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Abstract: This paper explores an algorithmic-modeling approach to the classification of network and
semi-network structures through the formalism of Boolean algebra, relying on algebraic operations
naturally interpreted as union (v, denoted by 0) and intersection (A, denoted by 1). Particular
emphasis is placed on a deeper theoretical analysis of the structural properties of networks and their
subclasses, symbolically represented as Gk, Uk, Tk, Hk, and Bk. These structures are examined as
carriers of logical relations within closed and partially closed systems, thereby creating opportunities
for their axiomatization, identification of shared identities, and algebraic classification. The study
proposes an initial algorithmic framework for recognizing and categorizing the given network
structures based on their internal algebraic and relational characteristics. Additionally, it provides a
theoretical foundation for extending this model to multidimensional or dynamic networks that
involve time, flow, and mutable nodes. Within the research context, potential implementation
pathways are suggested for various programming languages, with emphasis on experimental
environments such as Python, MATLAB, and similar platforms. The results indicate the presence of
systemic regularities that allow for formal and consistent classification across a broad spectrum of
network systems. This creates a theoretical basis for the future development of algebraic algorithms
with applications in logic, automated data processing, lattice theory, and advanced information
structures.

Keywords: Boolean algebra; networks and semi-networks; algorithmic modeling; union and
intersection; Gk-Bk structures; lattice theory; programming languages; mathematical classification

Introduction

The study of network and semi-network structures represents one of the central areas
of contemporary mathematical logic, lattice theory, and computer science. In the age of
information technology, where an increasing number of systems can be represented through
relations, graphs, and logical connections, there is a growing need for formal tools that allow
modeling and analyzing such systems. Boolean algebra, with its elegance and clarity, provides
a natural theoretical framework for expressing, manipulating, and classifying network
structures. It enables the introduction of order, rules, and axiomatic precision in fields that often
rely on heuristic approaches.
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Boolean algebra was first formalized in the mid-19th century by George Boole, es- tablishing
the foundation of modern mathematical logic. His approach was revolutionary because it
enabled the expression of logical operations through algebraic expressions. The elements of
Boolean algebra are associated with two fundamental binary operations: join (disjunction,
denoted by V) and meet (conjunction, denoted by A), along with a unary complement operator
(), and two special elements 0 and 1 that represent false and true, respectively, or the minimum
and maximum elements of the algebra.

The formal definition of Boolean algebra is as follows: let B be a non-empty set; then (B, v,
A',0,1) is a Boolean algebra if the following axioms are satisfied:

(B, V,A) is a lattice: the operations are associative, commutative, idempotent, and satisfy
absorption:

aV(anb)=a, an(avb)=a.
The operations v and A are distributive over each other:

av(brc)=(aVvb)A(ave), an(vc)=(@anb)Vv(anc).

For each element a € B, there exists a complement a’ such that:

ava =1, ana =0.

On the other hand, lattices and semi-lattices are structures that possess some of these
properties but not necessarily all. A semi-lattice may have only one defined operation (v or
A), while networks are structures that have both operations but without additional conditions
such as distributivity or the existence of complements.

This paper focuses on the classification and analysis of network and semi-network
structures using Boolean algebra, with the aim of establishing an algorithmic approach by which
networks can be formally described, analyzed, and categorized. Special attention is given to
structures denoted by the symbols Gk, Uk, Tk, Hi, and Bk, where each represents a different level
of algebraic structure:

e Gk — general networks without strict axiomatic requirements,

e  Ur—networks closed under the Vv (join) operation,

e Tk — topologically oriented networks with a point-based structure,
e  Hi— networks with horizontal and vertical relations,

e  Bi— structures that satisfy all axioms of Boolean algebra.

In analyzing these networks, we use formal tools: axioms, diagrams, relation matrices, and
methods of deductive logic. Classification is carried out by testing for satisfaction of lattice
axioms, distributivity, and the existence of complements. For example, let the set X=1{a,b,c} have
binary operations v and A defined in tabular form. If it is shown that:

avb=b,  anb=g, b=c bvb=1  bAb=0,

then the set X with these operations satisfies the conditions of a Boolean algebra.

Furthermore, network closure is studied: let M be a subset of the set B. We say that M is
closed under the operation Vvif for all x,y €M it holds that x vy € M. Closure under A is defined
analogously. These properties can be used for the formal classification of sub-networks within a
larger structure.

The notion of network homomorphism is also used: let (4, Vv, A) and (B, V/,A") be two networks.
A function f : A — B is a homomorphism if for all x,y € A it holds that:

fevy) =fV fy),  fxry)=fE)NF@)-
Homomorphisms are used to study similarities and differences among network structures
and to establish a theory of network isomorphisms.
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In addition to the theoretical component, this work has a practical dimension. An
algorithmic model is developed that enables:

1. input of the structure in table or matrix form,

2. automatic checking of axioms,

3. classification of the network into the appropriate class G—B,
4. visualization of the network and its operations.

The objective of this research is to apply the theoretical foundation of Boolean algebra in the
classification of network structures, thereby providing a methodological framework applicable
in logic, computer science, lattice theory, databases, digital circuits, and artifi- cial intelligence.
This contributes to the standardization and systematization of network models in the context of
formal logic and theoretical informatics.

Graph Theory and Algorithms: Application in Net- work
Classification

This section of the paper examines the fundamental concepts of graph theory in the context
of algorithmic modeling and the application of Boolean algebra. Special focus is placed on
shortest path algorithms, graph isomorphism testing, Hamiltonian paths, trees, planarity, and
graph operations.

Determining the Shortest Path in a Graph

To find the shortest path in a graph, the Ford algorithm is used. Consider a graph G
with vertices x1, x2, ..., xu. Edges are defined as pairs (xi xj) with weights I((xi, xj)). Each vertex x:
is assigned a value A..

The algorithm proceeds as follows:

. Set A1=0, and for all other vertices Ai= oo,
e Iterate through all edges and perform relaxation: if Aj > Ai+[((xi x))), then set Aj = Ai+
1((xi, x7)),
¢  Repeat until no changes occur.
After the algorithm completes, the values Ai represent the shortest distances from vertex
x1 to all other vertices.
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Figure 1. Application of Ford’s algorithm to a directed graph. The graph displays various distances
between vertices with given weights.
Hamiltonian Paths and Rédei’s Theorem

A Hamiltonian path in a digraph is a path that visits each vertex exactly once. The
existence of such a path can be guaranteed by Rédei’s theorem:

Theorem: If in a digraph G for every pair of vertices xi xj there exists a directed edge
(xi, xj) or (xj, xi), then a Hamiltonian path exists.
Graph Isomorphism

Two graphs are isomorphic if there is a bijective mapping of vertices that preserves
adjacency. Graphs are equivalent if they structurally match in terms of relations.

Adjacency Matrices and Permutations

The adjacency matrix of a graph represents the connections between its vertices. A
permutation matrix P is used to prove isomorphism via the relation:

A1=P1AP

Figure 2. Example of different adjacency matrices for isomorphic graphs. The structure is preserved under

permutation.
Graph Complementation

The complement of a graph G includes all edges missing in G, connecting vertices that are
not adjacent in the original graph.

Self-Complementary Graphs and Theorem

A graph G is self-complementary if it is isomorphic to its complement G. The following
theorem holds:

Theorem: A self-complementary graph G has 4r or 4r + 1 vertices, where r is a non-
negative integer.
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Figure 3. Examples of self-complementary graphs. These graphs regain isomorphic struc- ture after adding
the missing edges.

Graph Operations: Union, Intersection, and Product

For arbitrary graphs G: = (X1, U1) and G2 = (X2, U2), the following can be defined:
e  Union: G1U G2 (logical disjunction in Boolean algebra)
e Intersection: G1 N G2 (logical conjunction)

e  Cartesian product: G1 x G2
Mathematically:

Uc,uc, = U1U U;, Uc,ng, = UinU:2

In Boolean algebra:

G1UG2=0R(Gy, (2), GiNnG2= AND(G1, G2)

Figure 4. Examples of operations: union, intersection, and Cartesian product of two simple graphs Gi and

Gz. The first image shows input graphs, and the following illustrate the results of merging and pairing.

Trees and Their Relation to Boolean Algebra

A tree is a connected graph without cycles. Basic properties of trees include:
e A tree with n vertices has exactly n — 1 edges.
e Every connected acyclic graph is a tree.

e  If the number of vertices is n and the number of edges is n — 1, the graph is a tree.
Boolean Algebra and Trees: Viewing each graph as a set of edges:

e  The union of multiple trees forms a forest (disjoint set of trees).

e The intersection of trees yields common subgraphs that are also acyclic.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 5. Different forms of trees — all illustrated graphs are connected and acyclic. They demonstrate

possible structures formed by union or intersection of trees.

Planar Graphs and Euler’s Formula

Planar graphs are those that can be drawn in a plane without crossing edges.
Euler’s formula:
m-n+f=2
where m is the number of edges, n the number of vertices, and f the number of faces.
Theorem: A graph is planar if it does not contain a subgraph isomorphic to Ks or K33,
or their subdivisions.

Figure 6. Non-planar graphs: complete graph Ks and complete bipartite graph Kss. These cannot be
drawn on a plane without edge crossings.

According to Kuratowski’s theorem, the planarity of a graph can be determined only if it
does not contain a subgraph isomorphic to Ks or K33 or their subdivisions. This characterization
is crucial for graph classification in discrete mathematics and computer science.

Networks, Semilattices and the Application of Boolean Algebra in Classification

Mathematical Approach to Graphs, Intersections and Boolean Proofs
for Gy, Ux, Hx, Bk

For each of the structures Gx, Ux, Hr, and Bk, we provide a formal mathematical represen-
tation with analysis of intersections and unions, including Boolean tables, line equations, and
proofs.

Gk — Generalized Networks (Weak Relations)
Let the relations be Ri={(a,a),(a,b), (b, c)} and R2={(b,b), (b, ¢),(c,c)}.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Union: RiUR2 = {(a,a),(a,b), (b, c),(b,b),(c,c)}

Intersection: RinNR2={(b,c)}

Mathematical interpretation: Via line graphs:

If P1:y = x (reflexivity), P2 : y = x+1 (transitive relation), their intersection is found by
solving:

C
y=x
y=x+1

=no solution =no common points
Boolean table:

_— = O O
O = O
[

1 1

Conclusion: Gk structures have partial Boolean compatibility but lack complements and

boundaries.

Ux — Union-Based Networks

Let A={1,2} and B={2,3}.

Union: AuB={1,2,3}

Intersection: ANB = {2} (not used in Uk

Line equations: Connect points in plane: (1,0) and (2,0) form y = 0 (horizontal) (2,0) and
(2,1) form x =2 (vertical).

Intersection: x=2, y =0 = (2,0) — point of intersection Boolean analysis: Only V is
defined: 1v0=1,1v1=1 Conclusion: U represents join logic without shared base (no meet).

Hk — Horizontal-Vertical Networks

Let A={(1,0),(2,0)}, B={(2,0),(2, 1}

Union: AUB=1{(1,0),(2,0),(2,1)}

Intersection: AnB = {(2,0)}

Mathematical proof: Line y =0 (horizontal) and x =2 (vertical) intersect at (2, 0).
Boolean form: V= union = all edges, A = intersection = common node

Table:

O = O
—_ = O Ol
—

a]

1

Conclusion: Hi networks allow multidimensional interpretation of relations through lines

and nodes.
Bx — Complete Boolean Networks
A={0,1}, B={1,2}, universal set U=1{0,1,2,3}
Operations:
AuB={0,1,2}, AnB={1},A'={23}, B ={0,3}
Boolean laws:

AVB=AUB, ANB=ANB

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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AVA'=U, ANA =2
Line equations: If elements are represented as points in coordinate plane:
e A:x=0,x=1 B:x=1,x=2

e Line x=1 — common intersection, gives node (1, y) for any y
Truth table:

alb| avb | anb | —a
0[(o0| O 0 1
01 1 0 1
1(0 1 0 0
111 1 1 0

Conclusion: Bk networks satisfy all logical operations and serve as a complete base for
system implementation using Boolean algebra.

Networks, Semilattices, and the Application of Boolean Algebra in
Classification

Logical Interpretation: 0 as Union, 1 as Intersection

In the context of Boolean algebra, the logical OR operation (V) is interpreted as the union of
sets, while the logical AND operation (A) is interpreted as the intersection. In this study, we
introduce the following notation:

e Logical 0 — represents the union of elements:avb=aub

e Logical 1 — represents the intersection of elements:aAb=anb
This interpretation enables consistent tracking of algebraic operations across network and
graph structures.

Optimization Algorithm for Classification and Mapping of Net- work Structures using
Boolean Algebra

To enhance the efficiency of network structure classification, we developed an algorithm
that applies minimization of Boolean expressions in Disjunctive Normal Form (DNF) and
Conjunctive Normal Form (KNF). This approach simplifies the structure of directions,
intersections, and unions within the network.

Algorithm Steps:

1. Input: A set of relations between network nodes expressed as binary expressions (e.g., x1

V X2, X1 A X3).

2. Transformation: Conversion of expressions into DNF and KNF formats.

3. Minimization: Use of methods such as the Quine-McCluskey algorithm or Kar- naugh
maps to minimize logical expressions.

4. Direction Analysis: Identification of line equations of the form y = ax + b for each relation.

5. Intersections: Calculation of intersection points by solving systems of linear equa- tions for
each pair of relations.

6. Output: An optimized set of network connections, classified according to the Gk, Uk, Hk,

Bk typology.

Example:

Let us consider the relations:
Ri=x1Vx2, Ra=x2Ax3

We transform them as follows:
DNE: f(x1, x2, x3) = (x1A ~2) V (X2 x3)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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KNF: f(x1, x2,x3) = (x1Vx2) A (71 V x3)
The intersection of the lines y = x1 and y = —x2+3 is obtained by solving the system:

C
y=x

y=-x2+3
=x

=-—x2+3

Conclusion: By optimizing expressions and accurately calculating intersections and unions,
we enable improved interpretation and automation of network classification with
implementation in MATLAB or Python.

Networks, Semilattices, and the Application of Boolean Algebra in Classification

In modern mathematical logic and structure theory, the concepts of networks and semi-
lattices play a significant role in modeling relationships between elements in ordered sets.
Networks represent algebraic structures that support operations of least upper bound
(supremum) and greatest lower bound (infimum), while semilattices allow only one of these
operations. Boolean algebra, as a special case of a distributive lattice with com- plements,
naturally fits into this structural hierarchy, offering precise tools for modeling relations.

Theoretical Foundation: Semilattices and Lattices

Definition: A semilattice is an algebraic structure (L, V) in which the operation Vv is
associative, commutative, and idempotent, i.e.:

avb=bvVa,

av(bvc)=(avb)vc ava=a.

Analogously, (L, A) is a semilattice if it refers to the infimum operation. If both operations are
defined and satisfy the absorption laws:

aVv(aAb)=a,an(avb)=a,
then the structure is called a lattice (L, V, A).

Boolean Algebra as a Lattice Extension

Boolean algebra introduces additional requirements:
e distributivity of v and A operations,
e existence of a complement a for every element a,

e existence of bounds: 0 (least) and 1 (greatest element).
Examples of identities in Boolean algebra:

ava
=1,a
ANa =
0, av
0=aqg,
aAnl
Sy

aVv({bnac)=(avb)A(aVc).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Truth Table and Logical Interpretation
For elements a,b €{0,1}:

alb|avb | anb
0[0| O 0
0|1 1 0
1(0 1 0
1|1 1 1

This table shows the basic logical operations of union and intersection within Boolean
algebra.

Axiomatic Proofs within Lattices and Sublattices

Theorem: Let (L,V,A) be a distributive lattice and a €L. Then there exists at most one
element a’ such that:

ava =1, ana =0.

Proof: Assume that both a’ and a” satisfy the conditions. Then:

a=aAl=aA(ava’)=(a'Aa)v(@ra)=0v(ara’)=anra"

Similarly, we geta” <a’, hencea' =a".

Definition: A sublattice M €L is closed under Vv (or A) if for all a,b € M we have L

avb €M (or anb € M). If both operations are present, M is a sublattice.

Boolean Algebra in Modeling Network Structures
In modeling networks, the labels Gk, Uk, Tk, Hk, Bx serve for classification:

e Gk - only reflexive and transitive relations (weak structures),

e Uk —union-closed networks under Vv (disjunction),

e Tk -networks with partial localization and binary relations,

e  Hk —structures with bidirectional relations and diagonal operations,

e Bk —full network logic equivalent to Boolean algebra.

By applying Boolean algebra to these structures, it is possible to verify whether a given
network behaves as a distributive lattice with complements, allowing strict classification and
further algorithmic processing.

Operational Interpretation for Gi—Bx Structures in Boolean Al- gebra

For each classification structure Gk, U, Tk, Hx, and Bx, we can establish a formal in- terpretation
using Boolean algebra through join operations (v, symbolically marked as 0) and meet
operations (A, marked as 1). These operations are viewed as the basis for generating network
relations:

- Gt (generalized networks): Structured relations satisfying reflexivity and tran-

sitivity. No guarantee of 0 or 1.

aVb = nearest common upper node, aAb=undefined or nonexistent.

- Ur (union networks): Closed only under v (symbol 0), while A (1) is undefined.

b, b € Us, avb el fanb € Uk

- Tk (topological networks): Define localized directions in networks with partial

connections. Partial A operations are allowed:

a A b = intersection node if it exists, aVb=union of links.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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- Hi (horizontal-vertical networks): Define clear two-dimensional structure. Vv
represents horizontal joins, and A vertical intersections.

aVvb=aUb (horizontal union), aANb=anb (zone intersection).
- Bk (Boolean networks): Satisfy all Boolean algebra axioms:

aVb=max(a,b),
aAb=min(a,b),

a = complement with respect to
universal set, ava =1, ana =0.

Mathematical Function and Proof via Boolean Algebra for Net- work Structures

We develop an advanced formal function for classifying networks and sub-networks via set
union and intersection, mapped onto Boolean join (symbol 0) and meet (symbol 1) operations.
Formal Function: Let A, B €U be subsets of the universal set U, and define the function

fas:
C

1 ifAuB=AvBand AnB=AAB,
f(A,B) =

0 otherwise.
Mathematical Proof: Let U = {0,1}? with elements:
(0,0),(0,1),(1,0),(1,1)
Let A={(1,0),(0,1)} and B={(0,1),(1,1)}. Then:
AUB=1{(1,0),(0,1),(1,1)}, AnB={(0,1)
Symbolically:

AV B =logical disjunction, ANAB=logical

conjunction Thus, f(A, B) =1, confirming Boolean compatibility.

Axiomatic Properties:

- Commutativity: AvVB=BVA, ANAB=BAA
- Associativity: AV(BVC)=(AvB)vC

- Distributivity: Av(BAC)=(AVB)A(AV(C)
- Complement: AVA =1, ANA =0
Operations 0 and 1:

- 0: Join (union) — operator Vv

- 1: Meet (intersection) — operator A

Example with networks: If Gi1=(V3, E1) and Gz2= (V2, E2), then:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Gi1vG2=(ViuVo E1UE2), G1A

G2=(VinVz,E1nEz)

Application of the function: Define the characteristic function:

C

){A (x) = 1 ifx€eA
0 ifxEA
Then:
Xau(x) = xa(x) VvV xs(x), XanB(x) = xa(x) A xB(x)
Truth Table:
albl| avb | anb | —a
00 0 0 1
01 1 0 1
110 1 0 0
111 1 1 0

Disjunctive Normal Form (DNF):

f(a,b) = (-aAb) v(aAn-b)V(aAb)

Conjunctive Normal Form (CNF):

f(a,b)=(avb)A(-aVvb)A(av-b)

Minimal Form:

f(a,b)=avb

Conclusion: By linking set theory, logic, and graph theory via f(A, B) and truth tables, a
formal framework is established for systematic classification of network structures using Boolean
algebra. This enables automated testing and application in digital logic, lattice theory, and
classification algorithms.

Application for Representing Networks and Subnetworks Using Boolean
Algebra

The results obtained through the developed MATLAB application demonstrate that it is indeed
possible to successfully integrate Boolean algebra into the process of analyzing and classifying
network structures. The application allows users to input two functions, which are automatically
displayed on a coordinate system, providing a clear visual representation of the relationships
between the functions, their points of intersection, and their behavior within a defined domain.

Particular importance is given to the points of intersection between the functions, as they
represent key locations in the network classification process. Based on this data, the application
generates logical expressions that are then transformed into Boolean operations —namely union and
intersection, interpreted as logical disjunction and conjunction. Each step is accompanied by
analytical interpretation, with the additional option of generating a truth table, which facilitates
further simplification of expressions into DNF and KNF forms.

What is especially noteworthy is that the application, in addition to visualization and symbolic
computation, enables logical reasoning to determine the classification of the defined network into
one of the predefined classes—Gk, Uk, Tk, Hk, or Bk. This functionality not only enhances the
understanding of relationships between the functions but also contributes to more precise modeling
of networks in both educational and research contexts.
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Based on the entire workflow, it can be concluded that the application effectively bridges
algebraic principles with graphical analysis and logical reasoning, making it a valuable tool for digital
logic, set theory, and applied mathematics education.
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Figure 1. Application Interface.

This image shows the initial screen of the application developed in MATLAB, intended for the
analysis of relationships between mathematical functions through both logical and graphical
approaches. At the core is the ability for the user to input two functions to compare. The application
enables visualization of these functions, determines their points of intersection, and performs logical
operations that describe their interactions.

Upon inputting the functions, the application not only plots them on a shared graph but also
simultaneously analyzes their relationship within the framework of Boolean algebra. This enables the
user to observe where the functions intersect, how they combine, and what their mutual relationship
implies in the broader context of network classification.

Through intuitive controls, the user can activate additional tools that expand the analysis — such
as the generation of a Boolean truth table, transformation of expressions into standardized logical
forms, visualization of the resulting network types, and the ability to save all results for further
processing. In this way, the application serves as a bridge between traditional mathematical function
analysis and digital representation of their relationships in the form of network models.

This initial step forms the foundation of the entire application, allowing users to define relational
functions whose intersections, differences, and connections are then further analyzed using graph
theory and logic. It effectively connects numerical mathematics with digital logic, offering multiple
applications—from education to advanced research modeling of network systems.
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Figure 2. Network Visualization.

The second image presents the outcome after functions have been input and displayed on the
coordinate system. The application automatically generates a graphical representation of both
functions, providing a clear visual understanding of their mutual relationship. A crucial feature of this
visualization is the automatic detection of intersection points —visually highlighted where the graphs
meet.

These intersection points are not merely geometric locations but also hold significant logical and
structural roles within the network model. They serve as the foundation for network classification
and further logical linking of elements within Boolean algebra. Displaying both functions on the same
graph allows the user to immediately perceive their interaction: whether they intersect once or
multiple times, whether they diverge, run parallel, or exhibit other characteristics that influence the
resulting network structure.

Thanks to this capability, the user can promptly draw conclusions about the interaction between
the functions and use this information for further logical and graph-based analysis. This visualization
becomes a key component in the overall algorithmic process, linking functional analysis with the

4

] {3883 ¢]

Figure 3. Logical Functions and Their Graphical Representations in the Context of Boolean Algebra.
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This figure visually integrates three key elements: logical functions, the truth table, and
corresponding network structures derived from them.

o Logical expressions at the top of the figure:

o The function f(x1,x2,x3)=x1vx2vx3 represents a disjunction (logical "OR") of three

variables. It is an example of a simple logical function in disjunctive form.

o The function g(x1,x2)=x1A-x1A-x2 is a contradictory function (never true), used to

represent paradoxical or unachievable logical connections.

o From these symbolic functions, relationships between network nodes can be

constructed based on the truth values of the expressions.

e Truth table (bottom left):

o Shows all possible combinations of values for variabl x1 and x2, along with the

corresponding function result.

o The table is used to generate DNF (Disjunctive Normal Form) and KNF (Conjunctive

Normal Form), essential for logic minimization and further network analysis.

¢ Graphs (right side):

o The upper graph shows a simple network based on the function ggg, connecting only

nodes where the expression evaluates to true.

o The lower graph represents a more complex network, possibly derived from
combining multiple logical expressions (such as h(x2,x3)), where nodes interact based
on logical evaluation.

Figure 3 illustrates how logical expressions, truth tables, and Boolean algebra can be used to
shape a network, where nodes are interconnected depending on the truth values of expressions. This
is a crucial visualization for understanding the transition between symbolic logic and actual network
graphs in network theory.

F(x1,%2,73) = 23V T2 V X3 9(x1,22) = 21 T T2

x1 | @2 | f(x1,222)
(6]
(0)

HOOQCOCOC
-
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0
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CCOOHKRK

h(za,xy

Figure 4. Adjacency Matrices and Graphs for Gk, Bk, Tk and Other Networks.

This figure presents four different network types alongside their corresponding adjacency
matrices, which represent the structural connections between nodes.

o Top left — Gk (Generalized Network):
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o Displays a complex graph with multiple node connections.

o The adjacency matrix indicates which nodes are connected (1 for connection, 0 for

none).

o This type illustrates a general, unstructured network without predefined logical

restrictions.
e Top right - Bk (Boolean Network):
o A network where relationships are defined using Boolean logic.
o The adjacency matrix reflects logical rules through partial node connections.
o Often used for modeling systems like logic processors and digital circuits.
e Bottom left - Tk (Topological Network):

o Shows a tree structure with clearly defined hierarchy and directional edges (from

root to leaves).

o The matrix displays outgoing edges per node, with “2” indicating two child

connections.
o Useful in modeling organizational charts, inheritance trees, or search algorithms.
¢ Bottom right - Random Unstructured Network:
o Visualized as a complex mesh of randomly interconnected nodes.
o The adjacency matrix shows highly specific node connections.

o This model is typical for neural networks or social networks with limited links.
This figure enables comparative analysis between different network structures both visually and
algebraically, bridging the gap between graph theory and algebraic modeling. It is particularly
beneficial for education, systems modeling, logic evaluation, and mathematical experimentation.
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Figure 5. Logical Functions, Truth Tables, and Related Networks.

This figure combines Boolean functions, truth tables, and related graphs that represent
connections between variables. It focuses on three functions: f(x1,x2,x3),g(x1,x2), and h(x2 ,x3), each
with its own logical formulation and graphical depiction.

e Top - Functions f(x),g(x)f(x), g(x)f(x),g(x):
o f(x1,x2,x3)=x1vx2vx3 is a disjunction that outputs 1 if at least one input is 1.

o g(x1,x2)=x1A-x1A-x2 is inherently false (as x1A-x1 is always 0), thus always evaluates

to 0.
e Middle left - Truth Table:
o Shows all binary combinations for x1,,x2 and the result for f(x1,x2).
o Used for analyzing and evaluating Boolean expressions.
o Enables logic minimization into DNF and KNF.
¢ Right - Graphs Linked to Functions:

o The upper graph shows a simple three-node structure, possibly representing g(x1,x2)

or a binary tree.

o The lower graph is more complex, likely illustrating h(x2,x3), involving more

connections and interactions.

o These graphs visually represent logical functions as network structures.

Figure 5 links Boolean logic with graphs and mathematical functions, showing how logic
expressions can structure and control networks. Truth tables assist in testing and validating logic,
while graphs offer a visual model of these relationships —useful in logic circuit design, programming,
education, and network modeling.
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Figure 6. Boolean Algebra Axioms and Network Types: Uk, Gk, Tk, Bk, and Subnetworks.
e Top left - Boolean Algebra Axioms:

o Presents fundamental Boolean rules:

= an0=0
= aAl=a
= av0=a
=  aAa=a
* ava=a

These axioms are the basis for constructing and analyzing logic expressions and networks.

e Middle and Right — Network Visualizations:

o Uk (Union Network): One central node connected to several others producing

output 1, representing disjunction.
o Gk (Generalized Network): A complex web of nodes, possibly with loops or cycles.

o Tk (Topological Network): Hierarchical with clear directionality (e.g., tree

structures).

o Bk (Boolean Network): Dense and interconnected, based on logical rules.

¢ Bottom — Subnetworks and Network Structure:
o A subnetwork is a subset of a larger network preserving the same structure and rules.

o These visualizations show how logic expressions, once translated into graphs, can be
decomposed into smaller functional units.

This illustration shows how the core rules of Boolean algebra shape network behavior and
structure. Every logic expression can be interpreted as a graph belonging to a classification group (Uk,
Gk, Tk, Bk). Subnetworks enable deeper analysis, essential for understanding complex digital and
logical systems.

Conclusion, Discussion and Recommendations for Further Research

The results obtained through the developed MATLAB application demonstrate that Boolean
algebra can be successfully integrated into the analysis and classification of network structures. The
application enables users to input two mathematical functions which are automatically displayed on
a coordinate system, providing a clear visual representation of their mutual relationships,
intersection points, and behavioral patterns within the domain.

The detected intersections of the functions are of particular importance, as they represent key
points in network classification. Based on this data, the application generates logical expressions
which are then transformed into Boolean operations —union and intersection— interpreted as logical
disjunction and conjunction, respectively. Each step is accompanied by analytical explanations, along
with the automatic generation of truth tables, which allow for the derivation of minimized
expressions in Disjunctive Normal Form (DNF) and Conjunctive Normal Form (KNF).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.1203.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 May 2025 d0i:10.20944/preprints202505.1203.v1

19 of 19

What stands out is the fact that the application not only offers visualization and symbolic
computation but also enables logical inference to determine whether the given network belongs to one
of the defined classes—Gk, Uk, Tk, Hk, or Bk. This functionality enhances the understanding of
relations between functions and supports more precise modeling of networks in both educational and
research contexts.

Overall, the application successfully bridges algebraic principles with graphical analysis and
logical reasoning, making it a valuable tool for digital logic, set theory, and applied mathematical
education. It serves as an example of how interactive tools can deepen theoretical knowledge and
facilitate the study of complex systems.

Recommendations for Further Research:

Future research can focus on expanding the application to support:

e  Multivariable functions and dynamic network generation in real-time.

¢ Integration with symbolic Al for automatic recognition and simplification of logical patterns.

e C(lassification and simulation of real-world data networks (e.g., social, biological, or
communication networks).

e  Exporting results in standardized formats for use in scientific publications or external systems.

e  Enhancing the interface for use in STEM education at various levels of complexity.

Such developments would further enhance the relevance and applicability of this tool in both
academic and professional environments.
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