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Highlights

What are the main findings?

e A temporal-only rPPG framework with multi-scale CNN, sparse a-entmax attention, and gated
pooling achieved 66.04% accuracy and 61.97% weighted F1 for arousal on MAHNOB-HCI
(subject-independent).

e  The model underperformed for valence (62.26% accuracy), highlighting the physiological limits
of unimodal time-series signals.

What is the implication of the main finding?

Temporal rPPG can rival other single-modality methods for arousal when physiologically
inspired temporal modeling is applied.

Addressing valence requires integration of spatial or multimodal cues, guiding future affective
computing designs.

Abstract: Remote photoplethysmography (rPPG) enables non-contact physiological measurement for
emotion recognition, yet the temporally sparse nature of emotional cardiovascular responses,
intrinsic measurement noise, weak session-level labels, and subtle correlates of valence pose critical
challenges. To address these issues, we propose a physiologically inspired deep learning framework
comprising a Multi-scale Temporal Dynamics Encoder (MTDE) to capture autonomic nervous system
dynamics across multiple timescales, an adaptive sparse a-entmax attention mechanism to identify
salient emotional segments amidst noisy signals, Gated Temporal Pooling for robust aggregation of
emotional features, and a structured three-phase curriculum learning strategy to systematically
handle temporal sparsity, weak labels, and noise. Evaluated on the MAHNOB-HCI dataset (27
subjects, 527 sessions, subject-independent split), our temporal-only model achieved competitive
performance in arousal recognition (66.04% accuracy, 61.97% weighted F1), surpassing prior CNN-
LSTM baselines. However, lower performance in valence (62.26% accuracy) revealed inherent
physiological limitations of unimodal temporal cardiovascular analysis. These findings establish
clear benchmarks for temporal-only rPPG emotion recognition and underscore the necessity of
incorporating spatial or multimodal information to effectively capture nuanced emotional
dimensions such as valence, guiding future research directions in affective computing.

Keywords: remote photoplethysmography; affective computing; temporal dynamics; sparse
attention; emotion recognition; curriculum learning; autonomic nervous system; physiological
computing
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1. Introduction

Emotion recognition is a fundamental component of affective computing and human-computer
interaction, with significant implications across healthcare, education, and consumer technologies
[1,2]. Traditional methods primarily rely on observable cues such as facial expressions or speech.
However, these external indicators can be intentionally controlled or masked, limiting their reliability
in representing genuine emotional states [2,10]. Physiological signals—such as heart rate, blood
volume pulse (BVP), and skin conductance —regulated autonomically, offer a more authentic and
less voluntarily modifiable reflection of emotional states, making them ideal for unobtrusive affective
computing [2,4,10].

Extensive psychophysiological research has firmly established that emotional states trigger
characteristic, transient changes in cardiovascular activity [4,5,22]. Heart rate variability (HRV),
defined by fluctuations in intervals between heartbeats, reflects autonomic nervous system (ANS)
activity, correlating distinctly with emotional regulation processes [5,6,30]. Additionally, pulse
waveform morphology captures vascular tone variations associated directly with emotional arousal
[22]. Notably, these physiological responses are transient, sparsely distributed, and exhibit non-
uniform temporal patterns—highlighting a critical gap in current approaches: effective identification
and interpretation of emotionally salient temporal segments amidst noisy physiological signals.

Recent advancements in remote photoplethysmography (rPPG) enable unobtrusive, camera-
based monitoring of cardiovascular activity, measuring subtle skin color variations induced by
cardiac pulse waves [15,23,24]. This technique allows scalable affective computing applications across
diverse industrial contexts due to the proliferation of camera-equipped devices (e.g., smartphones,
laptops, surveillance systems), significantly broadening the practical utility of emotion recognition
technology.

Despite promising potential, recognizing emotions exclusively from unimodal temporal rPPG
signals faces significant unresolved challenges. Firstly, emotional physiological responses often
manifest briefly and sporadically rather than continuously, complicating effective temporal analysis
[4,5,10]. Secondly, rPPG signals inherently suffer from noise and artifacts compared to contact-based
methods, impairing robust interpretation of subtle emotional cues [15,23,24]. Thirdly, typical session-
level annotations induce a weak-label, Multiple Instance Learning (MIL) scenario [7], necessitating
sophisticated models to pinpoint informative temporal segments accurately. Finally, recognizing
valence from physiological signals remains inherently more challenging than arousal, with its subtler
and more complex physiological correlates less directly tied to general ANS activation [4,22,39].

Our study explicitly addresses these challenges by proposing a novel deep learning framework
designed to fully leverage temporal dynamics within unimodal rPPG signals. By processing signals
in short, localized temporal chunks, we effectively isolate and analyze transient physiological
responses. We introduce a Multi-scale Temporal Dynamics Encoder (MTDE), physiologically
motivated by multi-rate ANS response characteristics [22,30], capturing subtle temporal patterns
across different timescales. Furthermore, an adaptive sparse attention mechanism leveraging «-
Entmax and entropy regularization explicitly identifies and prioritizes temporally sparse emotional
segments, emulating selective human attentional processes [16,19,37,38]. A novel gated temporal
pooling mechanism robustly aggregates chunk-level information, effectively filtering noise through
joint temporal weighting and feature-level gating [13,20,35].

Critically, we employ a physiologically inspired, three-phase curriculum learning strategy —
exploration, discrimination, and exploitation —mirroring human attentional refinement during
learning [6,20,38]. This systematic training approach addresses weak-label issues, temporal sparsity,
and signal noise incrementally, enabling stable, progressive learning from complex, noisy temporal
data.

To robustly evaluate our method, we employ weighted F1 scores, addressing class imbalance
more objectively compared to prior work such as Mellouk & Handouzi [9]. Unlike Mellouk &
Handouzi [9], we explicitly validate performance on entirely unseen test sets, enhancing
generalizability and methodological rigor. Our evaluations on the MAHNOB-HCI dataset show

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1435.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 d0i:10.20944/preprints202505.1435.v1

3 of 20

promising results: for arousal, achieving an accuracy of 66.0%, an F1 of 0.7429, and weighted F1 of

0.6224; for valence, an accuracy of 62.3%, an F1 of 0.6667, and weighted F1 of 0.6227, underscoring

our model's effectiveness despite inherent challenges.

Our contributions explicitly bridge critical research gaps, providing clear advancements:

o Focused Temporal Analysis of rPPG: Establishes foundational insights into the capabilities and
limitations of using exclusively temporal physiological information, providing a rigorous
benchmark.

e Multi-scale Temporal Dynamics Encoder (MTDE): Effectively captures physiologically
meaningful ANS responses across multiple timescales, addressing complexity in subtle temporal
emotional signals.

e Adaptive Sparse Attention: Precisely identifies transient, emotionally relevant physiological
segments amidst noisy rPPG data, significantly enhancing robustness.

¢ Gated Temporal Pooling: Sophisticatedly aggregates emotional information across temporal
chunks, effectively mitigating noise and irrelevant features.

e Curriculum Learning Strategy: Systematically addresses learning complexities associated with
weak labels, noise, and temporal sparsity, ensuring robust, stable model learning.

2. Related Work

2.1. The Physiological Signals for Emotion Recognition

Physiological signals, particularly cardiovascular activity, offer reliable indicators of emotional
states due to their involuntary ANS regulation [3-5]. HRV and pulse morphology have emerged as
critical temporal features reflecting emotional arousal and valence [22,30]. Traditional approaches
often extract handcrafted temporal features (e.g., HRV frequency bands, SDNN), with newer
methods exploring nonlinear temporal dynamics [11,17,33]. Our MTDE explicitly addresses
limitations of these conventional approaches by capturing rich, physiologically motivated temporal
patterns through a specialized multi-scale neural architecture.

2.2. Remote PPG Signal Extraction and Denoising

Due to higher susceptibility to artifacts, extracting robust temporal waveforms from rPPG
signals remains challenging [15,23,24]. Recent deep learning advancements, such as PhysNet,
PhysFormer, PhysMamba, RhythmFormer, significantly improve extraction and noise resilience
[25,28,32,36]. We adopt PhysMamba [32] for its superior temporal refinement and robustness,
explicitly addressing the inherent noise challenges of rPPG signals, crucial for accurate emotion
inference.

2.3. Emotion Recognition from rPPG/PPG

Only a few studies focus exclusively on temporal rPPG signals. Mellouk & Handouzi [9] applied
CNN-LSTM models on short temporal segments without specialized sparsity or attention
mechanisms. Talala et al. [34] utilized pulse-derived spectral images, implicitly incorporating spatial-
temporal features. Contact-based methods often employ multiple modalities or personalization
[11,17]. Our model, conversely, specifically targets temporal sparsity and noise, utilizing adaptive
sparse attention, gated pooling, and structured curriculum learning, thereby significantly advancing
beyond existing models.

2.4. Comparison and Key Differences

Distinct from prior works, our approach uniquely addresses:
e Temporal-only Focus: Clarifies inherent temporal limitations and potentials, establishing
foundational benchmarks.
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e Explicit Temporal Dynamics Modeling: Physiologically-grounded multi-scale analysis tailored
specifically for temporal emotional signals [22,30].

e Advanced Temporal Attention: Sparse attention explicitly prioritizes salient temporal segments
amidst noise, paralleling biological attention mechanisms [16,19,37,38].

¢ Robust Aggregation Strategy: Gated pooling methodically filters noise, prioritizing emotionally
informative temporal segments.

e Generalizable, Rigorous Evaluation: Utilizing weighted F1 metrics and unseen test validation
enhances objective performance assessments, overcoming methodological shortcomings of
previous studies [9].

3. Methodology

This section delineates the methodology employed in our study for emotion recognition from
remote photoplethysmography (rPPG) signals. We describe the dataset utilized, the preprocessing
steps, the overall framework architecture, the detailed components of our model, the physiologically-
inspired curriculum learning strategy, the evaluation metrics and comparative baseline, and the
experimental setup.

3.1. Dataset and Preprocessing

We employ the publicly available MAHNOB-HCI multimodal emotion dataset [21], comprising
recordings from 27 subjects who viewed 20 emotional film clips and provided self-reported valence
and arousal ratings on a 1-9 scale. Following common practice and excluding unusable sessions from
3 subjects, our study utilizes a total of 527 face videos. These videos were downsampled to 30 fps, a
rate validated as sufficient for capturing the subtle cardiovascular dynamics essential for emotion
recognition [14] and aligning with the pre-training conditions of the PhysMamba model used as our
front-end [32].

The self-reported valence and arousal ratings were binarized into "low" (ratings 1-4) and "high"
(ratings 5-9) classes by thresholding at the midpoint (4.5), resulting in minor class imbalances across
the full dataset (Arousal: 270 low vs. 257 high, Valence: 251 low vs. 276 high). To ensure rigorous
testing of the model's generalization capability and prevent data leakage, a strict subject-independent
split was adopted. The 527 sessions were partitioned into 421 sessions (80%) for training, 53 sessions
(10%) for validation, and 53 sessions (10%) for testing. While the limited dataset size necessitates
relatively small validation and test sets, this rigorous partitioning ensures evaluation solely on
entirely unseen subjects, providing a more realistic assessment of applicability compared to splits
permitting subject overlap. The dataset is publicly available under a CC-BY-NC-SA license, and our
study complies with GDPR by utilizing anonymized data, thus not requiring further ethical approval.

The MAHNOB-HCI dataset is publicly available under a Creative Commons Attribution-
NonCommercial-ShareAlike (CC-BY-NC-SA) license. Our study complies with this license and
GDPR regulations, as only de-identified, pre-recorded data were used and no personally identifiable
information was processed.
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Figure 1. Overview of the proposed end-to-end framework (Phase 2: Session-level exploitation and inference).
This figure shows the flow from the 1D temporal rPPG signal (output of PhysMamba), through chunking, MTDE
processing (outputting chunk embeddings), AttnScorer — GatedPooling — Pooled Session Embedding — Main

Classifier — Emotion Prediction.

3.2. Overall Framework

The overall architecture of our proposed end-to-end framework is illustrated in Figure 1. This
figure depicts the core model structure as it operates during Phase 2 of training (session-level
exploitation and inference), representing the complete pipeline from the raw video input (via the
rPPG extractor) to the final emotion prediction. The pipeline fundamentally consists of a pre-trained
rPPG extraction front-end, followed by our emotion recognition model.

Our emotion recognition model processes the 1D temporal rPPG signal, derived from the video,
in fixed-length, non-overlapping temporal chunks of 128 frames (approximately 4 seconds at 30 fps).
This specific chunk size was strategically chosen for multiple reasons. Firstly, it aligns with the
temporal window used by the robust PhysMamba rPPG extractor [32] and common processing units
in the rPPG-Toolbox framework [14]. Secondly, and crucially, prior work [9] has demonstrated that
a 4-second segmentation size yields optimal performance for emotion classification from contactless
PPG signals, reinforcing its appropriateness for capturing pertinent physiological dynamics within
the temporal domain. Physiologically, a = 4-second window is well-suited as it typically
encompasses several cardiac cycles (e.g., approximately 4-7 heartbeats at a resting heart rate of 60-
100 bpm). Analyzing physiological patterns such as heart rate variability (HRV) or subtle pulse
waveform changes over this duration allows for the capture of meaningful short-term autonomic
nervous system (ANS) modulations [30, 22], which are widely recognized as crucial indicators of
emotional states.

Each temporal chunk is subsequently processed by the Multi-scale Temporal Dynamics Encoder
(MTDE) to extract rich temporal feature embeddings. These chunk embeddings are then fed to the
AttnScorer to derive a scalar attention score indicating their potential emotional relevance, and also
passed to the GatedPooling module. The GatedPooling module integrates these attended and gated
chunk features into a single session-level representation. Finally, a Main Classifier predicts the
session-level emotion labels (Valence/Arousal) from this pooled representation, based exclusively on
the aggregated temporal information. Specific details and components active during the earlier Phase
0 and Phase 1 training, which build upon or extend this core architecture, are illustrated in Figure 2
and Figure 3, respectively, and are described in detail in the subsequent section on the curriculum
learning strategy.

3.3. Training Modules

This section provides a detailed description of the core modules constituting our emotion
recognition framework.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.3.1. rPPG Extraction Front-end (PhysMamba)

The PhysMamba [32] model serves as the initial step to extract a refined, denoised 1D temporal
rPPG (Blood Volume Pulse, BVP) signal from raw facial video frames. We utilize the pre-trained
PhysMamba, a robust deep learning model demonstrating state-of-the-art performance in recovering
accurate BVP signals even under challenging real-world conditions [32]. PhysMamba is applied to
each video by first dividing it into non-overlapping 128-frame (=4 s) chunks, processing each chunk
independently. Input frames to PhysMamba are preprocessed using the DiffNormalized scheme [32],
which computes frame-wise ratio differences normalized by the standard deviation, enhancing the
detection of subtle blood flow changes. The output of PhysMamba is a refined 1D temporal BVP
signal representation for each chunk, serving as the exclusive input to our subsequent emotion
recognition model without further per-session normalization or bandpass filtering.

3.3.2. Multi-scale Temporal Dynamics Encoder (MTDE)

The MTDE's purpose is to effectively capture physiological dynamics across various temporal
scales present within each 128-frame BVP chunk, designed with a biologically inspired [22, 30] multi-
scale architecture. As detailed in Appendix A, the MTDE comprises two main stages: a SlimStem and
a MultiScaleTemporalBlock (MSTB). The SlimStem consists of two sequential 1D convolutional layers
for initial noise reduction and low-level feature extraction, reducing input length by half,
conceptually akin to early sensory filtering. The MSTB features a three-branch architecture using
dilated convolutions to achieve different effective receptive field (RF) sizes on the original chunk
input. The approximate effective RFs for each branch (Short: =6 frames, ~0.2 s; Medium: ~66
frames, ~2.2 s; Long: ~129 frames, ~4.3 s) are calculated based on layer parameters (Appendix A)
and linked to distinct physiological phenomena. The Short scale is sensitive to rapid physiological
changes like pulse upslope and beat onset, often linked to sympathetic activation [22]. The Medium
scale captures patterns related to short-term HRV, primarily associated with parasympathetic
regulation [30]. The Long scale integrates slower fluctuations across the chunk, reflecting ANS
interplay [22]. Outputs from the three MSTB branches are concatenated, normalized, and passed
through a Softmax-based temporal attention pooling layer (SoftmaxPool) applied across the temporal
dimension. This layer learns to weigh the importance of different temporal steps within the chunk,
producing a single, fixed-size chunk embedding (h; € R”, where D=256).

3.3.3. AttnScorer

The AttnScorer's purpose is to generate a scalar attention score for each chunk embedding (h;),
indicating its potential emotional relevance. It consists of a 2-layer MLP with GELU activation
(Appendix B). Raw attention scores are normalized using o —y scaling, an adaptive mechanism
based on the running standard deviation, analogous to biological sensory normalization [37]. Scores
are then transformed using a-Entmax [16] attention with adaptive a annealing (Appendix B) to
encourage sparse, differentiable selection of salient chunks, mirroring biological selective attention
[19, 37, 38]. Entropy regularization further ensures attention sparsity and efficient neural encoding.

3.3.4. Auxiliary Components

These modules are active only during specific curriculum phases (Figure 2, 3) to support
learning objectives. The ChunkProjection (Phase 0) is an MLP head for normalized embeddings used
by the Supervised Contrastive Loss [12]. The ChunkAuxClassifier (Phase 1) is a classifier attached
before GatedPooling, predicting session labels from individual chunks to pretrain the MTDE for local
discrimination. It is used to initialize the Main Classifier in Phase 2.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.3.5. GatedPooling

GatedPooling aggregates the sequence of chunk embeddings (hy, ..., hr) into a single session-
level representation (hpoo1eq). Unlike standard pooling [23], it implements a learned, content-aware
aggregation [20, 13] via temporal attention and feature-level gating. Using AttnScorer scores (via a-
Entmax) for temporal weights (a;) and a learned gate vector (g; € R?) per chunk (MLP + Sigmoid),
it computes:

T

Ppootea = ) (g @ hy) M

i=1

The feature-level gating (g;) is pivotal; it modulates contribution of each feature dimension within
a chunk, mimicking biological neural gating/inhibition [19, 37, 38] to selectively amplify relevant
signals and suppress noise/irrelevant features within temporally attended segments, critical for robust
rPPG analysis.

3.3.6. Main Classifier

The Main Classifier receives the hpggeq vector and predicts final emotion labels (Low/High
Valence/Arousal) via FC layers, based solely on aggregated temporal rPPG information.

3.4. Training Curriculum

Our training employs a three-phase curriculum learning strategy [6, 38], conceptually inspired
by how biological systems, including humans, refine their learning and attentional focus [20]. This
structured approach guides the model through progressively more complex learning objectives,
addressing the inherent challenges of noisy, temporally sparse, and weakly-labeled time-series data
to achieve stable and effective learning. The entire training process runs for a total of 50 epochs. The
specific pipeline configuration and module activations during each phase are illustrated in Figures 1,
2, and 3. Detailed hyperparameters for each phase are provided in Appendix C.

Projection A

256 embeddings | (128-D) Lsupmn
H +

B 256 embeddings L

§ E— entropy
2| — | MTDE [ — )

]
]

256 embeddings Attention Attenth oh
Scorer | — ttention weights

Chunking (128 frames) and preprocessing Chunk-wise tPPG signals ~ Multi-scale Temporal Dynamics Encoder

!

A

Input RGB video

Figure 2. Phase 0 training setup. This figure shows Chunk Embeddings (MTDE output) — ChunkProjection —
SupCon Loss (Lsypcon)- It indicates AttnScorer is active for entropy loss using internal Softmax attention for

exploration. GatedPooling/Main Classifier are not used for the primary loss.

3.4.1. Phase 0 (Epochs 0-14): Exploration and Representation Learning.

e Physiological/Cognitive Link: This initial phase serves as an analogy to broad, unguided
sensory exploration in biological systems. Before specific pattern recognition, a system first
captures a wide array of sensory inputs to build a general understanding of the feature space.
Similarly, the model focuses on encoding diverse physiological patterns within the rPPG signal

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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across different time scales, irrespective of the final emotional labels, aiming to structure the
embedding space based on inherent data characteristics and label proximity.

e Objective: The primary objective is to train the MTDE and related components (AttnScorer,
ChunkProjection) to produce robust and diverse embedding representations for individual
temporal chunks. During this phase, the GatedPooling module and the Main Classifier are not
used for the primary loss computation.

e Primary Losses: The total loss in Phase 0 is a combination of the Supervised Contrastive Loss and
an Entropy Regularization Loss. The Supervised Contrastive Loss (Lgypcon) [12] is applied to the
normalized embeddings from the ChunkProjection. This loss encourages embeddings from
chunks originating from the same session (sharing the same label) to be closer in the
representation space, while pushing embeddings from different sessions apart. This helps
structure the embedding space according to emotional labels and promotes representation
diversity.

z exp(z; - z,/7)

Yaea() € xXp(z; - 24/ T) )

-1
Lsupcon(P) = z ;
LTP@I

Here, I is the set of anchor indices in the batch, A(i) is the set of all indices in the batch except i,

€P(i)

P(i) is the set of indices of positive samples (same label) as i, z represents the normalized
embedding vectors, and T is the temperature parameter. The Entropy Regularization Loss (Lptropy
) is applied to the AttnScorer's internal Softmax attention output. With a weight A¢ptrop, (detailed in
Appendix C), this loss encourages the initial attention distribution to be more uniform across chunks,
promoting broader exploration of temporal features by the MTDE. The temperature parameter t for
Lsupcon s adaptively scheduled (Appendix C) based on the complexity of learned attention
distributions, facilitating effective contrastive learning alongside exploration. The overall loss for this

Phase 18 LTotal = Lsupcon + Aentropyﬁentropy

W\P ]

prets £

ned| \ 256 embedding
— PPG — —_— — —_ .
extractor £ 3

Chunking (128 frames) and preprocessing Chunk-wise tPPG signals  Multi-scale Temporal Dynamics Encoder

Chunk Auxiliary Classifier | —>  Lcpunk-cE

Figure 3. Phase 1 training setup. This figure shows Chunk Embeddings (MTDE output) — ChunkAuxClassifier
— Chunk-level CE Loss (£cpunk—ce, Focal Loss). It shows AttnScorer is active and a-Entmax scores determine
Top-K selection for the loss. GatedPooling/Main Classifier also train (GatedPooling from Epoch 25), and Session-

CE is introduced later.

3.4.2. Phase 1 (Epochs 15-29): Chunk-level Discrimination and Attentional Refinement.

e Physiological/Cognitive Link: This phase simulates the development of selective attention and
fine discrimination. After initial broad exploration, a biological system learns to differentiate
between stimuli and focus processing on the most relevant or challenging aspects. In this phase,
the model refines its ability to discriminate between emotional classes specifically at the chunk
level, learning to focus its attention on the temporal segments that are most informative or
difficult to classify amidst noise.

e Objective: To significantly enhance the discriminative capacity of the individual chunk
embeddings and to refine the AttnScorer's ability to identify emotionally salient temporal
segments. During this phase, the ChunkProjection module and its loss are frozen. The MTDE,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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AttnScorer, and ChunkAuxClassifier are actively trained. The GatedPooling module's
parameters also begin training from epoch 25, preparing for the final session-level task.

e Primary Losses: The total loss in Phase 1 combines a Chunk-level Cross-Entropy Loss with a
gradually introduced Session-level Cross-Entropy Loss. The Chunk-level Cross-Entropy Loss
(Lehunk-ce ) is applied using the ChunkAuxClassifier. To effectively handle potential class
imbalance present at the chunk level and to focus learning on challenging examples, we employ
Focal Loss [41] with y = 2.0 (Appendix C):

Lrocar(0e) = —a,(1 - pt)ylog(pt) 3)

Here, p; is the model's estimated probability for the target class, a, is a class-balancing weight,
and vy is the focusing parameter. This loss is critically calculated only for the Top-K chunks selected
based on the AttnScorer's a-Entmax output. The Top-K ratio K is strategically annealed downwards
over this phase (schedule in Appendix C) to progressively focus discriminative learning on the most
salient segments, mimicking how attention narrows onto key details [8, 20] within a stimulus. The
Session-level Cross-Entropy Loss (Lsession—ck) i scheduled to be introduced from epoch 25, with its
weight gradually ramping up from 0 to 0.5 (see schedule in Appendix C). While the parameters of
the GatedPooling module and the session-level classifier are unfrozen starting at this point,
allowing gradient flow and preparatory fine-tuning, L_session-CE itself is not yet included in the
total loss calculation until Phase 2. This staged activation strategy enables the model to begin
adapting the session-level representation and pooling dynamics without prematurely influencing the
optimization objective, thus facilitating a smoother transition to Phase 2 training. The overall loss for
this phase is Lrotar = Lenunk-ce

3.4.3. Phase 2 (Epochs > 30): Session-level Exploitation and Fine-tuning.

e The Physiological/Cognitive Link: This final phase is analogous to integrating filtered and
relevant information to make a final decision or judgment. The system leverages its refined chunk
representations and attentional mechanisms to consolidate evidence from the most salient and
informative features identified across time, leading to the final emotional inference.

e Objective: To optimize the entire end-to-end pipeline for the final session-level emotion
recognition task. In this phase, the ChunkAuxClassifier and its associated loss are removed. The
Main Classifier is initialized using the trained weights from the ChunkAuxClassifier at the start
of epoch 30. The MTDE, AttnScorer, GatedPooling, and the Main Classifier are all actively
trained. The full pipeline shown in Figure 1 is operational.

e Primary Loss Function: The sole objective function in Phase 2 is the Session-level Cross-Entropy
Loss (Lsession—ce) applied to the output of the Main Classifier based on the GatedPooling session
embedding. Its weight ramps up from 0.5 (at epoch 30) towards 1.0 (schedule in Appendix C) to
become the primary focus.

C
Lox, 9) == ) %log(®) )

Here, y is the one-hot encoded ground truth label for the session, J is the predicted probability
distribution over classes from the Main Classifier, and C is the number of classes. During this phase,
the AttnScorer is fine-tuned at a reduced learning rate (scaling factor in Appendix C). Additionally,
the a, value for the a-Entmax transformation within the GatedPooling module is annealed from 1.5
(at epoch 30) to 1.8 (at epoch 50) (schedule in Appendix C). This increases the sparsity of the temporal
attention applied during aggregation, further refining the focus on the most crucial temporal
segments and their gated features for the final prediction.

3.5 Evaluation Metrics
Model performance was quantitatively evaluated using standard metrics on the independent
test set. These metrics were chosen to provide a comprehensive and robust assessment, particularly
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considering potential class imbalances. Performance was measured using Accuracy and Weighted

Fl1-score. The Weighted F1-score is particularly valuable in the presence of class imbalances, as it

accounts for performance on all classes weighted by their frequency, providing a more objective

measure than simple accuracy or macro-averaged metrics in such scenarios.

e Accuracy: Defined as the proportion of correctly classified sessions out of the total number of
sessions in the test set:

Number of Correct Predictions

Accuracy = Total Number of Predictions ©)
¢ Weighted Fl-score: This metric is calculated based on the Precision (P,.), Recall (R.), and F1-score

(F1.) for each individual class c. The formulas for these class-specific metrics are:

procision. — __TFe ;

recision, = TP, + FP, (6)

Recall, = — ¢ 7

€ = Th, + FN, @
Pecision, -+ Recall,

F1,. =2 (8)

. Pecision, + Recall,

The overall Weighted F1-score is then computed as the average of the class F1-scores, weighted
by the number of samples in each class (N.):

. o N,
Weighted F1 = Zﬁ-mc )
c=1

Here, N is the total number of samples in the test set, and C is the number of classes. In addition to
these primary metrics, we also analyze the confusion matrix to gain insights into the model's
performance across different classes and the types of errors made.

3.6. Baseline

We provide a comparative evaluation against Mellouk & Handouzi [9], a relevant prior deep
learning work on contactless PPG emotion recognition using CNN-LSTM on =4s segments but
lacking explicit sparsity/attention. We utilize their reported results. However, achieving an ideal
comparison on our exact subject-independent split is limited by their source code unavailability and
unspecified test partition. Our study mitigates this by detailing our split and using Weighted F1 for
robust comparison despite potential test set distribution differences, establishing a clearer benchmark.

3.7. Experimental Setup

Training was performed using the AdamW optimizer. We employed a CosineAnnealingLR
schedule, with T,,,, = 15 for Phases 0 and 1, and T4, = 20 for Phase 2. The initial learning rates
were set to 3 X 107*, 2 x 107*, and1 x 10™* for Phases 0, 1, and 2, respectively. Weight decay was
1x107* in Phase 0 and 5 x 10™* in Phases 1 and 2. All experiments were run on a system with
Ubuntu 20.04, Python 3.8, PyTorch 2.1.2 (+ CUDA 12.1) and an NVIDIA RTX 4080 GPU with a batch
size of 8.

4. Results
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Table 1. Main performance results of Arousal classification (Accuracy, F1-score for positive class, and Weighted
F1-score) on the MAHNOB-HCI test set (53 unseen subjects), subject-independent split. Highlights performance

solely from temporal domain. All metrics are reported as percentages.

Method Accuracy (%) F1 of Positive (%) Weighted F1 (%)
CNN-LSTM [9] 61.31 50.96 59.46
Ours* 66.04* 74.29% 61.97*

Table 2. Main performance results of Valence classification (Accuracy, F1-score for positive class, and Weighted
F1-score) on the MAHNOB-HCI test set (53 unseen subjects), subject-independent split. Highlights performance

solely from temporal domain. All metrics are reported as percentages.

Method Accuracy (%) F1 of Positive (%) Weighted F1 (%)
CNN-LSTM [9] 73.50 76.23 73.14
Ours* 62.26* 66.67* 62.26*

4.1. Main Results

As summarized in Tables 1 and 2, the proposed end-to-end framework demonstrates
competitive performance in arousal classification using only the temporal rPPG signal from the
MAHNOB-HCI dataset under a subject-independent evaluation protocol. Specifically, the model
achieves an accuracy of 64.04% and a weighted Fl-score of 61.97%, which are on par with those
reported by other unimodal physiological approaches such as HRV-based methods [40]. These results
highlight the expressive power of temporal rPPG signals when effectively modeled using our
dedicated temporal representation learning architecture.

When compared against a conventional CNN-LSTM baseline [9] —evaluated using their
reported confusion matrix —our model yields consistent improvements across all relevant metrics:

e Accuracy: 64.04% vs. 61.31%

e Positive-class Fl-score: 74.29% vs. 50.96%

e Weighted Fl-score: 61.97% vs. 59.46%

These improvements validate the effectiveness of our architectural choices, including multi-scale
temporal encoding, sparse attentional chunk selection, and feature-level gated pooling, in capturing
discriminative temporal dynamics from the rPPG signal. Notably, these gains are achieved under a
rigorous subject-independent setting, underscoring the model’s generalizability and robustness. The
performance margin over the prior deep learning baseline affirms the merit of our tailored design for
temporal-only physiological modeling.

In contrast, valence classification remains a more complex and challenging task. Our model
achieves 62.26% accuracy and 62.26% weighted F1-score, which are both substantially lower than
those reported by the CNN-LSTM baseline (73.50% accuracy and 73.14% weighted F1). The
corresponding confusion matrix is provided in Appendix D (Table D.2).

This performance gap can be attributed to several fundamental factors:

e Physiological limitations: Arousal is closely associated with autonomic nervous system (ANS)
activity —particularly sympathetic arousal —which is effectively captured through heart rate and
HRYV patterns inherent in rPPG signals [3, 22, 30, 39]. In contrast, valence is more intricately tied
to subtle physiological cues, such as facial muscle activity (e.g., EMG) or cortical patterns, which
are not sufficiently reflected in peripheral cardiovascular dynamics [39].

e Modality constraints: The use of spatially averaged 1D temporal rPPG precludes access to fine-
grained spatial information, such as facial blood flow asymmetries, which have been shown to
correlate with valence [34, 27].

e Data imbalance: A notable class imbalance in valence labels, both in the overall dataset and
particularly within the test set, may contribute to biased predictions and hinder generalization
performance.
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Collectively, these findings suggest that while temporal rPPG is a potent modality for arousal
recognition, effective valence modeling may necessitate either multimodal fusion or spatially-aware
approaches to capture its more nuanced correlates.

4.2. Ablation Studies

To quantitatively assess the contributions of individual components in our model architecture
and training pipeline, we conducted ablation experiments centered on the arousal classification task.
These experiments isolate the effect of each module when relying solely on temporal rPPG inputs,
and the results are reported in Tables 3 and 4.

Table 3. Performance Comparison Across Pooling Strategies (Arousal Classification).

Method Accuracy (%) Weighted F1 (%)
Ours (MTDE + Gated Pooling) * 66.04* 61.97*
MTDE + Attention Pooling 50.94 47.56
MTDE + Average Pooling 50.94 39.07

4.2.1. Ablation Study on Pooling and Attention Mechanisms (Arousal)

We first examined the effect of various temporal aggregation strategies applied to chunk-level
embeddings extracted via the Multi-Temporal Dynamics Encoder (MTDE). As shown in Table 3, our
proposed Gated Pooling mechanism delivers superior performance compared to simpler
alternatives.

These results reveal that naive temporal averaging or soft attention pooling fails to effectively
aggregate salient information in the rPPG signal. In contrast, the combination of learned chunk-wise
attention scoring (AttnScorer) and feature-level modulation (Gated Pooling) provides a more
precise and robust representation of emotionally relevant temporal patterns, resulting in improved
classification performance.

Table 4. Ablation study results for different pooling strategies (Arousal classification from temporal rPPG).

Method Accuracy (%) Weighted F1 (%)
Full Curriculum (Phase 0—2)* 66.04* 61.97*
Phase 1 — Phase 2 61.22 57.46
Phase 2 — Phase 2 (Init from
54.72 45.88
Aux)
Phase 2 (Direct training) 50.94 36.34

4.2.2. Ablation Study on Pooling and Attention Mechanisms (Arousal)

We further evaluated the impact of our three-phase curriculum learning strategy, which
progressively transitions from exploratory representation learning to discriminative and exploitative
stages. Table 4 presents the classification results under different curriculum variants.
The results demonstrate that:
¢ Phase 0 (Contrastive learning) significantly enhances the diversity and expressiveness of learned
representations.

e Phase 1 (Chunk-level weak supervision) improves the model’s ability to localize and distinguish
emotionally salient segments.

e Phase 2 (Session-level classification) yields optimal results only when preceded by these
preparatory stages.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1435.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 May 2025 d0i:10.20944/preprints202505.1435.v1

13 of 20

This progressive strategy mirrors human-like attentional learning, facilitating stable and effective
optimization on weakly labeled and noisy temporal signals. The marked performance gain from the
full curriculum attests to the importance of structured, phase-aware training for robust rPPG-based
affect recognition.

4.3. Computational Efficiency

Average inference time for an ~2-minute session is approximately 0.66 seconds on NVIDIA RTX
4080 GPU, faster than real-time, enabling practical deployment using this temporal-only approach.
Trainable parameters: 197,892 total; 164,996 for inference (Inference uses fewer parameters as the
Chunk-Projection module, only needed for Phase 0 training, is removed).

5. Discussion

Our proposed framework demonstrates promising capabilities in recognizing emotions
exclusively from temporal remote photoplethysmography (rPPG) signals, achieving competitive
arousal classification performance under rigorous subject-independent evaluation. Specifically, our
model attains a 66.04% accuracy and a weighted F1-score of 61.97% for arousal, outperforming the
CNN-LSTM baseline by Mellouk & Handouzi [9] (Accuracy: 61.31%, Weighted F1: 59.46%). This
improved performance for arousal underscores the efficacy of our specialized temporal processing
techniques—including the Multi-scale Temporal Dynamics Encoder (MTDE), adaptive sparse
attention via a-Entmax, and the feature-level GatedPooling mechanism —in effectively extracting,
filtering, and leveraging the discriminative temporal dynamics inherent in rPPG signals, which are
strongly tied to autonomic nervous system (ANS) arousal responses.

A critical factor contributing to this performance enhancement is our physiologically-inspired
MTDE. By employing parallel convolutional branches with distinct receptive fields, the MTDE
explicitly captures emotional cues manifesting at multiple temporal scales, reflecting diverse ANS
modulations. These captured dynamics include rapid pulse morphology changes (indicating
sympathetic activation), beat-to-beat interval variations (reflecting parasympathetic activity), and
slower trends integrating broader sympathetic-parasympathetic interplay [22, 30]. Capturing these
multi-rate temporal signatures is particularly vital for arousal recognition, as ANS activation
patterns tied to arousal frequently involve changes in both the speed (heart rate) and the
variability/shape of the pulse wave over short time periods. Furthermore, our adaptive sparse
attention mechanism refines the temporal analysis by selectively emphasizing emotionally salient
segments amidst inherently noisy physiological data. This process, closely mimicking human
selective attention [19, 37, 38], is crucial for robust detection from rPPG, where emotional cues are
often transient and sparsely distributed in the temporal stream, easily masked by noise. Moreover,
our novel GatedPooling mechanism effectively mitigates the impact of noise and irrelevant features
by integrating learned feature-level gating. This allows the model to not only weight the importance
of temporal segments but also to amplify or suppress specific feature dimensions within those segments,
providing a refined representation crucial for handling the noisy nature of remote physiological
signals.

Beyond these architectural innovations, our staged curriculum learning strategy was vital for
achieving optimal performance. By progressively transitioning the learning objectives —from broad,
exploratory representation learning in Phase 0 (analogous to initial sensory intake), through chunk-
level discriminative refinement focusing on salient cues in Phase 1 (simulating selective attention and
discrimination), to final session-level exploitation and fine-tuning in Phase 2 (akin to decision-making
based on integrated information) [6, 20, 38] —the curriculum effectively addresses the inherent
challenges posed by noisy, temporally sparse, and weakly-labeled time series data. This structured
learning process guides the model towards learning robust features and reliable attentional
mechanisms before attempting the complex session-level prediction, resulting in more stable and
effective learning outcomes compared to end-to-end training without such guidance. Indeed, our
ablation studies (detailed in Section 4.2) further validate the necessity of each component (MTDE,
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Sparse Attention, GatedPooling) within our architecture and underscore the critical role of the staged
curriculum learning strategy in enabling the observed performance gains.

Conversely, the valence recognition task remains significantly challenging when relying
exclusively on temporal rPPG signals. Our model achieved 62.26% accuracy and a weighted F1-score
of 62.26% for valence, which was lower than the performance reported by Mellouk & Handouzi’s
baseline [9] (Accuracy: 73.50%, Weighted F1: 73.14%). This discrepancy highlights fundamental
physiological limitations and inherent methodological constraints in valence detection using only
temporal, spatially averaged rPPG data. Physiologically, valence correlates with more nuanced patterns
such as subtle facial muscle activity and specific cortical region activations [39], which are not directly
captured by changes in the average blood pulse wave over time. Furthermore, subtle spatial variations
in facial blood flow, which may hold valence-related information [29, 34], are inherently lost when
the rPPG signal is derived as a single temporal waveform averaged over a facial region. These
findings strongly reinforce that while temporal rPPG signals robustly reflect general ANS activation
tied closely to arousal, recognizing more nuanced affective dimensions like valence likely requires
either multimodal integration (e.g., with facial expressions) or advanced spatial-temporal rPPG
analysis that preserves regional blood flow patterns.

Regarding practical applicability, the computational efficiency of our approach is notable.
Achieving an inference speed of approximately 0.66 seconds for a two-minute video segment on an
NVIDIA RTX 4080 GPU, our model operates faster than real-time. Furthermore, its compact size
(164,996 parameters at inference) facilitates deployment in resource-constrained scenarios (e.g.,
mobile devices, edge computing), significantly enhancing the viability of our temporal-only rPPG
approach for unobtrusive affective computing in real-world applications where dedicated sensors or
multiple modalities may not be feasible. This demonstrates the potential of specialized temporal
models even within the limitations of the unimodal signal.

5.1. Limitations

Despite demonstrating advancements in temporal rPPG-based emotion recognition, our study
presents several limitations that inform future research directions. Firstly, our evaluation is confined
to the MAHNOB-HCI dataset. Although widely recognized, its limited scale (527 sessions) and
potential lack of diversity across varied populations and emotional elicitation methods may constrain
the generalizability of our findings. Secondly, the deliberate restriction to temporal-only rPPG, while
defining the specific scope of our investigation, inherently excludes potentially valuable spatial
information from rPPG itself or complementary affective cues from other modalities. As evidenced
by the lower performance in valence recognition, this limitation underscores the inherent constraints
of relying solely on a spatially averaged temporal pulse signal for nuanced affective dimensions.

5.2. Future work

Addressing the identified limitations suggests several clear avenues for future research to build
upon the temporal processing foundations established by this study. Validating our proposed
framework on larger and more diverse datasets (e.g., DEAP, WESAD) is crucial to assess its
generalization and robustness across varied contexts and populations. Exploring more granular
emotion classification (e.g., predicting continuous valence/arousal or discrete emotions) and
investigating personalization strategies (e.g., few-shot subject calibration or transfer learning) could
significantly enhance practical applicability and performance. Importantly, to improve the
recognition of nuanced affective dimensions like valence, future work should explore the integration
of spatial-temporal rPPG analyses that preserve regional blood flow patterns, or multimodal fusion
with complementary affective cues such as facial expressions or audio signals. Evaluating our model
on alternative emotional elicitation methods, such as the large-scale VR-based dataset by Marin
Morales et al. [31], would further strengthen validation and assess domain generalization. Finally,
while our attention mechanism targets sparsity, deeper analyses could yield critical insights into
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which specific physiological dynamics and temporal patterns are most indicative of different
emotional states, potentially informing more interpretable models.

Collectively, our results establish foundational benchmarks and methodological insights for
future advancements in unimodal physiological emotion recognition, clearly defining both the
capabilities and inherent limitations of relying solely on temporal-only rPPG signals. The
comprehensive physiological and cognitive grounding of our approach, combined with rigorous
evaluation protocols, ensures robust, interpretable, and applicable outcomes, advancing the state-of-
the-art in this challenging area of affective computing research.

6. Conclusions

We introduced a physiologically-inspired deep learning framework for recognizing emotional
states exclusively from temporal remote photoplethysmography (rPPG). Our approach
systematically addresses critical limitations—temporal sparsity, signal noise, and weak labeling—
through the Multi-scale Temporal Dynamics Encoder (MTDE), adaptive sparse attention, Gated
Temporal Pooling, and a structured three-phase curriculum learning strategy. Empirical evaluation
confirmed competitive performance in arousal classification (66.04% accuracy, 61.97% weighted F1),
surpassing previous deep learning baselines. Conversely, lower performance in valence classification
(62.26% accuracy) reveals fundamental physiological constraints in using solely temporal
cardiovascular signals, clearly demarcating the capability boundaries of unimodal rPPG signals.

These results establish robust methodological benchmarks and highlight promising directions
for future exploration: incorporating spatially-resolved rPPG analysis or multimodal integration
could significantly enhance nuanced emotional inference. This study provides critical foundational
insights and clear guidelines to advance affective computing towards more accurate, reliable, and
interpretable physiological emotion recognition.

7. Patents

Code Availability: Our code and trained models are available at

https://github.com/LeeChangmin0310/ReMOTION-Temporal. The repository includes the training scripts,

inference demo, and the raw split lists used for reproducibility. Experimental environment details are also

provided in the repository's README, consistent with the setup described in Section 3.7.
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Abbreviations

The following abbreviations are used in this manuscript:

Acc Accuracy

ANS Autonomic Nervous System
AttnScorer Attention Scorer

BVP Blood Volume Pulse

CE Confusion Matrix

CM Convolutional Neural Network
EDA Electrodermal Activity

HRV Heart Rate Variability

MIL Multiple Instance Learning
MTDE Multi-scale Temporal Dynamics Encoder
rPPG remote Photoplethysmography
WF1 Weighted F1-score

Appendix A. Architecture Details of MTDE

A.1. Architecture Overview

The MTDE encodes each 128-frame (4 s) rPPG chunk into a 256-dimensional embedding through
two stages:
o SlimStem: Two Conv1D layers (kernel=5, then 3 with stride=2) for initial noise reduction and
temporal downsampling (T=128 — 64).
o MultiScaleTemporalBlock (MSTB): Three parallel branches with different kernel sizes and
dilations to model short-, mid-, and long-range temporal dynamics.

A.2. Physiological Rationale & Receptive Fields

Table A1. Table of MSTB’s parameters per branch.

Branch Kernel Dilation Effective RF Approx. Duration Physiological Role
Short 3 3 6 ~0.2s Pulse upslope, sympathetic ramp
Medium 5 8 66 ~22s High-frequency HRV
Long 3 32 129 ~4.3s Multi-cycle ANS modulation

Here, Receptive Field can be calculated by RF = (k—1) xd + 1

A.3. Pooling Layer: SoftmaxPool

Softmax over time across temporal steps:

w = softmax(W gn * X), h = Z WX
: (A1)

This results in a single (B, D) embedding per chunk. No gating is applied in this layer.

Appendix B. Attention Modules: AttnScorer and GatedPooling

B.1. AttnScorer: Phase-aware Attention Scoring
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B.1.1. Architecture
o 2-layer MLP: Linear(D, D/2) — GELU — Linear(D/2, 1)
o Zero-mean score normalization: s; « s; — mean(s)
o o0 — y scaling with EMA-based adjustment:
= € [0.5,2.0
V= o ¥e [ ] (B.1)
o Raw score scaling: s7“? = y-g;
B.1.2. Phase-dependent Attention Mechanism
Table 1. Table of Attention Type per phase.
Phase Epoch Range Attention Type Notes
0 0-14 Softmax (with temperature ) Encourages diversity
1 15-29 -Entmax (adaptive ) Sharp, sparse, differentiable Top-K
2 =30 Raw scores only Passed to GatedPooling
B.1.3. Entmax Scheduling during Phase 1.
e — 15
{1.0+0.3- ,15 < e < 20
ae) = e — 20
©) {1.3+0.3- c— 20 S e <25 (B.2)
\ 1.7, 25 < e <30

B.2. GatedPooling: Sparse Temporal Aggregation

Receives chunk embeddings h; € RP and raw attention scores. In Phase 2, the attention scores
are transformed using a,-Entmax to produce temporal weights:

a; = entmax, (raw_score;),g; = o(MLP(h;)
i ag L gl L

(B.3)
The session-level pooled embedding is computed as:
T
Ppootea = ) (g @ hy) (B.4)
i=1
Where © denotes element-wise multiplication @, is scheduled during Phase 2 as:
. (e — 30
ag(e) =17 + 0.3 -mm( 19 ,1.0), e > 30 (.5)

This dual mechanism (Temporal weight X Feature gate) reflects neural inhibition, enabling
selective suppression of irrelevant dimensions even within sailent chunks.

Appendix C. Phase-wise Training Schedule

Table 1. Epoch-based Curriculum Strategy.

Phase Epochs Objective Active Modules
0 0-14 Embedding diversity (SupCon) MTDE, AttnScorer, ChunkProjection
1 15-29 Chunk-level discrimination + ChunkAuxClassifier, GatedPoolingv' (E>25)
2 30-49 Session-level classification GatedPooling, Classifier
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Table 2. Hyperparameter Scheduling.

Epoch Top-K Ratio SupCond CE 2 Acpiropy 7 (Temp) a (AttnScorer) ay(Gated)

0 0.0 1.00 0.0 0.1 1.2 — —
14 0.0 0.44 0.0 0.1 0.7 — —
15 0.6 0.0 0.5 0.0 1.0 1.0 —
25 0.3 0.0 0.5 0.0 1.0 1.7 start=1.7
30 — 0.0 0.7 0.0 1.0 raw only 1.7 —-2.0
50 — 0.0 1.0 0.0 1.0 raw only 2.0

Appendix D. Contusion Matrices

This appendix provides the confusion matrices for Arousal and Valence classification results
from the final proposed model evaluated on the MAHNOB-HCI test set.

Table D1. Confusion Matrix — Arousal Classification (Final Model).

Predicted Low Predicted High
Actual Low 9 18
Actual High 0 26

e Accuracy: 64.04%
e Weighted Fl-score: 61.97%

e The model shows strong sensitivity to high arousal states (recall: 100%), with most misclassifications

occurring in the low-arousal category.

Table D2. Confusion Matrix — Valence Classification (Final Model).

Predicted Low Predicted High
Actual Low 13 10
Actual High 10 20

e Accuracy: 62.26%
e Weighted Fl-score: 62.26%
e The model demonstrates relatively balanced performance but reveals confusion between low and high

valence categories, indicating the nuanced nature of valence detection from unimodal temporal signals.
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