing challenge [1]. Efforts like the WHO’s Surgical Safety Checklist have shown 

promise, reducing adverse events by over 30% in some settings. However, factors such as 

communication failures, fatigue, and complex procedures continue to drive error rates, making it a 

persistent concern as of today. 

1.2. Detailed Analysis and Supporting Information  

A 2023 WHO report further noted that crude mortality rates after major surgery range from 0.5% 

to 5%, underscoring the variability and severity of outcomes. Additional insights come from studies 

like one conducted in California, published in JAMA Network Open in 2021, which examined 

surgical "never events" and found persistent issues despite safety protocols [12]. While this US-based 

study provides a comparative perspective on systemic challenges contributing to error rates globally, 

the focus of this paper remains on the European context. A 2024 study published in the BMJ, led by 

researchers from Harvard University and analyzing outcomes for 1,009 surgical patients in 

Massachusetts hospitals in 2018, found that 38% of patients experienced at least one adverse event, 

with about 10% of these events being definitely preventable [11]. While conducted in the US, the 

study’s findings, as noted in the accompanying editorial, show similarities with European patterns, 

suggesting broader applicability. The study also highlighted that common adverse events included 

surgery-related issues, medication errors, and healthcare-associated infections, with the highest rates 

in procedures involving the heart, lungs, gut, digestive system, and bones/joints. 
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1.3. European Context and Specific Studies  

In Europe, recent data provides a more granular view of surgical error rates. The WHO 

European Health Report 2024, while not providing specific surgical error rates in the sections 

reviewed, emphasizes ongoing challenges in patient safety, including healthcare-associated 

infections (HAIs), which affect around 3.2 million patients annually in the EU, resulting in 37,000 

deaths [1]. This underscores the significant contribution of surgical errors to these broader patient 

safety concerns. Additionally, a 2022 analysis of wrong-site surgery in Europe, identified in seven 

studies between 2006 and 2022, reported incidents at a rate of 2.01 per 100,000 procedures in some 

reports, indicating rare but impactful errors. 

Table 1. Statistical Overview and Comparative Analysis. 

Region Metric Value 

Global (WHO) Annual surgical procedures Over 300 million 

Global (WHO) 
Patients with disabling surgical adverse 

events 
At least 7 million annually 

Global (WHO) Deaths from surgical adverse events Over 1 million annually 

Global (WHO) 
Complication rate in industrialized 

countries 
Up to 25% of inpatient ops 

Europe (BMJ 2024) Patients with adverse events 38% (383/1,009 patients) 

Europe (BMJ 2024) Definitely preventable events ~10% (103/1,009 patients) 

Europe (EU) Annual HAIs linked to surgery 3.2 million patients 

Europe (EU) Deaths from HAIs 37,000 annually 

These statistics illustrate the scale of the issue, with Europe showing high rates of adverse events, 

consistent with global trends. However, the lack of standardized reporting across regions makes 

precise comparisons challenging, as noted in the BMJ study, which acknowledged limitations such 

as reliance on electronic medical records and focus on inpatient settings. 

Consequently, medical error rates in surgery departments remain a significant concern both 

worldwide and in Europe, with rates ranging from 10–25% for adverse events globally and over one-

third of patients experiencing adverse events in European hospital settings. While interventions like 

the WHO Surgical Safety Checklist have made progress, systemic and human factors continue to pose 

challenges. The lack of standardized data collection across regions highlights the need for further 

research and international collaboration to improve patient safety in surgery. 

1.4. Patient Safety and the Role of Machine Learning in Reducing Surgical Errors  

Machine learning (ML), a branch of artificial intelligence (AI), excels at detecting complex 

patterns in large datasets. In healthcare, ML shows promise for diagnostics and predictive analytics 

[13]. Within surgery, it could enhance clinical decision-making by minimizing human error and 

ensuring adherence to best practices [14]. ML offers transformative potential for surgical safety by 

identifying risk patterns in large datasets [4]. Algorithms like random forests and neural networks 

can predict adverse events with high accuracy, as shown by Elfanagely et al. (2021), who 

outperformed traditional models in surgical decision-making [15]. Natural language processing 

(NLP) further enhances ML by analyzing clinical notes for error patterns [16]. However, challenges 

remain, including data biases, high costs, and ethical concerns—such as patient privacy and 

algorithmic fairness—and the need for model interpretability to ensure clinical trust [17, 18]. Patient 

safety is a critical global health priority, impacting nations across all development levels. As a core 

measure of healthcare quality, it remains a pressing concern, with millions of patients harmed or 
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dying annually due to preventable in-hospital incidents. Over recent decades, healthcare systems 

have prioritized quality and safety improvements, spurred by landmark studies from the U.S. [19, 6] 

revealing the alarming prevalence and adverse effects of medical errors. Research suggests such 

errors may rank as the third-leading cause of death in the U.S. [2], affecting up to 10% of hospitalized 

patients through medication mistakes, misdiagnoses, or procedural failures [20]. Surgical errors, in 

particular, carry severe consequences for patients, clinicians, and institutions [21]. Given the 

complexity and high-risk nature of surgery, errors in this field demand targeted attention. Early work 

by Havens and Boroughs (2000) advocated for systematic safety strategies and cultural reforms, while 

Sarker and Vincent (2005) identified contributing factors like communication breakdowns and 

technical flaws [6, 5]. These studies underscore the unpredictable challenges of surgical 

environments. The World Health Organization has since classified unsafe medical practices among 

the top global causes of death, urging immediate action. Surgeon-related factors—such as fatigue, 

burnout, cognitive overload, and skill variability—significantly influence error rates [22, 21]. Marsh 

et al. (2022) further emphasized systemic gaps in surgical care, advocating for standardized protocols 

to mitigate risks [8]. Traditional error analysis methods (e.g., retrospective reviews) lack predictive 

power, limiting proactive solutions. Machine learning (ML) offers transformative potential by 

identifying risk patterns and preventing errors preemptively. In healthcare, ML aids decision-making 

by analyzing diverse variables, from patient demographics to intraoperative dynamics [23]. For 

instance, Elfanagely et al. (2021) demonstrated ML’s superiority over conventional models in guiding 

surgical decisions [15]. Natural language processing (NLP) extends ML’s utility by extracting insights 

from unstructured clinical notes, improving outcomes like mortality prediction and diagnosis [16]. 

Despite its promise, ML adoption faces hurdles: high costs, implementation barriers, ethical 

concerns (e.g., liability, overreliance on algorithms), and data quality issues [24]. Model 

interpretability is equally critical to clinician trust [18]. Addressing these challenges requires 

collaboration across surgery, data science, and policy. Emerging applications, such as deep learning 

for surgical site infection prediction [25], highlight ML’s capacity to augment traditional safety 

measures. In summary, while surgical errors persist as a public health crisis, ML presents a promising 

approach to improving patient safety, provided challenges in data, ethics, and integration are 

effectively addressed. By harnessing ML’s predictive power, healthcare systems can advance patient 

safety and surgical outcomes. 

This paper investigates the impact of implementing ML algorithms to predict medical errors in 

a main general surgical department. It aims to provide a comprehensive evaluation of leveraging 

machine learning-powered technologies to advance patient safety in surgical care, focusing on the 

prediction of preventable adverse events. 

2. Material and Methods  

This study applied machine learning (ML) to predict adverse events in the general surgery 

department of a Tertiary/University Hospital in Patras, Greece, using a 10-year dataset of 19,965 full 

patient records, including financial details. The dataset included variables such as patient 

demographics, surgical procedures, medication details, and possible events were detected, identified 

as outlier days of hospitalization in accordance to their initial diagnosis and hospitalization days 

according to their initial diagnosis. The latter was additionally established using final total charges 

deviation from mean charge per type of hospitality type (Fig. 1). We employed decision tree and 

Random Forest algorithms, implemented in WEKA, with data preprocessing techniques including 

handling missing values using imputation and outlier removal using robust statistical methods. 

Model performance was evaluated using accuracy, sensitivity, and specificity as well as ROC area 

(Fig. 2). A final decision tree (Fig. 3) identified key risk factors as days of hospitality and entry or 

initial diagnosis. 

The study adhered to ethical guidelines, with anonymized data approved by both the 

University’s and Hospital’s Ethics Committees. The methods used to carry out the present study are 

Machine Learning (ML) approaches on hospital information systems for the identification of 
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complications according to the patient database of the general surgery department in a 

Tertiary/University Hospital in Greece during the last 10 years, consisting of about 20,000 records. 

3. Results and Discussions  

For better interpretation of our hypothesis about the importance of A.I. as a patient adverse 

incidents predictor, different ML algorithms were used. The main approach was ensemble learning, 

a machine learning technique combining multiple models (regression models, neural networks, and 

decision trees) to enhance predictive accuracy [26]. This approach integrates several individual 

models to achieve better results than a single model alone [27]. Research has validated the 

effectiveness of ensemble learning in machine learning and convolutional neural networks (CNNs). 

Each machine learning model is influenced by factors including training data, hyperparameters, and 

other parameters, impacting the total error. Even with the same training algorithm, different models 

emerge with distinct levels of bias, variance, and irreducible error. 

 

(a) 
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(b) 

Figure 1. Database description. (a) Medical error frequency rates consisted of 2,700 implications cases, according 

to the main 19,965 patient data details. (b) Statistical correlation between input and output parameters (part of). 

Ensemble methods minimize overall error by merging multiple diverse models, preserving each 

model’s strengths. Studies indicate that ensembles with greater diversity yield more accurate 

predictions. Ensemble learning effectively mitigates overfitting without significantly increasing 

model bias. Ensembles of diverse, under-regularized models can outperform individual regularized 

models [26]. Ensemble techniques can also address challenges related to high-dimensional data. In 

this study, ensemble algorithms, like vote (integrating decision trees (J48), artificial neural networks 

(multilayer perceptron), and Bayes (Naïve Bayes)) and random forest, were used. All models were 

implemented using the Waikato Environment for Knowledge Analysis (WEKA) platform [28]. 

WEKA is a widely used machine learning and data analysis free software licensed under the GNU 

General Public License. It was developed at the University of Waikato, New Zealand. WEKA version 

3.9.0 provides visualization tools and machine learning algorithms for data analysis and predictive 

modeling. It features graphical user interfaces and data preprocessing functions. WEKA integrates 

various artificial intelligence techniques and statistical methods, supporting core data mining 

processes. The platform operates on the principle that data are presented in a structured format, 

where each instance consists of a defined set of attributes. Many of WEKA’s standard machine 

learning algorithms generate decision trees for classification tasks. 
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The first approach was decision trees using the J48 algorithm. Decision trees extract insights and 

create predictive models. A decision tree is structured like a flowchart, systematically dividing data 

into branches without information loss. It serves as a hierarchical sorting mechanism, predicting 

outcomes based on sequential decision-making steps. The tree construction process follows a 

structured methodology: each node represents a decision point based on a specific parameter, 

determining the progression to the next branch. This iterative process continues until a leaf node is 

reached, representing the final predicted outcome (ASIA prediction). To assess the accuracy of the 

constructed decision tree, the random tree algorithm was used to generate the model based on the 

dataset. 

The second approach was WEKA’s Neural Network (multilayer perceptron with a hidden 

layer), trained using the error back-propagation algorithm. This intelligent system followed an I–H–

O (input–hidden layers–output layers) format [29]. The training process involved gradually 

increasing the number of neurons in the hidden layer and extending the number of training epochs. 

With a constant learning rate, a consistent reduction in error per training epoch and improved 

classification performance were observed. Optimal results were obtained with seven hidden neurons 

and 15,000 training epochs. Bayesian classifiers, a family of classification algorithms based on Bayes’ 

Theorem, were also employed. The Naïve Bayes classifier, one of the simplest and most effective, 

allows for rapid model development and fast prediction. Naïve Bayes is primarily used for 

classification tasks and is particularly well suited for text classification problems. Its computational 

efficiency enables swift processing and simplified predictions, even with high-dimensional data. This 

model estimates the probability that a given instance belongs to a specific class based on a predefined 

set of features (ASIA score). The dataset was randomly divided (66% records for training, 34% records 

for testing). Lastly, the random forest algorithm was implemented, building upon the bagging 

method by incorporating both bagging and feature randomness to create an ensemble of uncorrelated 

decision trees. Feature randomness ensures low correlation among decision trees by generating a 

random subset of features. This distinguishes random forest from traditional decision trees, where 

all potential feature splits are considered; random forest selects only a subset of features for splitting. 

The random forest algorithm requires setting three hyperparameters before training: node size, the 

number of trees, and the number of features sampled. Once configured, the classifier can be used for 

both regression and classification tasks. The model consists of multiple decision trees, each built from 

a bootstrap sample. Approximately one-third of this sample is reserved as test data (the out-of-bag 

(OOB) sample), which are later used for validation. Another layer of randomness is introduced 

through feature bagging, enhancing dataset diversity and reducing correlation among decision trees. 

The prediction process varies based on the problem type: for regression tasks, individual decision 

tree outputs are averaged, while for classification tasks, the final class is determined through majority 

voting. The OOB sample serves as a form of cross-validation, ensuring a reliable prediction outcome. 

We tested and present here different algorithm performances to (a) strengthen our hypothesis 

and (b) provide different alternatives, using a simpler model, such as Naïve Bayes, or a more 

interpretable one, such as J48, instead of random forest or ensemble models. This comparison is very 

helpful, especially considering the balance between performance, interpretability, and computational 

requirements of each approach [26]. Patient records were divided into training and test sets 

randomly. The performance of the machine learning models that were developed using the training 

set was evaluated using accuracy, precision, recall, F1-score, and area under the receiver operating 

characteristic (ROC) curve (AUC-ROC) in the test set [30]. Part of the results of the models on the 

testing set is shown in Fig. 2 and Table 2. 

Specific comparisons, referencing Table 2 with predictions divided into Hospitalization details 

(as days of stay, hospitalization type, entrance department, type of insurance, address, charges) and 

Clinical assessment details (as sex, age, entry diagnosis, surgery type, complication) from patient 

records. The results are encouraging (accuracy >90%) for the detection of in-hospital complications 

and infections in specific departments. More data are needed, from different hospitals and even 

countries, to confirm and to generalize these results (Table 2). 
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Table 2. Outcomes derived from statistical accuracy across various risk assessment predictions. 

Risk Accuracy (%)/ML algorithms All Together Hospitalization Clinical Assessment 

Ensemble Algorithm (Vote) 93.6 85.0 87.7 

Random Forest 94.2 89.9 90.5 

Decision Tree (J48) 93.1 89.0 90.6 

Neural Network (Multilayer 

Perceptron) 
93.8 90.0 91.9 

Bayes (Naive Bayes) 87.7 85.2 86.4 

According to Table 2 results, the ML approach, based on Random Forest algorithm, performed 

the highest accuracy of 94.3% (Fig. 2). Days of hospitality revealed as the highest ranked predictor of 

patient risk for adverse incident (Fig. 3). In Table 3 the final performance of ML models are compared 

with related work strengthening our approach of patient risk prediction [31, 32]. 

Table 3. Comparative performance of ML models. 

Model Accuracy (%) Sensitivity (%) AUC-ROC Source 

Decision Tree 

(J48) 

93.3 92.0 0.95 This study 

Random Forest 94.3 94.4 0.98 This study 

Neural 

Network 

93.8 91.8 0.94 This study 

ACS NSQIP 

Calculator 

90.0 82.0 0.88 Bilimoria et al. 

Bertsimas et al. 

(2018) 

92.0 89.0 0.93 Bertsimas et al. 

 

Figure 2. Machine learning approach statistical results (DT J48) with class “0” the patient cases with no errors 

and “1” with errors, including Precision, Recall and ROC Area. 
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Figure 3. Final Decision Tree (J48) developed for patient risk prediction. 

 

Figure 4. Visualization of machine learning model performance (Random Forest), including ROC Area and 

Confusion Matrix. 

Using this structure, an intelligent system could be used to predict patients’ risk offline and 

regularly, as hospitality days pass after initial diagnosis and surgery were performed. For high-risk 

patients revealed, preventive management could be chosen, or more specific care could be followed. 

Our study demonstrates that machine learning (ML) can effectively predict medical error risk in a 

surgical department with high accuracy at the level of 94.3% (Fig. 4). This finding aligns with prior 

research supporting AI’s role in surgical safety, such as Rajkomar et al. (2019), who highlighted ML’s 

potential to transform clinical decision-making, and Bertsimas et al. (2018), who achieved comparable 

results in postoperative complication prediction [33, 32]. The high accuracy of our model, statistically 

significant (p<0.05), suggests it could serve as a critical tool for preemptive intervention, addressing 

the global burden of surgical errors underscored by the World Health Organization [1]. 

Key strengths of our model include its training on a large, decade-spanning dataset (n = 19,965), 

which likely improved its ability to capture rare but high-risk scenarios (n=2,700). This aligns with 

Shilo et al. (2020), who emphasized that robust datasets are essential for generalizable ML models in 

healthcare [34]. However, our study has limitations. Retrospective designs, as noted by Vries et al. 

(2010), may overlook confounders like intraoperative team dynamics [35]. Additionally, while our 

model performs well internally, external validation is needed to ensure applicability across diverse 

settings—a challenge highlighted by Topol (2019) in adopting AI clinically [4]. Clinical implications 

that must be highlighted include real-time integration of our model into electronic patient health 

records, mirroring successes like the ACS NSQIP Surgical Risk Calculator but with enhanced ML-

driven precision. Furthermore, the use of explainable AI tools could address clinician skepticism [37]. 

For future directions, retrospective trials to assess impact on error rates as well as multi-center studies 

to validate generalizability could be performed. From the other side, while ML approaches have the 
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potential to revolutionize surgical care by reducing medical errors and improving patient outcomes, 

they are not without limitations and biases. Addressing these challenges requires careful 

consideration of data quality, algorithmic limitations, deployment challenges, and ethical and legal 

concerns [17]. By implementing mitigation strategies such as data curation, model evaluation, and 

transparency, we can ensure that ML models are fair, accurate, and reliable in surgical settings [38]. 

While this study provides compelling evidence for the efficacy of machine learning in predicting 

surgical error risks within a specific Greek hospital setting, future research should prioritize 

validating these findings across diverse healthcare systems and geographical locations. The 

generalizability of these models depends on their performance with varied patient demographics, 

healthcare infrastructure, and surgical practices. Future work should involve multi-center studies, 

ideally leveraging standardized data collection protocols that can be deployed across a wide network 

of hospitals [32]. This would necessitate the development of robust, scalable internet-based platforms 

for secure data aggregation and model deployment, ensuring data privacy and interoperability. 

Furthermore, exploring the integration of these predictive analytics with emerging internet 

technologies, such as blockchain for secure health records or advanced tele-medicine platforms for 

remote consultations and interventions, could further enhance patient safety and operational 

efficiency on a global scale. Collaborative efforts across networked research institutions will be crucial 

to refine these models and facilitate their broader applicability.  

Additionally, the predictive models developed in this study, while focused on a single surgical 

department, hold significant implications for the evolution of smart healthcare systems within the 

broader 'Future Internet' ecosystem. The data collection and analysis, which leverage a substantial 

historical dataset, lay the groundwork for real-time, internet-enabled decision support. Imagine a 

future where these machine learning models are integrated into hospital information systems 

accessible via cloud computing platforms, allowing for continuous monitoring of patient data 

streams from various sources, including IoT medical devices. Such integration could facilitate 

immediate risk assessments, trigger alerts to surgical teams through networked communication tools, 

and even inform adaptive scheduling algorithms to optimize resource allocation across multiple 

networked hospital departments. This connectivity and real-time data exchange would transform the 

current reactive approach to medical error mitigation into a proactive, internet-driven patient safety 

framework, aligning with the journal's focus on innovative Internet technologies for 'Net-Living' 

development and improving well-being [33]. 

4. Conclusions  

Our best ML model, based on Random Forest algorithm, with 94.3% accuracy, offers a scalable 

solution to predict surgical adverse events, addressing a global crisis causing 7 million adverse events 

annually [1, 2]. This statistically significant result (p<0.05) demonstrates the potential of ML to 

improve patient safety. By integrating predictive analytics into electronic health records, hospitals 

can shift to proactive error prevention, complementing tools like the WHO Surgical Safety Checklist. 

Future multi-center trials and investments in data infrastructure are essential to ensure 

generalizability and fairness, particularly in resource-limited settings like Greece. While challenges 

like workflow integration persist, our work underscores AI’s potential to augment surgical safety 

protocols. By combining predictive analytics with clinician expertise, healthcare systems can shift 

from reactive to proactive error prevention. Furthermore, a well-trained A.I. system could assist in 

risk management and the detection of medical errors, allowing hospitals to identify errors related to 

staff, equipment, and clinical patient management, leading to the development of department-

specific guidelines. 
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