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Abstract: This paper explores an algorithmic-modeling approach to the classification of network and 

semi-network structures through the formalism of Boolean algebra, relying on algebraic operations 

naturally interpreted as union (∨, denoted by 0) and intersection (∧, denoted by 1). Particular 

emphasis is placed on a deeper theoretical analysis of the structural properties of networks and their 

subclasses, symbolically represented as Gk, Uk, Tk, Hk, and Bk. These structures are examined as 

carriers of logical relations within closed and partially closed systems, thereby creating opportunities 

for their axiomatization, identification of shared identities, and algebraic classification. The study 

proposes an initial algorithmic framework for recognizing and categorizing the given network 

structures based on their internal algebraic and relational characteristics. Additionally, it provides a 

theoretical foundation for extending this model to multidimensional or dynamic networks that 

involve time, flow, and mutable nodes. Within the research context, potential implementation 

pathways are suggested for various programming languages, with emphasis on experimental 

environments such as Python, MATLAB, and similar platforms. The results indicate the presence of 

systemic regularities that allow for formal and consistent classification across a broad spectrum of 

network systems. This creates a theoretical basis for the future development of algebraic algorithms 

with applications in logic, automated data processing, lattice theory, and advanced information 

structures. 

Keywords: Boolean algebra; networks and semi-networks; algorithmic modeling; union and 

intersection; Gk–Bk structures; lattice theory; programming languages; mathematical classification 

 

Introduction 

The study of network and semi-network structures represents one of the central areas 

of contemporary mathematical logic, lattice theory, and computer science. In the age of 

information technology, where an increasing number of systems can be represented through 

relations, graphs, and logical connections, there is a growing need for formal tools that allow 

modeling and analyzing such systems. Boolean algebra, with its elegance and clarity, provides 

a natural theoretical framework for expressing, manipulating, and classifying network 

structures. It enables the introduction of order, rules, and axiomatic precision in fields that often 

rely on heuristic approaches. 
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Boolean algebra was first formalized in the mid-19th century by George Boole, es- tablishing 

the foundation of modern mathematical logic. His approach was revolutionary because it 

enabled the expression of logical operations through algebraic expressions. The elements of 

Boolean algebra are associated with two fundamental binary operations: join (disjunction, 

denoted by ∨) and meet (conjunction, denoted by ∧), along with a unary complement operator 

(′), and two special elements 0 and 1 that represent false and true, respectively, or the minimum 

and maximum elements of the algebra. 

The formal definition of Boolean algebra is as follows: let B be a non-empty set; then (B, ∨, 

∧,′ , 0, 1) is a Boolean algebra if the following axioms are satisfied: 

(B, ∨, ∧) is a lattice: the operations are associative, commutative, idempotent, and satisfy 

absorption: 

a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a. 
The operations ∨ and ∧ are distributive over each other: 

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). 

 
For each element a ∈ B, there exists a complement a′ such that: 

a ∨ a′ = 1, a ∧ a′ = 0. 
On the other hand, lattices and semi-lattices are structures that possess some of these 

properties but not necessarily all. A semi-lattice may have only one defined operation (∨ or 

∧), while networks are structures that have both operations but without additional conditions 

such as distributivity or the existence of complements. 

This paper focuses on the classification and analysis of network and semi-network 

structures using Boolean algebra, with the aim of establishing an algorithmic approach by which 

networks can be formally described, analyzed, and categorized. Special attention is given to 

structures denoted by the symbols Gk, Uk, Tk, Hk, and Bk, where each represents a different level 

of algebraic structure: 

• Gk – general networks without strict axiomatic requirements, 

• Uk – networks closed under the ∨ (join) operation, 

• Tk – topologically oriented networks with a point-based structure, 

• Hk – networks with horizontal and vertical relations, 

• Bk – structures that satisfy all axioms of Boolean algebra. 

In analyzing these networks, we use formal tools: axioms, diagrams, relation matrices, and 

methods of deductive logic. Classification is carried out by testing for satisfaction of lattice 

axioms, distributivity, and the existence of complements. For example, let the set X = {a, b, c} have 

binary operations ∨ and ∧ defined in tabular form. If it is shown that: 

a ∨ b = b, a ∧ b = a, b′ = c, b ∨ b′ = 1, b ∧ b′ = 0, 
then the set X with these operations satisfies the conditions of a Boolean algebra. 

Furthermore, network closure is studied: let M be a subset of the set B. We say that M is 

closed under the operation ∨ if for all x, y ∈ M it holds that x ∨ y ∈ M . Closure under ∧ is defined 

analogously. These properties can be used for the formal classification of sub-networks within a 

larger structure. 

The notion of network homomorphism is also used: let (A, ∨, ∧) and (B, ∨′, ∧′) be two networks. 

A function f : A → B is a homomorphism if for all x, y ∈ A it holds that: 

f (x ∨ y) = f (x) ∨′ f (y), f (x ∧ y) = f (x) ∧′ f (y). 
Homomorphisms are used to study similarities and differences among network structures 

and to establish a theory of network isomorphisms. 
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In addition to the theoretical component, this work has a practical dimension. An 

algorithmic model is developed that enables: 

1. input of the structure in table or matrix form, 

2. automatic checking of axioms, 

3. classification of the network into the appropriate class Gk–Bk, 

4. visualization of the network and its operations. 

The objective of this research is to apply the theoretical foundation of Boolean algebra in the 

classification of network structures, thereby providing a methodological framework applicable 

in logic, computer science, lattice theory, databases, digital circuits, and artifi- cial intelligence. 

This contributes to the standardization and systematization of network models in the context of 

formal logic and theoretical informatics. 

Graph Theory and Algorithms: Application in Net- work 

Classification 

This section of the paper examines the fundamental concepts of graph theory in the context 

of algorithmic modeling and the application of Boolean algebra. Special focus is placed on 

shortest path algorithms, graph isomorphism testing, Hamiltonian paths, trees, planarity, and 

graph operations. 

Determining the Shortest Path in a Graph 

To find the shortest path in a graph, the Ford algorithm is used. Consider a graph G 

with vertices x1, x2, . . . , xn. Edges are defined as pairs (xi, xj) with weights l((xi, xj)). Each vertex xi 

is assigned a value λi. 

The algorithm proceeds as follows: 

• Set λ1 = 0, and for all other vertices λi = ∞, 

• Iterate through all edges and perform relaxation: if λj > λi + l((xi, xj)), then set λj = λi + 

l((xi, xj)), 

• Repeat until no changes occur. 

After the algorithm completes, the values λi represent the shortest distances from vertex 

x1 to all other vertices. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2025 doi:10.20944/preprints202505.1203.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1203.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 19 

 

Figure 1. Application of Ford’s algorithm to a directed graph. The graph displays various distances 

between vertices with given weights. 

Hamiltonian Paths and Réd e i ’ s  Theorem 

A Hamiltonian path in a digraph is a path that visits each vertex exactly once. The 

existence of such a path can be guaranteed by Rédei’s theorem: 

Theorem: If in a digraph G for every pair of vertices xi, xj there exists a directed edge 

(xi, xj) or (xj, xi), then a Hamiltonian path exists. 

Graph Isomorphism 

Two graphs are isomorphic if there is a bijective mapping of vertices that preserves 

adjacency. Graphs are equivalent if they structurally match in terms of relations. 

Adjacency Matrices and Permutations 

The adjacency matrix of a graph represents the connections between its vertices. A 

permutation matrix P is used to prove isomorphism via the relation: 

A1 = P −1A2P 

 

Figure 2. Example of different adjacency matrices for isomorphic graphs. The structure is preserved under 

permutation. 

Graph Complementation 

The complement of a graph G includes all edges missing in G, connecting vertices that are 

not adjacent in the original graph. 

Self-Complementary Graphs and Theorem 

A graph G is self-complementary if it is isomorphic to its complement G. The following 

theorem holds: 

Theorem: A self-complementary graph G has 4r or 4r + 1 vertices, where r is a non-

negative integer. 
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Figure 3. Examples of self-complementary graphs. These graphs regain isomorphic struc- ture after adding 

the missing edges. 

Graph Operations: Union, Intersection, and Product 

For arbitrary graphs G1 = (X1, U1) and G2 = (X2, U2), the following can be defined: 

• Union: G1 ∪ G2 (logical disjunction in Boolean algebra) 

• Intersection: G1 ∩ G2 (logical conjunction) 

• Cartesian product: G1 × G2 

Mathematically: 

UG1∪G2 = U1 ∪ U2, UG1∩G2 = U1 ∩ U2 

In Boolean algebra: 

G1 ∪ G2 = OR(G1, G2), G1 ∩ G2 = AND(G1, G2) 

 

 

Figure 4. Examples of operations: union, intersection, and Cartesian product of two simple graphs G1 and 

G2. The first image shows input graphs, and the following illustrate the results of merging and pairing. 

Trees and Their Relation to Boolean Algebra 

A tree is a connected graph without cycles. Basic properties of trees include: 

• A tree with n vertices has exactly n − 1 edges. 

• Every connected acyclic graph is a tree. 

• If the number of vertices is n and the number of edges is n − 1, the graph is a tree. 

Boolean Algebra and Trees: Viewing each graph as a set of edges: 

• The union of multiple trees forms a forest (disjoint set of trees). 

• The intersection of trees yields common subgraphs that are also acyclic. 
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Figure 5. Different forms of trees – all illustrated graphs are connected and acyclic. They demonstrate 

possible structures formed by union or intersection of trees. 

Planar Graphs and Euler’s Formula 

Planar graphs are those that can be drawn in a plane without crossing edges. 

Euler’s formula: 

m − n + f = 2 
where m is the number of edges, n the number of vertices, and f the number of faces. 

Theorem: A graph is planar if it does not contain a subgraph isomorphic to K5 or K3,3, 

or their subdivisions. 

 

Figure 6. Non-planar graphs: complete graph K5 and complete bipartite graph K3,3. These cannot be 

drawn on a plane without edge crossings. 

According to Kuratowski’s theorem, the planarity of a graph can be determined only  if it 

does not contain a subgraph isomorphic to K5 or K3,3 or their subdivisions. This characterization 

is crucial for graph classification in discrete mathematics and computer science. 

Networks, Semilattices and the Application of Boolean Algebra in Classification 

Mathematical Approach to Graphs, Intersections and Boolean Proofs 

for Gk, Uk, Hk, Bk 

For each of the structures Gk, Uk, Hk, and Bk, we provide a formal mathematical represen- 

tation with analysis of intersections and unions, including Boolean tables, line equations, and 

proofs. 

Gk – Generalized Networks (Weak Relations) 

Let the relations be R1 = {(a, a), (a, b), (b, c)} and R2 = {(b, b), (b, c), (c, c)}. 
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Union: R1 ∪ R2 = {(a, a), (a, b), (b, c), (b, b), (c, c)} 

Intersection: R1 ∩ R2 = {(b, c)} 

Mathematical interpretation: Via line graphs: 

If P1 : y = x (reflexivity), P2 : y = x + 1 (transitive relation), their intersection is found by 

solving: 

 

y = x 

y = x + 1 

⇒ no solution ⇒ no common points 
Boolean table: 

 

a b a ∨ b 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Conclusion: Gk structures have partial Boolean compatibility but lack complements and 

boundaries. 

Uk – Union-Based Networks 

Let A = {1, 2} and B = {2, 3}. 

Union: A ∪ B = {1, 2, 3} 

Intersection: A ∩ B = {2} (not used in Uk) 

Line equations: Connect points in plane: (1, 0) and (2, 0) form y = 0 (horizontal) (2, 0) and 

(2, 1) form x = 2 (vertical). 

Intersection: x = 2, y = 0 ⇒ (2, 0) — point of intersection Boolean analysis: Only ∨ is 

defined: 1 ∨ 0 = 1, 1 ∨ 1 = 1 Conclusion: Uk represents join logic without shared base (no meet). 

 

Hk – Horizontal-Vertical Networks 

Let A = {(1, 0), (2, 0)}, B = {(2, 0), (2, 1)}. 

Union: A ∪ B = {(1, 0), (2, 0), (2, 1)} 

Intersection: A ∩ B = {(2, 0)} 

Mathematical proof: Line y = 0 (horizontal) and x = 2 (vertical) intersect at (2, 0). 

Boolean form: ∨ = union = all edges, ∧ = intersection = common node 

Table: 

 

a b a ∨ b a ∧ b 
0 0 0 0 
1 0 1 0 
0 1 1 0 
1 1 1 1 

Conclusion: Hk networks allow multidimensional interpretation of relations through lines 

and nodes. 

Bk – Complete Boolean Networks 

A = {0, 1}, B = {1, 2}, universal set U = {0, 1, 2, 3} 

Operations: 

A ∪ B = {0, 1, 2}, A ∩ B = {1}, A′ = {2, 3}, B′ = {0, 3} 

Boolean laws: 

A ∨ B = A ∪ B, A ∧ B = A ∩ B 

( 
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A ∨ A′ = U, A ∧ A′ = ∅ 
Line equations: If elements are represented as points in coordinate plane: 

• A: x = 0, x = 1 B: x = 1, x = 2 

• Line x = 1 — common intersection, gives node (1, y) for any y 

Truth table: 

 

a b a ∨ b a ∧ b ¬a 
0 0 0 0 1 
0 1 1 0 1 
1 0 1 0 0 
1 1 1 1 0 

Conclusion: Bk networks satisfy all logical operations and serve as a complete base for 

system implementation using Boolean algebra. 

Networks, Semilattices, and the Application of Boolean Algebra in 

Classification 

Logical Interpretation: 0 as Union, 1 as Intersection 

In the context of Boolean algebra, the logical OR operation (∨) is interpreted as the union of 

sets, while the logical AND operation (∧) is interpreted as the intersection. In this study, we 

introduce the following notation: 

• Logical 0 — represents the union of elements: a ∨ b = a ∪ b 

• Logical 1 — represents the intersection of elements: a ∧ b = a ∩ b 

This interpretation enables consistent tracking of algebraic operations across network and 

graph structures. 

Optimization Algorithm for Classification and Mapping of Net- work Structures using 

Boolean Algebra 

To enhance the efficiency of network structure classification, we developed an algorithm 

that applies minimization of Boolean expressions in Disjunctive Normal Form (DNF) and 

Conjunctive Normal Form (KNF). This approach simplifies the structure of directions, 

intersections, and unions within the network. 

Algorithm Steps: 

1. Input: A set of relations between network nodes expressed as binary expressions (e.g., x1 

∨ x2, x1 ∧ x3). 

2. Transformation: Conversion of expressions into DNF and KNF formats. 

3. Minimization: Use of methods such as the Quine–McCluskey algorithm or Kar- naugh 

maps to minimize logical expressions. 

4. Direction Analysis: Identification of line equations of the form y = ax + b for each relation. 

5. Intersections: Calculation of intersection points by solving systems of linear equa- tions for 

each pair of relations. 

6. Output: An optimized set of network connections, classified according to the Gk, Uk, Hk, 

Bk typology. 

Example: 

Let us consider the relations: 

R1 = x1 ∨ x2, R2 = x2 ∧ x3 

We transform them as follows: 

DNF: f (x1, x2, x3) = (x1 ∧ ¬x2) ∨ (x2 ∧ x3) 
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′ 

KNF: f (x1, x2, x3) = (x1 ∨ x2) ∧ (¬x1 ∨ x3) 

The intersection of the lines y = x1 and y = −x2 +3 is obtained by solving the system: 

 

y = x1 

y = −x2 + 3 

⇒ x1 

= −x2 + 3 
Conclusion: By optimizing expressions and accurately calculating intersections and unions, 

we enable improved interpretation and automation of network classification with 

implementation in MATLAB or Python. 

Networks, Semilattices, and the Application of Boolean Algebra in Classification 

In modern mathematical logic and structure theory, the concepts of networks and semi- 

lattices play a significant role in modeling relationships between elements in ordered sets. 

Networks represent algebraic structures that support operations of least upper bound 

(supremum) and greatest lower bound (infimum), while semilattices allow only one of these 

operations. Boolean algebra, as a special case of a distributive lattice with com- plements, 

naturally fits into this structural hierarchy, offering precise tools for modeling relations. 

Theoretical Foundation: Semilattices and Lattices 

Definition: A semilattice is an algebraic structure (L, ∨) in which the operation ∨ is 

associative, commutative, and idempotent, i.e.: 

a ∨ b = b ∨ a, 

a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∨ a = a. 

Analogously, (L, ∧) is a semilattice if it refers to the infimum operation. If both operations are 

defined and satisfy the absorption laws: 

a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a, 

then the structure is called a lattice (L, ∨, ∧). 

Boolean Algebra as a Lattice Extension 

Boolean algebra introduces additional requirements: 

• distributivity of ∨ and ∧ operations, 

• existence of a complement a for every element a, 

• existence of bounds: 0 (least) and 1 (greatest element). 

Examples of identities in Boolean algebra: 

a ∨ a′ 

= 1, a 

∧ a′ = 

0, a ∨ 

0 = a, 

a ∧ 1 

= a, 

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). 

( 
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Truth Table and Logical Interpretation 

For elements a, b ∈ {0, 1}: 

a b a ∨ b a ∧ b 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 1 1 

This table shows the basic logical operations of union and intersection within Boolean 

algebra. 

Axiomatic Proofs within Lattices and Sublattices 

Theorem: Let (L, ∨, ∧) be a distributive lattice and a ∈ L. Then there exists at most one 

element a′ such that: 

a ∨ a′ = 1, a ∧ a′ = 0. 

Proof: Assume that both a′ and a′′ satisfy the conditions. Then: 

a′ = a′ ∧ 1 = a′ ∧ (a ∨ a′′) = (a′ ∧ a) ∨ (a′ ∧ a′′) = 0 ∨ (a′ ∧ a′′) = a′ ∧ a′′. 

Similarly, we get a′′ ≤ a′, hence a′ = a′′. 

Definition: A sublattice M ⊆ L is closed under ∨ (or ∧) if for all a, b ∈ M we have 

a ∨ b ∈ M (or a ∧ b ∈ M ). If both operations are present, M is a sublattice. 

 

Boolean Algebra in Modeling Network Structures 

In modeling networks, the labels Gk, Uk, Tk, Hk, Bk serve for classification: 

• Gk – only reflexive and transitive relations (weak structures), 

• Uk – union-closed networks under ∨ (disjunction), 

• Tk – networks with partial localization and binary relations, 

• Hk – structures with bidirectional relations and diagonal operations, 

• Bk – full network logic equivalent to Boolean algebra. 

By applying Boolean algebra to these structures, it is possible to verify whether a given 

network behaves as a distributive lattice with complements, allowing strict classification and 

further algorithmic processing. 

Operational Interpretation for Gk–Bk Structures in Boolean Al- gebra 

For each classification structure Gk, Uk, Tk, Hk, and Bk, we can establish a formal in- terpretation 

using Boolean algebra through join operations (∨, symbolically marked as 0) and meet 

operations (∧, marked as 1). These operations are viewed as the basis for generating network 

relations: 

• Gk (generalized networks): Structured relations satisfying reflexivity and tran- 

sitivity. No guarantee of 0 or 1. 

a ∨ b = nearest common upper node, a ∧ b = undefined or nonexistent. 

• Uk (union networks): Closed only under ∨ (symbol 0), while ∧ (1) is undefined. 

∀a, b ∈ Uk, a ∨ b ∈ Uk, ∄a ∧ b ∈ Uk. 

• Tk (topological networks): Define localized directions in networks with partial 

connections. Partial ∧ operations are allowed: 

a ∧ b = intersection node if it exists, a ∨ b = union of links. 
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( 

′ ′ 

• Hk (horizontal-vertical networks): Define clear two-dimensional structure.  ∨ 

represents horizontal joins, and ∧ vertical intersections. 

a ∨ b = a ∪ b (horizontal union), a ∧ b = a ∩ b (zone intersection). 

• Bk (Boolean networks): Satisfy all Boolean algebra axioms: 

a ∨ b = max(a, b), 

a ∧ b = min(a, b), 

a′ = complement with respect to 

universal set, a ∨ a′ = 1, a ∧ a′ = 0. 

Mathematical Function and Proof via Boolean Algebra for Net- work Structures 

We develop an advanced formal function for classifying networks and sub-networks via set 

union and intersection, mapped onto Boolean join (symbol 0) and meet (symbol 1) operations. 

Formal Function: Let A, B ⊆ U be subsets of the universal set U , and define the function 

f as: 

f (A, B) = 
1 if A ∪ B = A ∨ B and A ∩ B = A ∧ B, 

0 otherwise. 

Mathematical Proof: Let U = {0, 1}2 with elements: 

(0, 0), (0, 1), (1, 0), (1, 1) 

Let A = {(1, 0), (0, 1)} and B = {(0, 1), (1, 1)}. Then: 

A ∪ B = {(1, 0), (0, 1), (1, 1)}, A ∩ B = {(0, 1)} 

Symbolically: 

A ∨ B = logical disjunction, A ∧ B = logical 

conjunction Thus, f (A, B) = 1, confirming Boolean compatibility. 

Axiomatic Properties: 

• Commutativity: A ∨ B = B ∨ A, A ∧ B = B ∧ A 

• Associativity: A ∨ (B ∨ C) = (A ∨ B) ∨ C 

• Distributivity: A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) 

• Complement: A ∨ A = 1, A ∧ A = 0 

Operations 0 and 1: 

• 0: Join (union) – operator ∨ 

• 1: Meet (intersection) – operator ∧ 

Example with networks: If G1 = (V1, E1) and G2 = (V2, E2), then: 
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( 

A 

G1 ∨ G2 = (V1 ∪ V2, E1 ∪ E2), G1 ∧ 

G2 = (V1 ∩ V2, E1 ∩ E2) 

Application of the function: Define the characteristic function: 

 

χ (x) = 
1 if x ∈ A 

0 if x ∈/ A 

Then: 

χA∪B(x) = χA(x) ∨ χB(x), χA∩B(x) = χA(x) ∧ χB(x) 

Truth Table: 

 

a b a ∨ b a ∧ b ¬a 
0 0 0 0 1 
0 1 1 0 1 
1 0 1 0 0 
1 1 1 1 0 

Disjunctive Normal Form (DNF): 

f (a, b) = (¬a ∧ b) ∨ (a ∧ ¬b) ∨ (a ∧ b) 

Conjunctive Normal Form (CNF): 

f (a, b) = (a ∨ b) ∧ (¬a ∨ b) ∧ (a ∨ ¬b) 

Minimal Form: 

f (a, b) = a ∨ b 

Conclusion: By linking set theory, logic, and graph theory via f (A, B) and truth tables, a 

formal framework is established for systematic classification of network structures using Boolean 

algebra. This enables automated testing and application in digital logic, lattice theory, and 

classification algorithms. 

Application for Representing Networks and Subnetworks Using Boolean 

Algebra 

The results obtained through the developed MATLAB application demonstrate that it is indeed 

possible to successfully integrate Boolean algebra into the process of analyzing and classifying 

network structures. The application allows users to input two functions, which are automatically 

displayed on a coordinate system, providing a clear visual representation of the relationships 

between the functions, their points of intersection, and their behavior within a defined domain. 

Particular importance is given to the points of intersection between the functions, as they 

represent key locations in the network classification process. Based on this data, the application 

generates logical expressions that are then transformed into Boolean operations—namely union and 

intersection, interpreted as logical disjunction and conjunction. Each step is accompanied by 

analytical interpretation, with the additional option of generating a truth table, which facilitates 

further simplification of expressions into DNF and KNF forms. 

What is especially noteworthy is that the application, in addition to visualization and symbolic 

computation, enables logical reasoning to determine the classification of the defined network into 

one of the predefined classes—Gk, Uk, Tk, Hk, or Bk. This functionality not only enhances the 

understanding of relationships between the functions but also contributes to more precise modeling 

of networks in both educational and research contexts. 
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Based on the entire workflow, it can be concluded that the application effectively bridges 

algebraic principles with graphical analysis and logical reasoning, making it a valuable tool for digital 

logic, set theory, and applied mathematics education. 

 

Figure 1. Application Interface. 

This image shows the initial screen of the application developed in MATLAB, intended for the 

analysis of relationships between mathematical functions through both logical and graphical 

approaches. At the core is the ability for the user to input two functions to compare. The application 

enables visualization of these functions, determines their points of intersection, and performs logical 

operations that describe their interactions. 

Upon inputting the functions, the application not only plots them on a shared graph but also 

simultaneously analyzes their relationship within the framework of Boolean algebra. This enables the 

user to observe where the functions intersect, how they combine, and what their mutual relationship 

implies in the broader context of network classification. 

Through intuitive controls, the user can activate additional tools that expand the analysis— such 

as the generation of a Boolean truth table, transformation of expressions into standardized logical 

forms, visualization of the resulting network types, and the ability to save all results for further 

processing. In this way, the application serves as a bridge between traditional mathematical function 

analysis and digital representation of their relationships in the form of network models. 

This initial step forms the foundation of the entire application, allowing users to define relational 

functions whose intersections, differences, and connections are then further analyzed using graph 

theory and logic. It effectively connects numerical mathematics with digital logic, offering multiple 

applications—from education to advanced research modeling of network systems. 
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Figure 2. Network Visualization. 

The second image presents the outcome after functions have been input and displayed on the 

coordinate system. The application automatically generates a graphical representation of both 

functions, providing a clear visual understanding of their mutual relationship. A crucial feature of this 

visualization is the automatic detection of intersection points—visually highlighted where the graphs 

meet. 

These intersection points are not merely geometric locations but also hold significant logical and 

structural roles within the network model. They serve as the foundation for network classification 

and further logical linking of elements within Boolean algebra. Displaying both functions on the same 

graph allows the user to immediately perceive their interaction: whether they intersect once or 

multiple times, whether they diverge, run parallel, or exhibit other characteristics that influence the 

resulting network structure. 

Thanks to this capability, the user can promptly draw conclusions about the interaction between 

the functions and use this information for further logical and graph-based analysis. This visualization 

becomes a key component in the overall algorithmic process, linking functional analysis with the 

topological structure of networks. 

 

Figure 3. Logical Functions and Their Graphical Representations in the Context of Boolean Algebra. 
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This figure visually integrates three key elements: logical functions, the truth table, and 

corresponding network structures derived from them. 

• Logical expressions at the top of the figure: 

o The function f(x1,x2,x3)=x1∨x2∨x3 represents a disjunction (logical "OR") of three 

variables. It is an example of a simple logical function in disjunctive form. 

o The function g(x1,x2)=x1∧¬x1∧¬x2 is a contradictory function (never true), used to 

represent paradoxical or unachievable logical connections. 

o From these symbolic functions, relationships between network nodes can be 

constructed based on the truth values of the expressions. 

• Truth table (bottom left): 

o Shows all possible combinations of values for variabl x1 and x2, along with the 

corresponding function result. 

o The table is used to generate DNF (Disjunctive Normal Form) and KNF (Conjunctive 

Normal Form), essential for logic minimization and further network analysis. 

• Graphs (right side): 

o The upper graph shows a simple network based on the function ggg, connecting only 

nodes where the expression evaluates to true. 

o The lower graph represents a more complex network, possibly derived from 

combining multiple logical expressions (such as h(x2,x3)), where nodes interact based 

on logical evaluation. 

Figure 3 illustrates how logical expressions, truth tables, and Boolean algebra can be used to 

shape a network, where nodes are interconnected depending on the truth values of expressions. This 

is a crucial visualization for understanding the transition between symbolic logic and actual network 

graphs in network theory. 

 

Figure 4. Adjacency Matrices and Graphs for Gk, Bk, Tk and Other Networks. 

This figure presents four different network types alongside their corresponding adjacency 

matrices, which represent the structural connections between nodes. 

• Top left – Gk (Generalized Network): 
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o Displays a complex graph with multiple node connections. 

o The adjacency matrix indicates which nodes are connected (1 for connection, 0 for 

none). 

o This type illustrates a general, unstructured network without predefined logical 

restrictions. 

• Top right – Bk (Boolean Network): 

o A network where relationships are defined using Boolean logic. 

o The adjacency matrix reflects logical rules through partial node connections. 

o Often used for modeling systems like logic processors and digital circuits. 

• Bottom left – Tk (Topological Network): 

o Shows a tree structure with clearly defined hierarchy and directional edges (from 

root to leaves). 

o The matrix displays outgoing edges per node, with “2” indicating two child 

connections. 

o Useful in modeling organizational charts, inheritance trees, or search algorithms. 

• Bottom right – Random Unstructured Network: 

o Visualized as a complex mesh of randomly interconnected nodes. 

o The adjacency matrix shows highly specific node connections. 

o This model is typical for neural networks or social networks with limited links. 

This figure enables comparative analysis between different network structures both visually and 

algebraically, bridging the gap between graph theory and algebraic modeling. It is particularly 

beneficial for education, systems modeling, logic evaluation, and mathematical experimentation. 
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Figure 5. Logical Functions, Truth Tables, and Related Networks. 

This figure combines Boolean functions, truth tables, and related graphs that represent 

connections between variables. It focuses on three functions: f(x1,x2,x3),g(x1,x2), and h(x2 ,x3), each 

with its own logical formulation and graphical depiction. 

• Top – Functions f(x),g(x)f(x), g(x)f(x),g(x): 

o f(x1,x2,x3)=x1∨x2∨x3 is a disjunction that outputs 1 if at least one input is 1. 

o g(x1,x2)=x1∧¬x1∧¬x2 is inherently false (as x1∧¬x1 is always 0), thus always evaluates 

to 0. 

• Middle left – Truth Table: 

o Shows all binary combinations for x1,,x2 and the result for f(x1,x2). 

o Used for analyzing and evaluating Boolean expressions. 

o Enables logic minimization into DNF and KNF. 

• Right – Graphs Linked to Functions: 

o The upper graph shows a simple three-node structure, possibly representing g(x1,x2) 

or a binary tree. 

o The lower graph is more complex, likely illustrating h(x2,x3), involving more 

connections and interactions. 

o These graphs visually represent logical functions as network structures. 

Figure 5 links Boolean logic with graphs and mathematical functions, showing how logic 

expressions can structure and control networks. Truth tables assist in testing and validating logic, 

while graphs offer a visual model of these relationships—useful in logic circuit design, programming, 

education, and network modeling. 
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Figure 6. Boolean Algebra Axioms and Network Types: Uk, Gk, Tk, Bk, and Subnetworks. 

• Top left – Boolean Algebra Axioms: 

o Presents fundamental Boolean rules: 

▪ a∧0=0 
▪ a∧1=a 
▪ a∨0=a 
▪ a∧a=a 
▪ a∨a=a 

These axioms are the basis for constructing and analyzing logic expressions and networks. 

• Middle and Right – Network Visualizations: 

o Uk (Union Network): One central node connected to several others producing 

output 1, representing disjunction. 

o Gk (Generalized Network): A complex web of nodes, possibly with loops or cycles. 

o Tk (Topological Network): Hierarchical with clear directionality (e.g., tree 

structures). 

o Bk (Boolean Network): Dense and interconnected, based on logical rules. 

• Bottom – Subnetworks and Network Structure: 

o A subnetwork is a subset of a larger network preserving the same structure and rules. 

o These visualizations show how logic expressions, once translated into graphs, can be 

decomposed into smaller functional units. 

This illustration shows how the core rules of Boolean algebra shape network behavior and 

structure. Every logic expression can be interpreted as a graph belonging to a classification group (Uk, 

Gk, Tk, Bk). Subnetworks enable deeper analysis, essential for understanding complex digital and 

logical systems. 

Conclusion, Discussion and Recommendations for Further Research 

The results obtained through the developed MATLAB application demonstrate that Boolean 

algebra can be successfully integrated into the analysis and classification of network structures. The 

application enables users to input two mathematical functions which are automatically displayed on 

a coordinate system, providing a clear visual representation of their mutual relationships, 

intersection points, and behavioral patterns within the domain. 

The detected intersections of the functions are of particular importance, as they represent key 

points in network classification. Based on this data, the application generates logical expressions 

which are then transformed into Boolean operations—union and intersection— interpreted as logical 

disjunction and conjunction, respectively. Each step is accompanied by analytical explanations, along 

with the automatic generation of truth tables, which allow for the derivation of minimized 

expressions in Disjunctive Normal Form (DNF) and Conjunctive Normal Form (KNF). 
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What stands out is the fact that the application not only offers visualization and symbolic 

computation but also enables logical inference to determine whether the given network belongs to one 

of the defined classes—Gk, Uk, Tk, Hk, or Bk. This functionality enhances the understanding of 

relations between functions and supports more precise modeling of networks in both educational and 

research contexts. 

Overall, the application successfully bridges algebraic principles with graphical analysis and 

logical reasoning, making it a valuable tool for digital logic, set theory, and applied mathematical 

education. It serves as an example of how interactive tools can deepen theoretical knowledge and 

facilitate the study of complex systems. 

Recommendations for Further Research: 

Future research can focus on expanding the application to support: 

• Multivariable functions and dynamic network generation in real-time. 

• Integration with symbolic AI for automatic recognition and simplification of logical patterns. 

• Classification and simulation of real-world data networks (e.g., social, biological, or 

communication networks). 

• Exporting results in standardized formats for use in scientific publications or external systems. 

• Enhancing the interface for use in STEM education at various levels of complexity. 

Such developments would further enhance the relevance and applicability of this tool in both 

academic and professional environments. 
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