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Abstract: Continuous monitoring of glucose dynamics during sleep is critical for early detection of 

asymptomatic hypoglycemia and other metabolic risks. In this study, we aimed to characterize the 

physiological responses associated with interstitial fluid glucose (ISFG) fluctuations during sleep by 

performing multimodal time-series analyses of heart rate (HR), peripheral oxygen saturation (SpO₂), 

and motion signals. 5 healthy participants (1 female) simultaneously wore a minimally invasive 

ISFG sensor and a ring-type sensor that recorded HR, SpO₂, and actigraphy. Throughout the sleep 

period (00:00–06:00), ISFG levels decreased in four out of five participants. Subsequently, in 

participants 1, 3, 4, and 5, ISFG increased between 12:00–15:00 and then gradually declined again 

towards the night. Paired t-tests comparing ISFG levels between 0–3 h and 3–6 h showed a 

significant decrease during the later half of the night (n=5, p=0.01). Regarding SpO₂, four 

participants exhibited a mild decrease between 3:00–4:00 after sleep onset, while one dataset was 

incomplete. Our findings suggest that ISFG reduction during sleep is associated with subtle changes 

in oxygen saturation patterns. These multimodal signal patterns could serve as potential new 

indicators for detecting unrecognized nocturnal hypoglycemia. Furthermore, the integration of low-

invasive continuous monitoring technologies may enhance online consultations and remote medical 

services by providing real-time physiological risk assessments during sleep. Future studies with 

larger cohorts are warranted to validate these promising applications. 

Keywords: Interstitial Fluid Glucose (ISFG); sleep physiology; multimodal signal analysis; heart 

rate variability; nocturnal hypoglycemia detection; telemedicine 

 

1. Introduction 

Glucose homeostasis is essential for maintaining overall physiological stability, especially 

during sleep when external inputs are minimized, and intrinsic regulatory mechanisms predominate. 

Dysregulation of glucose levels during sleep can lead to serious health consequences, including 

unrecognized nocturnal hypoglycemia, which poses risks particularly for individuals with diabetes 

or other metabolic disorders. Early detection and continuous monitoring of glucose fluctuations 

during sleep are therefore critical to preventing adverse outcomes and enabling timely medical 

interventions [1-8]. Recent advancements in wearable technology have enabled non-invasive or 

minimally invasive monitoring of various physiological parameters, such as heart rate (HR), 

peripheral oxygen saturation (SpO₂), physical activity, and interstitial fluid glucose (ISFG) [9-11]. 

Multimodal monitoring offers a unique opportunity to explore the complex interactions between 

metabolic and autonomic processes during sleep. Despite growing interest, limited research has 

focused on how ISFG fluctuations correlate with other physiological signals during sleep in healthy 
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individuals. Understanding these patterns may provide new insights into early risk detection and 

contribute to the development of preventive strategies. 

Heart rate variability (HRV) and SpO₂ have been extensively studied in sleep medicine [12-19]. 

Changes in autonomic tone, reflected in HRV, and respiratory stability, inferred from SpO₂ 

fluctuations, are known to be influenced by metabolic states [20-26]. For instance, hypoglycemia has 

been associated with sympathetic nervous system activation, which may manifest as alterations in 

HR and HRV [27-33]. Similarly, decreased glucose availability may impact respiratory patterns, 

potentially affecting SpO₂ levels. However, direct evidence linking ISFG variations with 

simultaneous multimodal physiological signals during sleep remains scarce. To address this gap, we 

conducted a pilot study involving five healthy participants, utilizing a minimally invasive ISFG 

sensor combined with a ring-type wearable device capable of continuously recording HR, SpO₂, and 

motion signals. Our aim was to characterize how ISFG changes during sleep and to investigate 

corresponding physiological patterns, focusing particularly on SpO₂ and HR dynamics. By analyzing 

time-series data across the sleep period, we sought to identify signatures that could serve as new 

markers for detecting nocturnal metabolic disturbances, even before clinical symptoms become 

apparent. 

2. Materials and Methods 

2.1. Participants 

5 healthy volunteers (1 female, age 55 ± 10 years) were recruited for this study. All participants 

reported no history of metabolic, cardiovascular, or sleep disorders and were not taking any 

medications that could affect glucose metabolism or autonomic function. Exclusion criteria included 

any history of chronic illness, use of medications or supplements that could influence glucose 

metabolism, autonomic nervous system function, or sleep quality, as well as shift work, smoking, or 

excessive alcohol consumption. Written informed consent was obtained from all participants prior to 

enrollment. The study protocol was approved by the institutional ethics committee (Ethics 

Committee of Graduate School of Engineering, Mie University, Approval number 132, Approval date 

February 19, 2025, and Nagoya City University Hospital Ethics Review Committee Approval 

Number 60-18-0211, Approval Date March 22, 2019) and was conducted in accordance with the 

Declaration of Helsinki. 

2.2. Sensors and Data Acquisition 

Participants simultaneously wore two types of sensors during the monitoring period. Interstitial 

Fluid Glucose (ISFG) Monitoring; a minimally invasive ISFG sensor (Abbott, Libre, USA) was 

attached to the upper arm [34-37]. The sensor continuously recorded glucose concentrations at 15-

minute intervals, measurement period was 2 weeks (14 days). ISFG levels closely reflect blood 

glucose concentrations, with a typical lag time of approximately 5 to 15 minutes due to the diffusion 

process between blood and interstitial compartments. Numerous studies have validated the strong 

correlation between ISFG and capillary blood glucose, supporting the clinical utility of continuous 

ISFG monitoring in both diabetic and non-diabetic populations. The ISFG sensor used in this study 

is minimally invasive, involving a small filament inserted just beneath the skin, which allows for 

continuous, real-time glucose monitoring without the need for frequent finger-prick blood sampling. 

Participants reported no discomfort or skin irritation during the 14-day monitoring period. The 

device was lightweight and securely adhered to the upper arm, enabling normal daily activities, 

including sleep, exercise, and bathing (when appropriately covered), without disruption. The 

unobtrusive design of the sensor made it suitable for long-term use, facilitating reliable glucose trend 

tracking across various physiological states, such as during sleep, rest, or activity. This non-intrusive 

nature supports its integration into multimodal physiological studies and offers a practical tool for 

investigating metabolic dynamics in naturalistic settings. 
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Physiological Signal Monitoring; a ring-type wearable device (Sanei Medisys, CheckMeRing, 

Kyoto, Japan, Medical device certification number: 304AABZX00029000) was used to record heart 

rate (HR), peripheral oxygen saturation (SpO₂), and motion (actigraphy) at a sampling rate of 0.25 

Hz. In this study, a ring-shaped silicon sensor was used to HR and SpO₂ during sleep. The sensor 

was comfortably worn on either the thumb or index finger of the non-dominant hand, based on 

participant preference and optimal signal quality. The device, made from soft and flexible medical-

grade silicone, was lightweight and caused no discomfort or interference with natural hand 

movement or sleep posture. In pre-measurement, participants reported no irritation or awareness of 

the device during use. This design allowed for continuous, unobtrusive monitoring of physiological 

parameters throughout the night, enhancing the ecological validity of the measurements. The device 

was connected to the Check Me app on a smartphone via Bluetooth 4.0 BLE, and CSV data was 

extracted. The measurement ranges were SpO2: 70%-99%, Pulse: 30bpm-250bpm, and the 

measurement accuracy was SpO2: 80-99%, ±2%, 70-79%, ±3%, Pulse: 30bpm-250bpm±2bpm or 

30bpm-250bpm±2%, whichever was greater. 

Data collection was performed over a sleep period (from bedtime to waking up), focusing 

particularly on the nighttime sleep interval from 00:00 to 06:00. Participants were instructed to 

maintain their usual sleep habits and avoid alcohol or intense physical activity on the day of 

measurement. 

 
 

(a) (b) 

Figure 1. Continuous monitoring of interstitial fluid glucose levels 

Figure (a) shows a sensor used to measure glucose levels in interstitial fluid. It comes with an ultra-fine 

filament (needle) that is inserted into the skin during application. This is not designed to puncture the skin or 

leave the needle in place; instead, it is inserted into the skin’s interstitial spaces to measure glucose concentration 

in the interstitial fluid. The filament reacts with glucose in the interstitial fluid using an enzyme inside the sensor, 

and the resulting weak electrical current is measured. The strength of this current is used to calculate blood 

glucose levels. Since there is no need to prick the fingertip with a needle, this method offers the advantage of 

reduced pain and discomfort compared to traditional blood glucose meters. Figure (b) shows the measurement 

using a ring-shaped sensor. 

2.3. Data Processing and Analysis 

All physiological data were synchronized based on timestamp information. ISFG data were 

linearly interpolated to generate a continuous time-series matching the 0.25 Hz sampling rate of the 

ring-type device. HR, SpO2 and motion signals were sampled at 0.25 Hz and were not filtered or 

smoothed for noise reduction; filtering and smoothing techniques are effective in reducing random 

noise, but they can obscure transient changes or introduce phase shifts, especially in low-frequency 

components that are important in the analysis of autonomic nervous system and metabolic dynamics. 
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The motion signal was used to confirm sleep onset and detect major body movements during 

sleep. Datasets containing excessive motion artifacts during the sleep period of interest were 

excluded from further analysis. In this study, a resultant acceleration was calculated from the 3-axis 

accelerometer built into the ring sensor using the following formula: 

 𝑎𝑚𝑎𝑔 = √𝑎𝑥
2 + 𝑎𝑦

2+𝑎𝑧
2  (1) 

x, y, and z are the accelerations in each axis direction (units are g). amag is the magnitude of acceleration. 

The above formula mainly distinguishes between changes in the magnitude of acceleration 

(dynamic or static). The classification of body position itself is usually determined from the direction 

of the acceleration vector (tilt angle) based on the direction of gravity (static acceleration). When 

estimating body position from three-axis body acceleration (x, y, z), it is generally classified into six 

types of body positions: standing, sitting, supine, prone, right lateral recumbent, and left lateral 

recumbent. In this study, we determined the lying position using the tilt angle (angle of inclination), 

a typical index that can be used to determine lying position. When the Z axis is vertical, it can be 

expressed by the following formula. 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑎𝑧

√𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2

)

  (2) 

This angle θ (= how much the body is tilted from the vertical) can be used to roughly classify the 

positions. 

θ ≈ 0°: Standing 

θ ≈ 90°: Supine or prone or lateral (lying down) 

The classification of the positions (supine/prone/lateral) can be done based on the deviation of 

the horizontal components (a_x, a_y). 

This resultant acceleration value was used to confirm sleep (or lying down) status. 

Mean ISFG levels were calculated for two consecutive time windows: 0–3 hours and 3–6 hours 

after sleep onset. A paired t-test was performed to compare ISFG between these intervals, with 

significance set at p < 0.05. Changes in SpO₂ were analyzed by averaging 1-hour segments, and group 

patterns were visually inspected to identify common trends. Data analyses were conducted using 

SPSS v28. 

3. Results 

3.1. Interstitial Fluid Glucose (ISFG) Dynamics During Sleep 

During the monitored sleep period (00:00–06:00), four out of five participants (Participants 1, 3, 

4, and 5) exhibited a continuous decrease in ISFG levels. The remaining participant (Participant 2) 

showed relatively stable ISFG without notable downward trends（Figure 2, Table 1.）. 

3.2. Peripheral Oxygen Saturation (SpO₂) Changes and Heart Rate and Motion Analysis 

SpO₂ levels remained relatively stable during the early stages of sleep but began to show a mild 

downward trend between 3:00 and 4:00 AM in four participants. Specifically, mean SpO₂ values 

dropped by approximately 1–2% during this window com-pared to earlier sleep phases. One 

participant’s SpO₂ dataset was incomplete due to device malfunction and was excluded from this 

part of the analysis（Figure 2 and 3). Heart rate (HR) showed expected nocturnal slowing across 

participants, with no arrhythmic events or abrupt fluctuations detected during the monitoring period. 

Minor HR increases were observed corresponding to occasional motion artifacts; however, major 

body movements were rare during the main sleep intervals (Table 2.). 
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3.3. Quantitative analysis 

Revealed that mean ISFG levels during the 3–6 h window were significantly lower than those 

during the 0–3 h window. A paired t-test confirmed this decrease was statistically significant (p = 

0.01, n = 5, Figure 5.). 

 

Figure 2. Diurnal variation calculated from 2 weeks of ISFG. Blue: participant 1, Green: participant 2, Orange: 

participant 3, Purple: participant 4, Red: participant 5. ISFG is measured as a 3-hour average. During nighttime 

sleep, ISFG decreased in 4 out of 5 participants from 0:00 to 6:00. After that, ISFG increased in 4 participants 

(participants 1, 3, 4, and 5) from 12:00 to 15:00 and then gradually decreased throughout the night. 

Table 1. Average ISFG per time segment. 

Participants ISFG (mg/dL) 
ISFG 

(0-3)* 

ISFG 

(3-6) 

ISFG 

(6-9) 

ISFG 

(9-12) 

ISFG 

(12-15) 

ISFG 

(15-18) 

ISFG 

(18-21) 

ISFG 

(21-24) 

1 106±7 103 94 104 102 119 109 107 108 

2 138±8 141 134 150 139 147 123 130 140 

3 112±9 103 95 107 110 123 122 117 119 

4 120±6 123 115 107 118 126 129 122 121 

5 144±25 110 109 126 154 172 177 166 138 

*The brackets in ISFG indicate time. 
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Figure 3. Changes in average SpO2 over time during nighttime sleep. Blue: participant 1, Green: participant 2, 

Orange: participant 3, Purple: participant 4. Hourly averages and standard deviations from 0 to 6:00 am. 

Participants 1, 3, and 4 showed a gradual increase from 3 to 4:00 am. after falling asleep. Participant 2, who had 

the highest ISFG among participants, showed a rapid decrease from 2 to 3:00 am. after falling asleep, and then 

recovered. (Data for participant 5 is missing) 

 

Figure 4. Changes in average SpO2 over time during nighttime sleep. Blue: participant 1, Green: 

participant 2, Orange: participant 3, Purple: participant 4. Hourly averages and standard deviations from 0:00 to 

6:00. All four participants experienced a gradual decrease from 3:00 to 4:00 after going to bed. 

Table 2. Values obtained from biosensors during sleep (by time period). 

Participants HR (bpm) HR (0-3a) HR (3-6a) 

1 67±9 74±7 60±5 

2 49±7 54±7 45±4 
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3 83±4 84±3 81±4 

4 87±6 90±6 85±6 
 SpO2(％) SpO2(0-3) SpO2(3-6) 

1 97±1 96±1 97±1 

2 96±1 95±1 96±1 

3 97±1 96±1 97±1 

4 95±1 95±1 96±1 
 Motion (G) Motion (0-3) Motion (3-6) 

1 0 [0-0] 0 [0-1] 0 [0-0] 

2 0 [0-1] 0 [0-1] 0 [0-1] 

3 0 [0-1] 1 [0-1] 0 [0-1] 

4 0 [0-0] 0 [0-0] 0 [0-0] 

Due to missing data, we were unable to obtain biosignal data during sleep from participant 5. 

 

Figure 5. Test for significant difference in ISFG during nighttime sleep. 

Test for significant difference in ISFG during nighttime sleep. Paired t-test for 0-3h and 3-6h (n=5, 

p=0.01). ISFG was significantly decreased during 3-6h compared to 0-3h. 

4. Discussion 

This study explored the dynamics of interstitial fluid glucose (ISFG) during sleep in healthy 

individuals using a multimodal monitoring approach combining minimally invasive glucose sensing 

with wearable biosensors for heart rate (HR), oxygen saturation (SpO₂), and motion detection. Our 

findings provide novel insights into physiological fluctuations occurring overnight and their 

potential implications for real-time metabolic health assessment, particularly in remote or home-care 

settings. A consistent trend observed in this study was the decrease in ISFG levels during the first 

half of the sleep window (00:00–03:00), followed by a further decline or stabilization in the second 

half (03:00–06:00). This reduction was statistically significant (p=0.01), suggesting that glucose 

consumption during sleep persists, possibly due to continued cerebral glucose uptake even in the 

absence of food intake. Such a pattern aligns with existing literature on nocturnal glucose metabolism 

and emphasizes the brain’s high energy demands during sleep, particularly in non-REM phases [31]. 

The mild but temporally correlated decline in SpO₂ between 3:00 and 4:00 a.m. in most 

participants may point to physiological adjustments that occur during sleep transitions. Although 

these changes remained within normal ranges and did not indicate clinical hypoxia, their temporal 
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association with the lowest ISFG values raises interesting questions. One hypothesis is that subtle 

autonomic nervous system modulations or sleep-stage transitions—such as from non-REM to REM 

sleep—might temporarily impact both ventilatory control and peripheral glucose utilization. This 

interplay could represent an early physiological signal of metabolic stress or adjustment, even in 

otherwise healthy individuals. Actigraphy data confirmed minimal movement throughout the 00:00–

06:00 window, supporting the notion that participants were mostly at rest and likely asleep, lending 

credibility to the assumption that observed physiological changes were indeed sleep-related rather 

than behaviorally driven [21,23]. Moreover, HR data showed expected nocturnal reductions 

consistent with circadian patterns and parasympathetic predominance during sleep. These relatively 

stable HR trends reinforce the validity of the glucose and oxygenation changes, further suggesting 

that the body’s metabolic and respiratory systems undergo synchronized adjustments overnight. 

Interestingly, the rebound of ISFG levels observed between 12:00 and 15:00 in four participants may 

reflect circadian or behavioral influences, including increased activity levels, dietary intake, or 

hormonal fluctuations such as cortisol peaks. The fact that this pattern emerged in a majority of 

participants implies a reproducible post-sleep physiological response. Such daytime recovery 

patterns underscore the importance of considering full diurnal glucose dynamics, not only nocturnal 

phases, when evaluating metabolic regulation. 

The implications of these findings are particularly relevant in the context of telemedicine and 

remote health monitoring. As chronic diseases such as diabetes continue to rise globally, the need for 

early detection tools that can be used non-invasively and outside clinical settings is becoming urgent. 

Our study demonstrates the potential for continuous, home-based, multimodal monitoring systems 

to identify metabolic imbalances such as asymptomatic nocturnal hypoglycemia. This is especially 

valuable for patients who do not exhibit overt symptoms and thus might remain undiagnosed under 

standard care practices. Furthermore, the integration of glucose, HR, SpO₂, and motion data provides 

a richer dataset than single-modality monitoring systems. When processed with advanced analytics, 

such as gradient-based anomaly detection or machine learning algorithms, these multimodal signals 

may reveal subtle, yet clinically significant patterns. This technological synergy opens the door to 

predictive modeling that could support real-time clinical decision-making and patient self-

management. 

Despite these promising insights, this study has several limitations. The most notable is the small 

sample size (n=5), which constrains the generalizability of our findings. Additionally, the study 

lacked simultaneous polysomnography (PSG), which would allow for precise identification of sleep 

stages. Incorporating PSG in future research would enable more granular analyses of how specific 

sleep architecture changes correspond to metabolic fluctuations. Another limitation of this study lies 

in the relatively low sampling rate (0.25 Hz) used for physiological signal acquisition. In general, low-

frequency sampling has the advantage of minimizing the impact of high-frequency noise, as such 

noise components are theoretically excluded due to the Nyquist theorem. This is particularly 

appropriate for parameters like SpO₂, which typically vary slowly and can be sufficiently captured 

at lower sampling rates. Additionally, a lower sampling rate reduces the need for complex filtering, 

preserving the raw signal characteristics. However, this approach comes at the cost of reduced 

temporal resolution. Rapid physiological changes or transient events—such as brief arousals, sudden 

movements, or sharp drops in oxygen saturation—may not be accurately detected. Moreover, low-

frequency measurements remain susceptible to slow-drift noise or sensor-related artifacts. Future 

studies could benefit from higher-resolution data to allow for finer-grained analyses of dynamic 

physiological patterns, especially in relation to sleep-stage transitions and metabolic fluctuations. 

Moreover, while our participants were healthy and free of known metabolic disorders, extending this 

protocol to include individuals with prediabetes, type 2 diabetes, or sleep disorders such as 

obstructive sleep apnea would be essential to fully assess the clinical utility of these monitoring 

approaches. Longitudinal designs capturing intra-individual variability across multiple nights could 

also improve the robustness of derived biomarkers and account for temporal fluctuations related to 

lifestyle or environmental factors. 
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In conclusion, our findings reinforce the value of continuous multimodal monitoring for 

capturing the physiological complexity of sleep and its interaction with glucose metabolism. The use 

of minimally invasive and wearable technologies makes such assessments feasible in non-clinical 

settings, advancing the goals of preventive medicine and personalized healthcare. Through further 

refinement and validation, this approach holds promise for real-time health surveillance and risk 

management, particularly in populations vulnerable to metabolic dysregulation during sleep. By 

bridging engineering innovation, data science, and clinical medicine, we can envision a future in 

which subtle physiological cues are harnessed for proactive, data-driven healthcare delivery. 

5. Conclusions 

This study aimed to characterize interstitial fluid glucose (ISFG) dynamics during sleep and to 

examine associated physiological patterns, particularly focusing on peripheral oxygen saturation 

(SpO₂) and heart rate (HR) fluctuations. By employing a multimodal time-series analysis approach, 

we sought to uncover potential early markers of nocturnal metabolic disturbances using non-invasive 

monitoring techniques. Our results revealed that in four out of five participants, ISFG levels steadily 

declined throughout the sleep period (00:00–06:00), indicating a consistent metabolic trend among 

healthy individuals. Only one participant showed stable glucose levels without significant decrease, 

suggesting possible individual variability in nocturnal glucose regulation. Quantitative analysis 

confirmed a statistically significant reduction in ISFG levels between the early (0–3 h) and late (3–6 

h) sleep phases (p = 0.01). SpO₂ remained generally stable during the initial sleep period but 

demonstrated a subtle decline between 3:00 and 4:00 AM in most participants, with an average 

reduction of approximately 1–2%. Together, these findings support the feasibility of using integrated 

wearable sensor systems for continuous, non-invasive monitoring of sleep-related metabolic changes. 
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