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Highlights 

What are the main findings? 

• A temporal-only rPPG framework with multi-scale CNN, sparse α-entmax attention, and gated 

pooling achieved 66.04% accuracy and 61.97% weighted F1 for arousal on MAHNOB-HCI 

(subject-independent). 

• The model underperformed for valence (62.26% accuracy), highlighting the physiological limits 

of unimodal time-series signals. 

What is the implication of the main finding? 

Temporal rPPG can rival other single-modality methods for arousal when physiologically 

inspired temporal modeling is applied. 

Addressing valence requires integration of spatial or multimodal cues, guiding future affective 

computing designs. 

Abstract: Remote photoplethysmography (rPPG) enables non-contact physiological measurement for 

emotion recognition, yet the temporally sparse nature of emotional cardiovascular responses, 

intrinsic measurement noise, weak session-level labels, and subtle correlates of valence pose critical 

challenges. To address these issues, we propose a physiologically inspired deep learning framework 

comprising a Multi-scale Temporal Dynamics Encoder (MTDE) to capture autonomic nervous system 

dynamics across multiple timescales, an adaptive sparse α-entmax attention mechanism to identify 

salient emotional segments amidst noisy signals, Gated Temporal Pooling for robust aggregation of 

emotional features, and a structured three-phase curriculum learning strategy to systematically 

handle temporal sparsity, weak labels, and noise. Evaluated on the MAHNOB-HCI dataset (27 

subjects, 527 sessions, subject-independent split), our temporal-only model achieved competitive 

performance in arousal recognition (66.04% accuracy, 61.97% weighted F1), surpassing prior CNN-

LSTM baselines. However, lower performance in valence (62.26% accuracy) revealed inherent 

physiological limitations of unimodal temporal cardiovascular analysis. These findings establish 

clear benchmarks for temporal-only rPPG emotion recognition and underscore the necessity of 

incorporating spatial or multimodal information to effectively capture nuanced emotional 

dimensions such as valence, guiding future research directions in affective computing. 

Keywords: remote photoplethysmography; affective computing; temporal dynamics; sparse 

attention; emotion recognition; curriculum learning; autonomic nervous system; physiological 

computing 
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1. Introduction 

Emotion recognition is a fundamental component of affective computing and human-computer 

interaction, with significant implications across healthcare, education, and consumer technologies 

[1,2]. Traditional methods primarily rely on observable cues such as facial expressions or speech. 

However, these external indicators can be intentionally controlled or masked, limiting their reliability 

in representing genuine emotional states [2,10]. Physiological signals—such as heart rate, blood 

volume pulse (BVP), and skin conductance—regulated autonomically, offer a more authentic and 

less voluntarily modifiable reflection of emotional states, making them ideal for unobtrusive affective 

computing [2,4,10]. 

Extensive psychophysiological research has firmly established that emotional states trigger 

characteristic, transient changes in cardiovascular activity [4,5,22]. Heart rate variability (HRV), 

defined by fluctuations in intervals between heartbeats, reflects autonomic nervous system (ANS) 

activity, correlating distinctly with emotional regulation processes [5,6,30]. Additionally, pulse 

waveform morphology captures vascular tone variations associated directly with emotional arousal 

[22]. Notably, these physiological responses are transient, sparsely distributed, and exhibit non-

uniform temporal patterns—highlighting a critical gap in current approaches: effective identification 

and interpretation of emotionally salient temporal segments amidst noisy physiological signals. 

Recent advancements in remote photoplethysmography (rPPG) enable unobtrusive, camera-

based monitoring of cardiovascular activity, measuring subtle skin color variations induced by 

cardiac pulse waves [15,23,24]. This technique allows scalable affective computing applications across 

diverse industrial contexts due to the proliferation of camera-equipped devices (e.g., smartphones, 

laptops, surveillance systems), significantly broadening the practical utility of emotion recognition 

technology. 

Despite promising potential, recognizing emotions exclusively from unimodal temporal rPPG 

signals faces significant unresolved challenges. Firstly, emotional physiological responses often 

manifest briefly and sporadically rather than continuously, complicating effective temporal analysis 

[4,5,10]. Secondly, rPPG signals inherently suffer from noise and artifacts compared to contact-based 

methods, impairing robust interpretation of subtle emotional cues [15,23,24]. Thirdly, typical session-

level annotations induce a weak-label, Multiple Instance Learning (MIL) scenario [7], necessitating 

sophisticated models to pinpoint informative temporal segments accurately. Finally, recognizing 

valence from physiological signals remains inherently more challenging than arousal, with its subtler 

and more complex physiological correlates less directly tied to general ANS activation [4,22,39]. 

Our study explicitly addresses these challenges by proposing a novel deep learning framework 

designed to fully leverage temporal dynamics within unimodal rPPG signals. By processing signals 

in short, localized temporal chunks, we effectively isolate and analyze transient physiological 

responses. We introduce a Multi-scale Temporal Dynamics Encoder (MTDE), physiologically 

motivated by multi-rate ANS response characteristics [22,30], capturing subtle temporal patterns 

across different timescales. Furthermore, an adaptive sparse attention mechanism leveraging α-

Entmax and entropy regularization explicitly identifies and prioritizes temporally sparse emotional 

segments, emulating selective human attentional processes [16,19,37,38]. A novel gated temporal 

pooling mechanism robustly aggregates chunk-level information, effectively filtering noise through 

joint temporal weighting and feature-level gating [13,20,35]. 

Critically, we employ a physiologically inspired, three-phase curriculum learning strategy—

exploration, discrimination, and exploitation—mirroring human attentional refinement during 

learning [6,20,38]. This systematic training approach addresses weak-label issues, temporal sparsity, 

and signal noise incrementally, enabling stable, progressive learning from complex, noisy temporal 

data. 

To robustly evaluate our method, we employ weighted F1 scores, addressing class imbalance 

more objectively compared to prior work such as Mellouk & Handouzi [9]. Unlike Mellouk & 

Handouzi [9], we explicitly validate performance on entirely unseen test sets, enhancing 

generalizability and methodological rigor. Our evaluations on the MAHNOB-HCI dataset show 
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promising results: for arousal, achieving an accuracy of 66.0%, an F1 of 0.7429, and weighted F1 of 

0.6224; for valence, an accuracy of 62.3%, an F1 of 0.6667, and weighted F1 of 0.6227, underscoring 

our model's effectiveness despite inherent challenges. 

Our contributions explicitly bridge critical research gaps, providing clear advancements: 

• Focused Temporal Analysis of rPPG: Establishes foundational insights into the capabilities and 

limitations of using exclusively temporal physiological information, providing a rigorous 

benchmark. 

• Multi-scale Temporal Dynamics Encoder (MTDE): Effectively captures physiologically 

meaningful ANS responses across multiple timescales, addressing complexity in subtle temporal 

emotional signals. 

• Adaptive Sparse Attention: Precisely identifies transient, emotionally relevant physiological 

segments amidst noisy rPPG data, significantly enhancing robustness. 

• Gated Temporal Pooling: Sophisticatedly aggregates emotional information across temporal 

chunks, effectively mitigating noise and irrelevant features. 

• Curriculum Learning Strategy: Systematically addresses learning complexities associated with 

weak labels, noise, and temporal sparsity, ensuring robust, stable model learning. 

2. Related Work 

2.1. The Physiological Signals for Emotion Recognition 

Physiological signals, particularly cardiovascular activity, offer reliable indicators of emotional 

states due to their involuntary ANS regulation [3–5]. HRV and pulse morphology have emerged as 

critical temporal features reflecting emotional arousal and valence [22,30]. Traditional approaches 

often extract handcrafted temporal features (e.g., HRV frequency bands, SDNN), with newer 

methods exploring nonlinear temporal dynamics [11,17,33]. Our MTDE explicitly addresses 

limitations of these conventional approaches by capturing rich, physiologically motivated temporal 

patterns through a specialized multi-scale neural architecture. 

2.2. Remote PPG Signal Extraction and Denoising 

Due to higher susceptibility to artifacts, extracting robust temporal waveforms from rPPG 

signals remains challenging [15,23,24]. Recent deep learning advancements, such as PhysNet, 

PhysFormer, PhysMamba, RhythmFormer, significantly improve extraction and noise resilience 

[25,28,32,36]. We adopt PhysMamba [32] for its superior temporal refinement and robustness, 

explicitly addressing the inherent noise challenges of rPPG signals, crucial for accurate emotion 

inference. 

2.3. Emotion Recognition from rPPG/PPG 

Only a few studies focus exclusively on temporal rPPG signals. Mellouk & Handouzi [9] applied 

CNN-LSTM models on short temporal segments without specialized sparsity or attention 

mechanisms. Talala et al. [34] utilized pulse-derived spectral images, implicitly incorporating spatial-

temporal features. Contact-based methods often employ multiple modalities or personalization 

[11,17]. Our model, conversely, specifically targets temporal sparsity and noise, utilizing adaptive 

sparse attention, gated pooling, and structured curriculum learning, thereby significantly advancing 

beyond existing models. 

2.4. Comparison and Key Differences 

Distinct from prior works, our approach uniquely addresses: 

• Temporal-only Focus: Clarifies inherent temporal limitations and potentials, establishing 

foundational benchmarks. 
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• Explicit Temporal Dynamics Modeling: Physiologically-grounded multi-scale analysis tailored 

specifically for temporal emotional signals [22,30]. 

• Advanced Temporal Attention: Sparse attention explicitly prioritizes salient temporal segments 

amidst noise, paralleling biological attention mechanisms [16,19,37,38]. 

• Robust Aggregation Strategy: Gated pooling methodically filters noise, prioritizing emotionally 

informative temporal segments. 

• Generalizable, Rigorous Evaluation: Utilizing weighted F1 metrics and unseen test validation 

enhances objective performance assessments, overcoming methodological shortcomings of 

previous studies [9]. 

 

3. Methodology 

This section delineates the methodology employed in our study for emotion recognition from 

remote photoplethysmography (rPPG) signals. We describe the dataset utilized, the preprocessing 

steps, the overall framework architecture, the detailed components of our model, the physiologically-

inspired curriculum learning strategy, the evaluation metrics and comparative baseline, and the 

experimental setup. 

 

3.1. Dataset and Preprocessing 

We employ the publicly available MAHNOB-HCI multimodal emotion dataset [21], comprising 

recordings from 27 subjects who viewed 20 emotional film clips and provided self-reported valence 

and arousal ratings on a 1–9 scale. Following common practice and excluding unusable sessions from 

3 subjects, our study utilizes a total of 527 face videos. These videos were downsampled to 30 fps, a 

rate validated as sufficient for capturing the subtle cardiovascular dynamics essential for emotion 

recognition [14] and aligning with the pre-training conditions of the PhysMamba model used as our 

front-end [32]. 

The self-reported valence and arousal ratings were binarized into "low" (ratings 1–4) and "high" 

(ratings 5–9) classes by thresholding at the midpoint (4.5), resulting in minor class imbalances across 

the full dataset (Arousal: 270 low vs. 257 high, Valence: 251 low vs. 276 high). To ensure rigorous 

testing of the model's generalization capability and prevent data leakage, a strict subject-independent 

split was adopted. The 527 sessions were partitioned into 421 sessions (80%) for training, 53 sessions 

(10%) for validation, and 53 sessions (10%) for testing. While the limited dataset size necessitates 

relatively small validation and test sets, this rigorous partitioning ensures evaluation solely on 

entirely unseen subjects, providing a more realistic assessment of applicability compared to splits 

permitting subject overlap. The dataset is publicly available under a CC-BY-NC-SA license, and our 

study complies with GDPR by utilizing anonymized data, thus not requiring further ethical approval. 

The MAHNOB-HCI dataset is publicly available under a Creative Commons Attribution-

NonCommercial-ShareAlike (CC-BY-NC-SA) license. Our study complies with this license and 

GDPR regulations, as only de-identified, pre-recorded data were used and no personally identifiable 

information was processed. 
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Figure 1. Overview of the proposed end-to-end framework (Phase 2: Session-level exploitation and inference). 

This figure shows the flow from the 1D temporal rPPG signal (output of PhysMamba), through chunking, MTDE 

processing (outputting chunk embeddings), AttnScorer → GatedPooling → Pooled Session Embedding → Main 

Classifier → Emotion Prediction. 

 

3.2. Overall Framework 

The overall architecture of our proposed end-to-end framework is illustrated in Figure 1. This 

figure depicts the core model structure as it operates during Phase 2 of training (session-level 

exploitation and inference), representing the complete pipeline from the raw video input (via the 

rPPG extractor) to the final emotion prediction. The pipeline fundamentally consists of a pre-trained 

rPPG extraction front-end, followed by our emotion recognition model. 

Our emotion recognition model processes the 1D temporal rPPG signal, derived from the video, 

in fixed-length, non-overlapping temporal chunks of 128 frames (approximately 4 seconds at 30 fps). 

This specific chunk size was strategically chosen for multiple reasons. Firstly, it aligns with the 

temporal window used by the robust PhysMamba rPPG extractor [32] and common processing units 

in the rPPG-Toolbox framework [14]. Secondly, and crucially, prior work [9] has demonstrated that 

a 4-second segmentation size yields optimal performance for emotion classification from contactless 

PPG signals, reinforcing its appropriateness for capturing pertinent physiological dynamics within 

the temporal domain. Physiologically, a ≈ 4-second window is well-suited as it typically 

encompasses several cardiac cycles (e.g., approximately 4–7 heartbeats at a resting heart rate of 60-

100 bpm). Analyzing physiological patterns such as heart rate variability (HRV) or subtle pulse 

waveform changes over this duration allows for the capture of meaningful short-term autonomic 

nervous system (ANS) modulations [30, 22], which are widely recognized as crucial indicators of 

emotional states. 

Each temporal chunk is subsequently processed by the Multi-scale Temporal Dynamics Encoder 

(MTDE) to extract rich temporal feature embeddings. These chunk embeddings are then fed to the 

AttnScorer to derive a scalar attention score indicating their potential emotional relevance, and also 

passed to the GatedPooling module. The GatedPooling module integrates these attended and gated 

chunk features into a single session-level representation. Finally, a Main Classifier predicts the 

session-level emotion labels (Valence/Arousal) from this pooled representation, based exclusively on 

the aggregated temporal information. Specific details and components active during the earlier Phase 

0 and Phase 1 training, which build upon or extend this core architecture, are illustrated in Figure 2 

and Figure 3, respectively, and are described in detail in the subsequent section on the curriculum 

learning strategy. 

 

3.3. Training Modules 

This section provides a detailed description of the core modules constituting our emotion 

recognition framework. 
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3.3.1. rPPG Extraction Front-end (PhysMamba) 

The PhysMamba [32] model serves as the initial step to extract a refined, denoised 1D temporal 

rPPG (Blood Volume Pulse, BVP) signal from raw facial video frames. We utilize the pre-trained 

PhysMamba, a robust deep learning model demonstrating state-of-the-art performance in recovering 

accurate BVP signals even under challenging real-world conditions [32]. PhysMamba is applied to 

each video by first dividing it into non-overlapping 128-frame (≈4 s) chunks, processing each chunk 

independently. Input frames to PhysMamba are preprocessed using the DiffNormalized scheme [32], 

which computes frame-wise ratio differences normalized by the standard deviation, enhancing the 

detection of subtle blood flow changes. The output of PhysMamba is a refined 1D temporal BVP 

signal representation for each chunk, serving as the exclusive input to our subsequent emotion 

recognition model without further per-session normalization or bandpass filtering. 

 

3.3.2. Multi-scale Temporal Dynamics Encoder (MTDE) 

The MTDE's purpose is to effectively capture physiological dynamics across various temporal 

scales present within each 128-frame BVP chunk, designed with a biologically inspired [22, 30] multi-

scale architecture. As detailed in Appendix A, the MTDE comprises two main stages: a SlimStem and 

a MultiScaleTemporalBlock (MSTB). The SlimStem consists of two sequential 1D convolutional layers 

for initial noise reduction and low-level feature extraction, reducing input length by half, 

conceptually akin to early sensory filtering. The MSTB features a three-branch architecture using 

dilated convolutions to achieve different effective receptive field (RF) sizes on the original chunk 

input. The approximate effective RFs for each branch (Short: ≈6 frames, ≈0.2 s; Medium: ≈66  

frames, ≈2.2 s; Long: ≈129 frames, ≈4.3 s) are calculated based on layer parameters (Appendix A) 

and linked to distinct physiological phenomena. The Short scale is sensitive to rapid physiological 

changes like pulse upslope and beat onset, often linked to sympathetic activation [22]. The Medium 

scale captures patterns related to short-term HRV, primarily associated with parasympathetic 

regulation [30]. The Long scale integrates slower fluctuations across the chunk, reflecting ANS 

interplay [22]. Outputs from the three MSTB branches are concatenated, normalized, and passed 

through a Softmax-based temporal attention pooling layer (SoftmaxPool) applied across the temporal 

dimension. This layer learns to weigh the importance of different temporal steps within the chunk, 

producing a single, fixed-size chunk embedding (ℎ𝑖   ∈ ℝ
𝐷, where D=256). 

 

3.3.3. AttnScorer 

The AttnScorer's purpose is to generate a scalar attention score for each chunk embedding (ℎ𝑖), 

indicating its potential emotional relevance. It consists of a 2-layer MLP with GELU activation 

(Appendix B). Raw attention scores are normalized using σ − γ scaling, an adaptive mechanism 

based on the running standard deviation, analogous to biological sensory normalization [37]. Scores 

are then transformed using α-Entmax [16] attention with adaptive α annealing (Appendix B) to 

encourage sparse, differentiable selection of salient chunks, mirroring biological selective attention 

[19, 37, 38]. Entropy regularization further ensures attention sparsity and efficient neural encoding. 

 

3.3.4. Auxiliary Components 

These modules are active only during specific curriculum phases (Figure 2, 3) to support 

learning objectives. The ChunkProjection (Phase 0) is an MLP head for normalized embeddings used 

by the Supervised Contrastive Loss [12]. The ChunkAuxClassifier (Phase 1) is a classifier attached 

before GatedPooling, predicting session labels from individual chunks to pretrain the MTDE for local 

discrimination. It is used to initialize the Main Classifier in Phase 2. 
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3.3.5. GatedPooling 

GatedPooling aggregates the sequence of chunk embeddings (ℎ1,   …  ,  ℎ𝑇) into a single session-

level representation (ℎpooled). Unlike standard pooling [23], it implements a learned, content-aware 

aggregation [20, 13] via temporal attention and feature-level gating. Using AttnScorer scores (via α-

Entmax) for temporal weights (𝑎𝑖) and a learned gate vector (𝑔𝑖   ∈ ℝ
𝐷) per chunk (MLP + Sigmoid), 

it computes:  

ℎ𝑝𝑜𝑜𝑙𝑒𝑑   =  ∑𝛼𝑖(𝑔𝑖  ⨀ ℎ𝑖)

𝑇

𝑖=1

 (1) 

The feature-level gating (𝑔𝑖) is pivotal; it modulates contribution of each feature dimension within 

a chunk, mimicking biological neural gating/inhibition [19, 37, 38] to selectively amplify relevant 

signals and suppress noise/irrelevant features within temporally attended segments, critical for robust 

rPPG analysis. 

 

3.3.6. Main Classifier 

The Main Classifier receives the ℎpooled vector and predicts final emotion labels (Low/High 

Valence/Arousal) via FC layers, based solely on aggregated temporal rPPG information. 

 

3.4. Training Curriculum 

Our training employs a three-phase curriculum learning strategy [6, 38], conceptually inspired 

by how biological systems, including humans, refine their learning and attentional focus [20]. This 

structured approach guides the model through progressively more complex learning objectives, 

addressing the inherent challenges of noisy, temporally sparse, and weakly-labeled time-series data 

to achieve stable and effective learning. The entire training process runs for a total of 50 epochs. The 

specific pipeline configuration and module activations during each phase are illustrated in Figures 1, 

2, and 3. Detailed hyperparameters for each phase are provided in Appendix C. 

 

 

Figure 2. Phase 0 training setup. This figure shows Chunk Embeddings (MTDE output) → ChunkProjection → 

SupCon Loss (ℒ𝑠𝑢𝑝𝑐𝑜𝑛). It indicates AttnScorer is active for entropy loss using internal Softmax attention for 

exploration. GatedPooling/Main Classifier are not used for the primary loss. 

 

3.4.1. Phase 0 (Epochs 0–14): Exploration and Representation Learning. 

• Physiological/Cognitive Link: This initial phase serves as an analogy to broad, unguided 

sensory exploration in biological systems. Before specific pattern recognition, a system first 

captures a wide array of sensory inputs to build a general understanding of the feature space. 

Similarly, the model focuses on encoding diverse physiological patterns within the rPPG signal 
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across different time scales, irrespective of the final emotional labels, aiming to structure the 

embedding space based on inherent data characteristics and label proximity. 

• Objective: The primary objective is to train the MTDE and related components (AttnScorer, 

ChunkProjection) to produce robust and diverse embedding representations for individual 

temporal chunks. During this phase, the GatedPooling module and the Main Classifier are not 

used for the primary loss computation. 

• Primary Losses: The total loss in Phase 0 is a combination of the Supervised Contrastive Loss and 

an Entropy Regularization Loss. The Supervised Contrastive Loss (ℒ𝑠𝑢𝑝𝑐𝑜𝑛) [12] is applied to the 

normalized embeddings from the ChunkProjection. This loss encourages embeddings from 

chunks originating from the same session (sharing the same label) to be closer in the 

representation space, while pushing embeddings from different sessions apart. This helps 

structure the embedding space according to emotional labels and promotes representation 

diversity. 

ℒ𝑠𝑢𝑝𝑐𝑜𝑛(𝑃) =∑
−1

|𝑃(𝑖)|
∑

𝑒𝑥𝑝(𝑧𝑖  ∙ 𝑧𝑝/τ)

∑ 𝑒𝑎∈𝐴(𝑖) 𝑥𝑝(𝑧𝑖  ∙ 𝑧𝑎/τ)
𝑝∈𝑃(𝑖)𝑖 ∈ 𝐼

 (2) 

Here, I is the set of anchor indices in the batch, A(𝑖) is the set of all indices in the batch except i, 

P(𝑖)  is the set of indices of positive samples (same label) as i , z  represents the normalized 

embedding vectors, and τ is the temperature parameter. The Entropy Regularization Loss (ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦
) is applied to the AttnScorer's internal Softmax attention output. With a weight λ𝑒𝑛𝑡𝑟𝑜𝑝𝑦  (detailed in 

Appendix C), this loss encourages the initial attention distribution to be more uniform across chunks, 

promoting broader exploration of temporal features by the MTDE. The temperature parameter τ for 

ℒ𝑠𝑢𝑝𝑐𝑜𝑛 is adaptively scheduled (Appendix C) based on the complexity of learned attention 

distributions, facilitating effective contrastive learning alongside exploration. The overall loss for this 

phase is ℒ𝑇𝑜𝑡𝑎𝑙 =  ℒ𝑠𝑢𝑝𝑐𝑜𝑛   +  λ𝑒𝑛𝑡𝑟𝑜𝑝𝑦ℒ𝑒𝑛𝑡𝑟𝑜𝑝𝑦. 

 

  

Figure 3. Phase 1 training setup. This figure shows Chunk Embeddings (MTDE output) → ChunkAuxClassifier 

→ Chunk-level CE Loss (ℒ𝑐ℎ𝑢𝑛𝑘−𝐶𝐸, Focal Loss). It shows AttnScorer is active and α-Entmax scores determine 

Top-K selection for the loss. GatedPooling/Main Classifier also train (GatedPooling from Epoch 25), and Session-

CE is introduced later. 

 

3.4.2. Phase 1 (Epochs 15–29): Chunk-level Discrimination and Attentional Refinement. 

• Physiological/Cognitive Link: This phase simulates the development of selective attention and 

fine discrimination. After initial broad exploration, a biological system learns to differentiate 

between stimuli and focus processing on the most relevant or challenging aspects. In this phase, 

the model refines its ability to discriminate between emotional classes specifically at the chunk 

level, learning to focus its attention on the temporal segments that are most informative or 

difficult to classify amidst noise. 

• Objective: To significantly enhance the discriminative capacity of the individual chunk 

embeddings and to refine the AttnScorer's ability to identify emotionally salient temporal 

segments. During this phase, the ChunkProjection module and its loss are frozen. The MTDE, 
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AttnScorer, and ChunkAuxClassifier are actively trained. The GatedPooling module's 

parameters also begin training from epoch 25, preparing for the final session-level task. 

• Primary Losses: The total loss in Phase 1 combines a Chunk-level Cross-Entropy Loss with a 

gradually introduced Session-level Cross-Entropy Loss. The Chunk-level Cross-Entropy Loss 

(ℒ𝑐ℎ𝑢𝑛𝑘−𝐶𝐸 ) is applied using the ChunkAuxClassifier. To effectively handle potential class 

imbalance present at the chunk level and to focus learning on challenging examples, we employ 

Focal Loss [41] with γ = 2.0 (Appendix C): 

ℒ𝐹𝑜𝑐𝑎𝑙(𝑝𝑡) = −α𝑡(1 − 𝑝𝑡)
Υ𝑙og(𝑝𝑡) (3) 

Here, 𝑝𝑡  is the model's estimated probability for the target class, α𝑡 is a class-balancing weight, 

and γ is the focusing parameter. This loss is critically calculated only for the Top-K chunks selected 

based on the AttnScorer's α-Entmax output. The Top-K ratio K is strategically annealed downwards 

over this phase (schedule in Appendix C) to progressively focus discriminative learning on the most 

salient segments, mimicking how attention narrows onto key details [8, 20] within a stimulus. The 

Session-level Cross-Entropy Loss (ℒ𝑠𝑒𝑠𝑠𝑖𝑜𝑛−𝐶𝐸) is scheduled to be introduced from epoch 25, with its 

weight gradually ramping up from 0 to 0.5 (see schedule in Appendix C). While the parameters of 

the GatedPooling module and the session-level classifier are unfrozen starting at this point, 

allowing gradient flow and preparatory fine-tuning, 𝐿_session-CE itself is not yet included in the 

total loss calculation until Phase 2. This staged activation strategy enables the model to begin 

adapting the session-level representation and pooling dynamics without prematurely influencing the 

optimization objective, thus facilitating a smoother transition to Phase 2 training. The overall loss for 

this phase is ℒ𝑇𝑜𝑡𝑎𝑙 =  ℒ𝑐ℎ𝑢𝑛𝑘−𝐶𝐸 

3.4.3. Phase 2 (Epochs ≥ 30): Session-level Exploitation and Fine-tuning. 

• The Physiological/Cognitive Link: This final phase is analogous to integrating filtered and 

relevant information to make a final decision or judgment. The system leverages its refined chunk 

representations and attentional mechanisms to consolidate evidence from the most salient and 

informative features identified across time, leading to the final emotional inference. 

• Objective: To optimize the entire end-to-end pipeline for the final session-level emotion 

recognition task. In this phase, the ChunkAuxClassifier and its associated loss are removed. The 

Main Classifier is initialized using the trained weights from the ChunkAuxClassifier at the start 

of epoch 30. The MTDE, AttnScorer, GatedPooling, and the Main Classifier are all actively 

trained. The full pipeline shown in Figure 1 is operational. 

• Primary Loss Function: The sole objective function in Phase 2 is the Session-level Cross-Entropy 

Loss (ℒ𝑠𝑒𝑠𝑠𝑖𝑜𝑛−𝐶𝐸) applied to the output of the Main Classifier based on the GatedPooling session 

embedding. Its weight ramps up from 0.5 (at epoch 30) towards 1.0 (schedule in Appendix C) to 

become the primary focus. 

ℒ𝐶𝐸(𝑦,  𝑦̂) = −∑𝑦𝑐𝑙𝑜𝑔(𝑦𝑐̂)

𝐶

𝑐=1

 (4) 

Here, 𝑦 is the one-hot encoded ground truth label for the session, 𝑦̂ is the predicted probability 

distribution over classes from the Main Classifier, and 𝐶 is the number of classes. During this phase, 

the AttnScorer is fine-tuned at a reduced learning rate (scaling factor in Appendix C). Additionally, 

the 𝛼𝑔 value for the α-Entmax transformation within the GatedPooling module is annealed from 1.5 

(at epoch 30) to 1.8 (at epoch 50) (schedule in Appendix C). This increases the sparsity of the temporal 

attention applied during aggregation, further refining the focus on the most crucial temporal 

segments and their gated features for the final prediction. 

 

3.5 Evaluation Metrics 

Model performance was quantitatively evaluated using standard metrics on the independent 

test set. These metrics were chosen to provide a comprehensive and robust assessment, particularly 
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considering potential class imbalances. Performance was measured using Accuracy and Weighted 

F1-score. The Weighted F1-score is particularly valuable in the presence of class imbalances, as it 

accounts for performance on all classes weighted by their frequency, providing a more objective 

measure than simple accuracy or macro-averaged metrics in such scenarios. 

• Accuracy: Defined as the proportion of correctly classified sessions out of the total number of 

sessions in the test set: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (5) 

• Weighted F1-score: This metric is calculated based on the Precision (𝑃𝑐), Recall (𝑅𝑐), and F1-score 

(𝐹1𝑐) for each individual class 𝑐. The formulas for these class-specific metrics are: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐   =  
𝑇𝑃𝑐

𝑇𝑃𝑐   +  𝐹𝑃𝑐
 (6) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑐   =  
𝑇𝑃𝑐

𝑇𝑃𝑐   +  𝐹𝑁𝑐
  (7) 

𝐹1𝑐   =  2 ∙
Pecision𝑐   ∙  Recall𝑐

Pecision𝑐   +  Recall𝑐
  (8) 

The overall Weighted F1-score is then computed as the average of the class F1-scores, weighted 

by the number of samples in each class (𝑁𝑐): 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1  =  ∑
𝑁𝑐
𝑁
∙ 𝐹1𝑐

𝐶

𝑐=1

  (9) 

Here, 𝑁 is the total number of samples in the test set, and 𝐶 is the number of classes. In addition to 

these primary metrics, we also analyze the confusion matrix to gain insights into the model's 

performance across different classes and the types of errors made. 

3.6. Baseline 

We provide a comparative evaluation against Mellouk & Handouzi [9], a relevant prior deep 

learning work on contactless PPG emotion recognition using CNN-LSTM on ≈4s segments but 

lacking explicit sparsity/attention. We utilize their reported results. However, achieving an ideal 

comparison on our exact subject-independent split is limited by their source code unavailability and 

unspecified test partition. Our study mitigates this by detailing our split and using Weighted F1 for 

robust comparison despite potential test set distribution differences, establishing a clearer benchmark. 

 

3.7. Experimental Setup 

Training was performed using the AdamW optimizer. We employed a CosineAnnealingLR 

schedule, with 𝑇𝑚𝑎𝑥 = 15 for Phases 0 and 1, and 𝑇𝑚𝑎𝑥 = 20 for Phase 2. The initial learning rates 

were set to 3 × 10−4, 2 × 10−4, and1 × 10−4 for Phases 0, 1, and 2, respectively. Weight decay was 

1 × 10−4  in Phase 0 and 5 × 10−4 in Phases 1 and 2. All experiments were run on a system with 

Ubuntu 20.04, Python 3.8, PyTorch 2.1.2 (+ CUDA 12.1) and an NVIDIA RTX 4080 GPU with a batch 

size of 8. 

 

4. Results 
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Table 1. Main performance results of Arousal classification (Accuracy, F1-score for positive class, and Weighted 

F1-score) on the MAHNOB-HCI test set (53 unseen subjects), subject-independent split. Highlights performance 

solely from temporal domain. All metrics are reported as percentages. 

Method Accuracy (%) F1 of Positive (%) Weighted F1 (%) 

CNN-LSTM [9] 61.31 50.96 59.46 

Ours* 66.04* 74.29* 61.97* 

Table 2. Main performance results of Valence classification (Accuracy, F1-score for positive class, and Weighted 

F1-score) on the MAHNOB-HCI test set (53 unseen subjects), subject-independent split. Highlights performance 

solely from temporal domain. All metrics are reported as percentages. 

Method Accuracy (%) F1 of Positive (%) Weighted F1 (%) 

CNN-LSTM [9] 73.50 76.23 73.14 

Ours* 62.26* 66.67* 62.26* 

 

4.1. Main Results 

As summarized in Tables 1 and 2, the proposed end-to-end framework demonstrates 

competitive performance in arousal classification using only the temporal rPPG signal from the 

MAHNOB-HCI dataset under a subject-independent evaluation protocol. Specifically, the model 

achieves an accuracy of 64.04% and a weighted F1-score of 61.97%, which are on par with those 

reported by other unimodal physiological approaches such as HRV-based methods [40]. These results 

highlight the expressive power of temporal rPPG signals when effectively modeled using our 

dedicated temporal representation learning architecture. 

When compared against a conventional CNN-LSTM baseline [9]—evaluated using their 

reported confusion matrix—our model yields consistent improvements across all relevant metrics: 

• Accuracy: 64.04% vs. 61.31% 

• Positive-class F1-score: 74.29% vs. 50.96% 

• Weighted F1-score: 61.97% vs. 59.46% 

These improvements validate the effectiveness of our architectural choices, including multi-scale 

temporal encoding, sparse attentional chunk selection, and feature-level gated pooling, in capturing 

discriminative temporal dynamics from the rPPG signal. Notably, these gains are achieved under a 

rigorous subject-independent setting, underscoring the model’s generalizability and robustness. The 

performance margin over the prior deep learning baseline affirms the merit of our tailored design for 

temporal-only physiological modeling. 

In contrast, valence classification remains a more complex and challenging task. Our model 

achieves 62.26% accuracy and 62.26% weighted F1-score, which are both substantially lower than 

those reported by the CNN-LSTM baseline (73.50% accuracy and 73.14% weighted F1). The 

corresponding confusion matrix is provided in Appendix D (Table D.2). 

This performance gap can be attributed to several fundamental factors: 

• Physiological limitations: Arousal is closely associated with autonomic nervous system (ANS) 

activity—particularly sympathetic arousal—which is effectively captured through heart rate and 

HRV patterns inherent in rPPG signals [3, 22, 30, 39]. In contrast, valence is more intricately tied 

to subtle physiological cues, such as facial muscle activity (e.g., EMG) or cortical patterns, which 

are not sufficiently reflected in peripheral cardiovascular dynamics [39]. 

• Modality constraints: The use of spatially averaged 1D temporal rPPG precludes access to fine-

grained spatial information, such as facial blood flow asymmetries, which have been shown to 

correlate with valence [34, 27]. 

• Data imbalance: A notable class imbalance in valence labels, both in the overall dataset and 

particularly within the test set, may contribute to biased predictions and hinder generalization 

performance. 
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Collectively, these findings suggest that while temporal rPPG is a potent modality for arousal 

recognition, effective valence modeling may necessitate either multimodal fusion or spatially-aware 

approaches to capture its more nuanced correlates. 

 

4.2. Ablation Studies 

To quantitatively assess the contributions of individual components in our model architecture 

and training pipeline, we conducted ablation experiments centered on the arousal classification task. 

These experiments isolate the effect of each module when relying solely on temporal rPPG inputs, 

and the results are reported in Tables 3 and 4. 

Table 3. Performance Comparison Across Pooling Strategies (Arousal Classification). 

Method Accuracy (%) Weighted F1 (%) 

Ours (MTDE + Gated Pooling) * 66.04* 61.97* 

MTDE + Attention Pooling 50.94 47.56 

MTDE + Average Pooling 50.94 39.07 

 

4.2.1. Ablation Study on Pooling and Attention Mechanisms (Arousal) 

We first examined the effect of various temporal aggregation strategies applied to chunk-level 

embeddings extracted via the Multi-Temporal Dynamics Encoder (MTDE). As shown in Table 3, our 

proposed Gated Pooling mechanism delivers superior performance compared to simpler 

alternatives. 

These results reveal that naïve temporal averaging or soft attention pooling fails to effectively 

aggregate salient information in the rPPG signal. In contrast, the combination of learned chunk-wise 

attention scoring (AttnScorer) and feature-level modulation (Gated Pooling) provides a more 

precise and robust representation of emotionally relevant temporal patterns, resulting in improved 

classification performance. 

Table 4. Ablation study results for different pooling strategies (Arousal classification from temporal rPPG). 

Method Accuracy (%) Weighted F1 (%) 

Full Curriculum (Phase 0→2)* 66.04* 61.97* 

Phase 1 → Phase 2  61.22 57.46 

Phase 2 → Phase 2 (Init from 

Aux) 
54.72 45.88 

Phase 2 (Direct training) 50.94 36.34 

 

4.2.2. Ablation Study on Pooling and Attention Mechanisms (Arousal) 

We further evaluated the impact of our three-phase curriculum learning strategy, which 

progressively transitions from exploratory representation learning to discriminative and exploitative 

stages. Table 4 presents the classification results under different curriculum variants. 

The results demonstrate that: 

• Phase 0 (Contrastive learning) significantly enhances the diversity and expressiveness of learned 

representations. 

• Phase 1 (Chunk-level weak supervision) improves the model’s ability to localize and distinguish 

emotionally salient segments. 

• Phase 2 (Session-level classification) yields optimal results only when preceded by these 

preparatory stages. 
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This progressive strategy mirrors human-like attentional learning, facilitating stable and effective 

optimization on weakly labeled and noisy temporal signals. The marked performance gain from the 

full curriculum attests to the importance of structured, phase-aware training for robust rPPG-based 

affect recognition. 

4.3. Computational Efficiency 

Average inference time for an ≈2-minute session is approximately 0.66 seconds on NVIDIA RTX 

4080 GPU, faster than real-time, enabling practical deployment using this temporal-only approach. 

Trainable parameters: 197,892 total; 164,996 for inference (Inference uses fewer parameters as the 

Chunk-Projection module, only needed for Phase 0 training, is removed).      

5. Discussion 

Our proposed framework demonstrates promising capabilities in recognizing emotions 

exclusively from temporal remote photoplethysmography (rPPG) signals, achieving competitive 

arousal classification performance under rigorous subject-independent evaluation. Specifically, our 

model attains a 66.04% accuracy and a weighted F1-score of 61.97% for arousal, outperforming the 

CNN-LSTM baseline by Mellouk & Handouzi [9] (Accuracy: 61.31%, Weighted F1: 59.46%). This 

improved performance for arousal underscores the efficacy of our specialized temporal processing 

techniques—including the Multi-scale Temporal Dynamics Encoder (MTDE), adaptive sparse 

attention via α-Entmax, and the feature-level GatedPooling mechanism—in effectively extracting, 

filtering, and leveraging the discriminative temporal dynamics inherent in rPPG signals, which are 

strongly tied to autonomic nervous system (ANS) arousal responses. 

A critical factor contributing to this performance enhancement is our physiologically-inspired 

MTDE. By employing parallel convolutional branches with distinct receptive fields, the MTDE 

explicitly captures emotional cues manifesting at multiple temporal scales, reflecting diverse ANS 

modulations. These captured dynamics include rapid pulse morphology changes (indicating 

sympathetic activation), beat-to-beat interval variations (reflecting parasympathetic activity), and 

slower trends integrating broader sympathetic-parasympathetic interplay [22, 30]. Capturing these 

multi-rate temporal signatures is particularly vital for arousal recognition, as ANS activation 

patterns tied to arousal frequently involve changes in both the speed (heart rate) and the 

variability/shape of the pulse wave over short time periods. Furthermore, our adaptive sparse 

attention mechanism refines the temporal analysis by selectively emphasizing emotionally salient 

segments amidst inherently noisy physiological data. This process, closely mimicking human 

selective attention [19, 37, 38], is crucial for robust detection from rPPG, where emotional cues are 

often transient and sparsely distributed in the temporal stream, easily masked by noise. Moreover, 

our novel GatedPooling mechanism effectively mitigates the impact of noise and irrelevant features 

by integrating learned feature-level gating. This allows the model to not only weight the importance 

of temporal segments but also to amplify or suppress specific feature dimensions within those segments, 

providing a refined representation crucial for handling the noisy nature of remote physiological 

signals. 

Beyond these architectural innovations, our staged curriculum learning strategy was vital for 

achieving optimal performance. By progressively transitioning the learning objectives—from broad, 

exploratory representation learning in Phase 0 (analogous to initial sensory intake), through chunk-

level discriminative refinement focusing on salient cues in Phase 1 (simulating selective attention and 

discrimination), to final session-level exploitation and fine-tuning in Phase 2 (akin to decision-making 

based on integrated information) [6, 20, 38]—the curriculum effectively addresses the inherent 

challenges posed by noisy, temporally sparse, and weakly-labeled time series data. This structured 

learning process guides the model towards learning robust features and reliable attentional 

mechanisms before attempting the complex session-level prediction, resulting in more stable and 

effective learning outcomes compared to end-to-end training without such guidance. Indeed, our 

ablation studies (detailed in Section 4.2) further validate the necessity of each component (MTDE, 
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Sparse Attention, GatedPooling) within our architecture and underscore the critical role of the staged 

curriculum learning strategy in enabling the observed performance gains. 

Conversely, the valence recognition task remains significantly challenging when relying 

exclusively on temporal rPPG signals. Our model achieved 62.26% accuracy and a weighted F1-score 

of 62.26% for valence, which was lower than the performance reported by Mellouk & Handouzi’s 

baseline [9] (Accuracy: 73.50%, Weighted F1: 73.14%). This discrepancy highlights fundamental 

physiological limitations and inherent methodological constraints in valence detection using only 

temporal, spatially averaged rPPG data. Physiologically, valence correlates with more nuanced patterns 

such as subtle facial muscle activity and specific cortical region activations [39], which are not directly 

captured by changes in the average blood pulse wave over time. Furthermore, subtle spatial variations 

in facial blood flow, which may hold valence-related information [29, 34], are inherently lost when 

the rPPG signal is derived as a single temporal waveform averaged over a facial region. These 

findings strongly reinforce that while temporal rPPG signals robustly reflect general ANS activation 

tied closely to arousal, recognizing more nuanced affective dimensions like valence likely requires 

either multimodal integration (e.g., with facial expressions) or advanced spatial-temporal rPPG 

analysis that preserves regional blood flow patterns. 

Regarding practical applicability, the computational efficiency of our approach is notable. 

Achieving an inference speed of approximately 0.66 seconds for a two-minute video segment on an 

NVIDIA RTX 4080 GPU, our model operates faster than real-time. Furthermore, its compact size 

(164,996 parameters at inference) facilitates deployment in resource-constrained scenarios (e.g., 

mobile devices, edge computing), significantly enhancing the viability of our temporal-only rPPG 

approach for unobtrusive affective computing in real-world applications where dedicated sensors or 

multiple modalities may not be feasible. This demonstrates the potential of specialized temporal 

models even within the limitations of the unimodal signal. 

5.1. Limitations 

Despite demonstrating advancements in temporal rPPG-based emotion recognition, our study 

presents several limitations that inform future research directions. Firstly, our evaluation is confined 

to the MAHNOB-HCI dataset. Although widely recognized, its limited scale (527 sessions) and 

potential lack of diversity across varied populations and emotional elicitation methods may constrain 

the generalizability of our findings. Secondly, the deliberate restriction to temporal-only rPPG, while 

defining the specific scope of our investigation, inherently excludes potentially valuable spatial 

information from rPPG itself or complementary affective cues from other modalities. As evidenced 

by the lower performance in valence recognition, this limitation underscores the inherent constraints 

of relying solely on a spatially averaged temporal pulse signal for nuanced affective dimensions. 

5.2. Future work 

Addressing the identified limitations suggests several clear avenues for future research to build 

upon the temporal processing foundations established by this study. Validating our proposed 

framework on larger and more diverse datasets (e.g., DEAP, WESAD) is crucial to assess its 

generalization and robustness across varied contexts and populations. Exploring more granular 

emotion classification (e.g., predicting continuous valence/arousal or discrete emotions) and 

investigating personalization strategies (e.g., few-shot subject calibration or transfer learning) could 

significantly enhance practical applicability and performance. Importantly, to improve the 

recognition of nuanced affective dimensions like valence, future work should explore the integration 

of spatial-temporal rPPG analyses that preserve regional blood flow patterns, or multimodal fusion 

with complementary affective cues such as facial expressions or audio signals. Evaluating our model 

on alternative emotional elicitation methods, such as the large-scale VR-based dataset by Marín 

Morales et al. [31], would further strengthen validation and assess domain generalization. Finally, 

while our attention mechanism targets sparsity, deeper analyses could yield critical insights into 
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which specific physiological dynamics and temporal patterns are most indicative of different 

emotional states, potentially informing more interpretable models. 

Collectively, our results establish foundational benchmarks and methodological insights for 

future advancements in unimodal physiological emotion recognition, clearly defining both the 

capabilities and inherent limitations of relying solely on temporal-only rPPG signals. The 

comprehensive physiological and cognitive grounding of our approach, combined with rigorous 

evaluation protocols, ensures robust, interpretable, and applicable outcomes, advancing the state-of-

the-art in this challenging area of affective computing research. 

6. Conclusions 

We introduced a physiologically-inspired deep learning framework for recognizing emotional 

states exclusively from temporal remote photoplethysmography (rPPG). Our approach 

systematically addresses critical limitations—temporal sparsity, signal noise, and weak labeling—

through the Multi-scale Temporal Dynamics Encoder (MTDE), adaptive sparse attention, Gated 

Temporal Pooling, and a structured three-phase curriculum learning strategy. Empirical evaluation 

confirmed competitive performance in arousal classification (66.04% accuracy, 61.97% weighted F1), 

surpassing previous deep learning baselines. Conversely, lower performance in valence classification 

(62.26% accuracy) reveals fundamental physiological constraints in using solely temporal 

cardiovascular signals, clearly demarcating the capability boundaries of unimodal rPPG signals.  

These results establish robust methodological benchmarks and highlight promising directions 

for future exploration: incorporating spatially-resolved rPPG analysis or multimodal integration 

could significantly enhance nuanced emotional inference. This study provides critical foundational 

insights and clear guidelines to advance affective computing towards more accurate, reliable, and 

interpretable physiological emotion recognition. 

7. Patents 
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Abbreviations 

The following abbreviations are used in this manuscript: 

Acc Accuracy 

ANS Autonomic Nervous System 

AttnScorer Attention Scorer  

BVP Blood Volume Pulse 

CE Confusion Matrix 

CM Convolutional Neural Network 

EDA Electrodermal Activity 

HRV Heart Rate Variability 

MIL Multiple Instance Learning 

MTDE Multi-scale Temporal Dynamics Encoder 

rPPG remote Photoplethysmography 

WF1 Weighted F1-score 

Appendix A. Architecture Details of MTDE 

A.1. Architecture Overview 

The MTDE encodes each 128-frame (4 s) rPPG chunk into a 256-dimensional embedding through 

two stages: 

o SlimStem: Two Conv1D layers (kernel=5, then 3 with stride=2) for initial noise reduction and 

temporal downsampling (T=128 → 64). 

o MultiScaleTemporalBlock (MSTB): Three parallel branches with different kernel sizes and 

dilations to model short-, mid-, and long-range temporal dynamics. 

A.2. Physiological Rationale & Receptive Fields 

Table A1. Table of MSTB’s parameters per branch. 

Branch Kernel Dilation Effective RF Approx. Duration Physiological Role 

Short 3 3 6 ∼0.2 s Pulse upslope, sympathetic ramp 

Medium 5 8 66 ∼2.2 s High-frequency HRV 

Long 3 32 129 ∼4.3 s Multi-cycle ANS modulation 

Here, Receptive Field can be calculated by 𝑅𝐹 = (𝑘 − 1) × 𝑑 + 1 

 

A.3. Pooling Layer: SoftmaxPool 

Softmax over time across temporal steps: 

𝒘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝒂𝒕𝒕𝒏 ∗ 𝑥), ℎ  =  ∑𝑤𝑡𝑥𝑡
𝑡

  

(A.1) 

This results in a single (B, D) embedding per chunk. No gating is applied in this layer. 

 

Appendix B. Attention Modules: AttnScorer and GatedPooling 

B.1. AttnScorer: Phase-aware Attention Scoring 
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B.1.1. Architecture 

o 2-layer MLP: Linear(D, D/2) → GELU → Linear(D/2, 1) 

o Zero-mean score normalization: 𝑠𝑖  ←  𝑠𝑖  −  𝑚𝑒𝑎𝑛(𝑠) 

o 𝜎 −  𝛾 scaling with EMA-based adjustment: 

𝛾  =  
𝜎∗

𝜎 +  𝜀
 ∈  [0.5, 2.0] 

 

(B.1) 

o Raw score scaling: 𝑠𝑖
𝑠𝑐𝑎𝑙𝑒𝑑  =  𝛾 ∙ 𝑠𝑖  

B.1.2. Phase-dependent Attention Mechanism 

Table 1. Table of Attention Type per phase. 

Phase Epoch Range Attention Type Notes 

0 0–14 Softmax (with temperature ) Encourages diversity 

1 15–29 -Entmax (adaptive ) Sharp, sparse, differentiable Top-K 

2 ≥30 Raw scores only Passed to GatedPooling 

B.1.3. Entmax Scheduling during Phase 1. 

𝛼(𝑒)  =  

{
 
 

 
 1.0 +  0.3 ∙

𝑒 −  15

5
 , 15 ≤  𝑒 <  20

1.3 +  0.3 ∙
𝑒 −  20

5
 , 20 ≤  𝑒 <  25

1.7,                              25 ≤  𝑒 <  30

 
 

(B.2) 

B.2. GatedPooling: Sparse Temporal Aggregation 

Receives chunk embeddings ℎ𝑖   ∈ ℝ
𝐷 and raw attention scores. In Phase 2, the attention scores 

are transformed using 𝛼𝑔-Entmax to produce temporal weights: 

𝛼𝑖 = 𝑒𝑛𝑡𝑚𝑎𝑥𝛼𝑔(𝑟𝑎𝑤_𝑠𝑐𝑜𝑟𝑒𝑖), 𝑔𝑖   = 𝜎(𝑀𝐿𝑃(ℎ𝑖))  

(B.3) 

The session-level pooled embedding is computed as: 

ℎ𝑝𝑜𝑜𝑙𝑒𝑑   =  ∑𝛼𝑖(𝑔𝑖  ⨀ ℎ𝑖)

𝑇

𝑖=1

 (B.4) 

Where ⨀ denotes element-wise multiplication 𝜶𝒈 is scheduled during Phase 2 as: 

𝛼𝑔(𝑒) = 1.7 +  0.3 ∙ 𝑚𝑖𝑛 (
𝑒 −  30

19
, 1.0) , 𝑒 >  30 

 

(B.5) 

This dual mechanism (Temporal weight × Feature gate) reflects neural inhibition, enabling 

selective suppression of irrelevant dimensions even within sailent chunks. 

Appendix C. Phase-wise Training Schedule 

Table 1. Epoch-based Curriculum Strategy. 

Phase Epochs Objective Active Modules 

0 0–14 Embedding diversity (SupCon) MTDE, AttnScorer, ChunkProjection 

1 15–29 Chunk-level discrimination + ChunkAuxClassifier, GatedPooling✓ (E≥25) 

2 30–49 Session-level classification GatedPooling, Classifier 
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Table 2. Hyperparameter Scheduling. 

Epoch Top-K Ratio SupCon 𝝀 CE 𝝀 𝝀𝒆𝒏𝒕𝒓𝒐𝒑𝒚 𝝉 (Temp) 𝜶 (AttnScorer) 𝜶𝒈(Gated) 

0 0.0 1.00 0.0 0.1 1.2 — — 

14 0.0 0.44 0.0 0.1 0.7 — — 

15 0.6 0.0 0.5 0.0 1.0 1.0 — 

25 0.3 0.0 0.5 0.0 1.0 1.7 start = 1.7 

30 — 0.0 0.7 0.0 1.0 raw only 1.7 → 2.0 

50 — 0.0 1.0 0.0 1.0 raw only 2.0 

Appendix D. Contusion Matrices 

This appendix provides the confusion matrices for Arousal and Valence classification results 

from the final proposed model evaluated on the MAHNOB-HCI test set. 

Table D1. Confusion Matrix – Arousal Classification (Final Model). 

 Predicted Low Predicted High 

Actual Low 9 18 

Actual High 0 26 

• Accuracy: 64.04% 

• Weighted F1-score: 61.97% 

• The model shows strong sensitivity to high arousal states (recall: 100%), with most misclassifications 

occurring in the low-arousal category. 

Table D2. Confusion Matrix – Valence Classification (Final Model). 

 Predicted Low Predicted High 

Actual Low 13 10 

Actual High 10 20 

• Accuracy: 62.26% 

• Weighted F1-score: 62.26% 

• The model demonstrates relatively balanced performance but reveals confusion between low and high 

valence categories, indicating the nuanced nature of valence detection from unimodal temporal signals. 
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