
Article Not peer-reviewed version

A Survey of Critical Cybersecurity Risks

in Electric Vehicle Mobile Applications:

Vulnerabilities, Permissions, and

Mitigation Strategies

Bilal Saleem and Zia Muhammad *

Posted Date: 13 May 2025

doi: 10.20944/preprints202505.0903.v1

Keywords: electric vehicle cybersecurity; EV mobile app security; android app vulnerabilities; EV app

permissions; secure coding for EV apps; EV charging app security; OWASP mobile top 10; CWE weaknesses;

third-party app security; manufacturer app vulnerabilities

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2663403
https://sciprofiles.com/profile/2859567

Article

A Survey of Critical Cybersecurity Risks in Electric
Vehicle Mobile Applications: Vulnerabilities,
Permissions, and Mitigation Strategies
Bilal Saleem 1 and Zia Muhammad 2,*

1 Department of Cybersecurity, Air University, Islamabad, PK; 211096@students.au.edu.pk
2 Department of Computing, Design, and Communication, University of Jamestown, Jamestown, ND 58405, USA
* Correspondence: zia.muhammad@uj.edu

Abstract: As the world accelerates toward a sustainable future with electric vehicles (EVs), smartphone
applications have become an indispensable tool for drivers. These applications, developed by both
EV manufacturers and third-party developers, offer functionalities such as remote vehicle control,
charging station location, and route planning. However, they also have access to sensitive information,
making them potential targets for cyber threats. This paper presents a comprehensive survey of
cybersecurity vulnerabilities, weaknesses, and permissions in these applications. We categorize the
applications into two groups: those developed by EV manufacturers and those by third parties, and
conduct a comparative analysis of their functionalities by performing static and dynamic analysis.
Our findings reveal major security flaws such as poor authentication, broken encryption, and insecure
communication, among others. The paper also discusses the implications of these vulnerabilities and
the risks they pose to users. Furthermore, we performed an analysis of requested permissions and
identified functionalities that are not present in official EV applications, leading users to rely on poorly
built third-party applications, thereby increasing their attack surface. To address these issues, we
propose defensive measures to enhance the security of these applications, ensuring a safe and secure
transition to EVs.

Keywords: electric vehicle cybersecurity; EV mobile app security; android app vulnerabilities; EV
app permissions; secure coding for EV apps; EV charging app security; OWASP mobile top 10; CWE
weaknesses; third-party app security; manufacturer app vulnerabilities

1. Introduction
EVs are gaining traction as an eco-friendly and economical substitute for traditional cars that run

on gasoline. Unlike conventional cars that rely on internal combustion engines burning fossil fuels,
EVs utilize one or more electric motors for propulsion [1]. Depending on the electricity source and
storage, EVs can be classified into various types such as battery electric vehicles (BEV), plug-in hybrid
electric vehicles (PHEV), and fuel cell electric vehicles (FCEVs) [2]. Compared to their conventional
counterparts, EVs offer numerous advantages. They help reduce greenhouse gas emissions, improve
air quality, bolster energy security, and create new economic opportunities [3].

The International Energy Agency projects that by 2030, 125 million EVs will be on the road,
accounting for nearly a third of all passenger vehicles [4]. Many factors are driving its growth,
including rising fuel costs, rising concerns about climate change, and government incentives to adopt
electric vehicle EVs to deliver economic benefits in addition to environmental benefits. Because EVs
require less fuel and maintenance than gasoline-powered vehicles, they are generally cheaper to
maintain. In addition, many countries around the world offer them various subsidies and incentives,
such as tax credits and tax exemptions [5]. For example, in the United States, EV buyers can claim a
federal tax credit of up to $7,500 depending [6]. In China, the world’s largest EV market, EV buyers
can receive a 10% reduction in consumption tax and a subsidy of up to 18,000 yuan [7].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

2 of 21

The rapid growth of EVs has led to a parallel increase in the demand for mobile applications
that facilitate the management and monitoring of these vehicles. Most EVs are equipped with a
proprietary mobile application provided by the manufacturer, explicitly designed to control and
monitor certain types of EVs. These applications enable users to efficiently manage and monitor their
EV usage [8]. These mobile applications offer a plethora of conveniences to the user. They provide
real-time tracking of charging status, battery levels, and travel range. They also send notifications upon
charging completion and facilitate payment at public charging stations. Some manufacturers even
allow users to remotely control certain vehicle functions such as door locks, climate control systems,
headlights, maintenance schedules, and charging station payment [9].

Apart from the applications offered by EV manufacturers, there are many applications developed
and uploaded by third-party developers [10]. Although, these applications help consumers, but they
also provide developers and manufacturers with useful information on everyday activities, driving
patterns, vehicle use, and user behavior [11]. Therefore, the security and integrity of these applications
play a crucial role, considering that the data they manage is sensitive. The data collected by these
applications can be used for advertising, insurance, and product development. Most applications
collect data—which includes car performance metrics, location, infotainment system data, sensor data,
driving patterns, personal information, financial details, and user activities [12]. Figure ?? provides an
overview of real-time functionality and important EV application features that are common in most EV
applications. It illustrates the key significance and dependency of mobile applications for EV owners
and drivers. The image represents that applications can be used for vehicle tracking, remote unlock,
and charging updates among others [13].

To address these cybersecurity challenges and defend against vulnerabilities in mobile application
security, we provide a comprehensive cybersecurity assessment of EV mobile applications. We chose
these applications from the application distribution platforms and divided them into two groups based
on the developers: (1) Applications developed by EV manufacturers and (2) Applications developed
by independent third-party developers. We then developed a comprehensive methodology to analyze
these applications which allowed us to perform permission analysis, common weakness enumeration
(CWE) [14], and the most critical security vulnerabilities based on the open web-application-security-
project (OWASP) security standards [15]. After the identification of vulnerabilities, defensive measures
are proposed to enhance the security of these applications. The novelty of our work lies in the
comprehensive nature of assessment, identifying the features that attract users to install third-party
applications, and proposing solutions to improve the security.

1. The paper presents a thorough security assessment of EV Android applications. This includes
both static and dynamic analysis phases, knowledge building, and a security assessment phase,
providing a detailed understanding of the cybersecurity landscape in these applications.

2. The research identifies major security flaws such as poor authentication, broken encryption,
insecure communication, and more. It also pinpoints the OWASP top ten vulnerabilities and
analyzes for CWE, contributing valuable insights to the field of cybersecurity in EV applications.

3. The paper conducts a detailed analysis of the requested permissions in these applications. It also
identifies functionalities that are not present in official EV applications, leading users to rely on
third-party applications, thereby increasing their attack surface.

4. Finally, the research proposes defensive measures based on OWASP and CWE defenses to mitigate
the identified security issues to enhance the security of EV Android applications.

1.1. Paper Organization

The remainder of this paper is organized as follows: Section 2 reviews the literature on EVs
and identifies research gaps. Section 3 selects applications for security assessment and compares the
functionalities and features of the applications. Section 4 describes the methodology and procedure of
the assessment. Section 5 presents the results and findings of the analysis. Section 6 provides valuable

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

3 of 21

insights on results. Section 7 suggests defensive measures to improve the security of applications.
Section 8 concludes the article and discusses future work.

2. Literature Review
The increasing popularity and mass production of EVs raise challenges related to cybersecurity

concerns. There are five components of EV security profiling: charging station security, information
privacy, software security, connected vehicle security, and autonomous driving security [16]. Most
vehicles now come with mobile applications that use cloud and fog computing paradigms. These
applications communicate with trusted cloud servers through intermediary node servers and possess
multiple data entry and exit points where security is needed [17].

Additionally, the growth of electric vehicle adoption has led to increased demand for electric
vehicle supply equipment (EVSE) infrastructure and mobile applications. This has also exposed
vulnerabilities in EVSE systems, including weak authentication mechanisms and end-to-end commu-
nications [18].

EV mobile applications are among customer-valued areas that may encourage adoption, with
security having a significant impact on this [19]. The landscape of mobile applications available to EV
drivers is highly fragmented and lacks uniformity and standards and cybersecurity measures [20].

EV applications can misuse sensitive data if they have security flaws, such as over-claimed
permissions, obsolete API calls, vulnerabilities, and weaknesses [21]. Among all the mobile applications
connected with Android Auto infotainment systems, nearly 80% of the applications are potentially
vulnerable, with 25% posing security threats related to the execution of JavaScript [22]. There are
security concerns associated with connecting Android devices to car infotainment systems, which can
be exploited to read sensitive data and send dangerous commands to the car’s hardware [23].

Popular EV applications from manufacturers and third-party developers exhibit security vul-
nerabilities, potentially compromising sensitive information such as vehicle location, statistics, and
personally identifiable information (PII) stored in mobile devices [24]. There is a possibility of remote
attacks on mobile applications used for locating EV charging points [25]. There is also the possibility of
hacking through existing vulnerabilities in various mobile EV applications application authentication
and insecure communication. Moreover, there are cyber threats to EVs, third-party libraries, and imple-
mented sensors [26]. There are many other security vulnerabilities that exist in Android vehicle-related
applications. As, these applications use network security configuration (NSC) in enhancing security
practices, which if not effectively utilized, can create security vulnerabilities [27].

There is a need for security assessment of EV mobile applications, as they collect data from
EV sensors, such as LiDAR, radar, and cameras, to enhance 3D object detection and visualization,
having vulnerability in these applications can put users on risk [28]. Also, it is equally important to
ensure secure vehicle-to-everything (V2X) communications in connected car mobile applications. [11].
Safeguards and defensive controls are needed to address the security vulnerabilities in EV applications,
particularly focusing on encryption for data transmission and secure data storage to prevent potential
security incidents.

Moreover, vehicular technology is also evolving to attain emerging technologies and blockchain-
based self-certified key exchange protocols, which proposes a highly secure self-certified key exchange
protocol that if used in mobile applications, can provide enhanced security, authenticity and pri-
vacy [29].

The existing literature has identified some of the cybersecurity risks and threats that affect EV
mobile applications. However, some identified limitations may include a lack of systematic studies
that analyze the security of a wide range of EV mobile applications using various tools and techniques.
Also, there is a lack of comparative analysis of the functionality of EV mobile applications which
becomes the reason to influence the users into installing these applications. Therefore, this article
aims to provide a detailed cybersecurity assessment of popular EV mobile applications, identify the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

4 of 21

features that attract users to install third-party applications, and propose defenses to mitigate the
vulnerabilities, and build resilience.

3. Application Selection and Functionality Influence
This section describes the selection criteria and functionality of the applications that we used for

the underlined article. First, applications were downloaded from the Google Play Store. There are a
total of twenty applications which are divided into two groups, Group:1 represents EV manufacturers-
developed applications, and Group:2 shows third-party developers applications.

3.1. Group:1 - EV Manufacturers Applications

1. TESLA: this user-friendly application is designed for managing Tesla vehicles. It offers features
like tracking your vehicle, starting or stopping charging remotely, and even locking and unlocking
your car. Additionally, it helps users locate charging stations, schedule service appointments, and
download the latest updates.

2. Mercedes: this application locks or unlocks the doors, remote starts, tracks the vehicle, records
driving habits, and schedules service appointments.

3. BMW: it performs vehicle tracking, allows remote starts, schedules service appointments, and
allows maintenance updates.

4. Nissan: this application is all about convenience for Nissan vehicle owners. It enables users
to locate and track their vehicles and even offers keyless entry and remote start capabilities.
It’s compatible with Alexa-enabled devices and Google Assistant, allowing users to use voice
commands to start the car, turn on the lights, and interact with their vehicle in various other
ways.

5. Volkswagen: the application provides remote access, reserves parking spots, schedules service
appointments, and downloads updates.

6. Jaguar InControl: it can schedule maintenance and service appointments, remotely activate the
vehicle’s horn and lights, access trip history and driving statistics, and remotely start.

7. FordPass: it provides details on ingress fuel levels, allows lock/unlock of Ford vehicles, checks
vehicle health information, finds parking spots, and uses platform assistance.

8. MITSUBISHI: enables users to remotely control climate settings, manage anti-theft functions,
monitor current travel information, and manage chargings.

9. Land Rover InControl: allows users to remotely unlock doors, start the engine, update climate
settings, use the vehicle locator, and receive maintenance alerts.

10. MY FERRARI: allows users to oversee and manage Ferrari vehicles from a distance, review details
of the vehicle, access vehicle location tracking, and start or stop the engine, and manage vehicular
updates.

3.2. Group:2 - Third-Party Applications

1. EVConnect: this app is a handy tool for EV drivers. It helps users find EV charging stations, pay
for charging services, and send notifications when the charging is complete.

2. EVgo: allows users to check charging information, locate charging stations, and book a charger.
This application also supports loyalty programs and coupons.

3. Plugshare: this app helps users find charging stations, pay for services, and monitor the charging
process. It allows users to share their experiences, stories, and photos, and rate their overall
experience.

4. ChargeHub: this app is a helpful assistant for electric vehicle owners. It helps users find, compare,
and navigate to charging stations. It provides updates on the availability of stations, making it
easier for users to plan their charging.

5. EV-Energy: this app is designed to help EV owners manage their home charging needs. It
includes features like setting reminders, tracking charging time, and monitoring energy use,
making home charging an ease for EV owners.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

5 of 21

6. A better route planner (ABRP): offers trip planning tools for, taking into account weather updates,
traffic situations, and charging station amenities.

7. Caura: it allows users to track car-related expenses, track charging costs, update reminders, and
track vehicles.

8. Bp Plus: this application is designed for businesses that manage fleets and provide battery-saving
insights, find nearby charging stations, and give driving habits.

9. Optiwatt: allows EV owners to optimize their charging schedule based on energy costs and grid
demand. The application also provides analytics and reports on charging behavior and energy
consumption.

10. Octopus electroverse: gives users access to electric vehicle charging stations and uses smart
charging features to take advantage of off-peak electricity pricing.

3.3. Comparative Analysis of Functionalities Offered by EV Applications

Application functionality is an important factor that influences users to retain a specific application.
The functionalities present in chosen applications are classified into 12 groups, denoted by F1 to F12,
where F represents functionality. This notation is consistent with the previous scheme of using a letter
and a number to represent the applications and optimize the table structures in subsequent sections.

F1. Charging points- These features allow users to search nearby charging point locations.
F2. Vehicle controls- This allows monitor and control different functions of vehicles.
F3. Calls and messages- This helps in making and receiving calls and messages in mobile applications.
F4. Media controls- This controls media, audio, and other entertainment options.
F5. Remote unlock- As name suggests, it unlocks a car remotely.
F6. Charging status- This feature provide charging update of a vehicles.
F7. Vehicle tracking- This will track the location of vehicles using the GPS coordinates.
F8. Car health report- This returns a report on the health and performance of the underlined vehicle.
F9. Payments- This features let a customer pay for various services, like charging.
F10. Amenities- The function helps a user to find hotels and other services.
F11. Energy use tracking- It tracks and analyzes the energy used by a vehicle.
F12. Rewards and coupons- As the name suggests, it is linked to receiving and redeeming rewards

and coupons as users use certain services.

Table 1 provides a detailed comparative analysis of the functionalities offered by different EV
applications. The first column categorizes the applications into two groups: Group:1 (applications
developed by EV manufacturers) and Group:2 (applications developed by third-party developers).
This categorization is crucial as it allows us to compare the security features and vulnerabilities be-
tween manufacturer-developed and third-party applications, which could have different development
practices and security standards.

The second column lists the names of the applications, and the remaining columns detail the
functionalities present in each application. This information is significant as it helps us understand the
scope of each application and the potential security implications associated with each functionality.

The last column lists the total number of functions available in each application. This is an impor-
tant metric as it gives us an idea of the complexity of the application. Generally, more functionalities
could mean a larger attack surface and potentially more vulnerabilities.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

6 of 21

Table 1. Comparative Analysis of Functionalities offered by EVs mobile applications.

Group App Name F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F
10

F
11

F
12 Total

Group 1

TESLA [30] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5
Mercedes [31] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 3

BMW [32] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 3

Nissan [33] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 3

Volkswagen [34] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 3

FERRARI [35] ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ 7

FordPass [36] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 6

MITSUBISHI [37] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

Land Rover [38] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

Jaguar [39] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

Group 2

EV Connect [40] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ 4

EVgo [41] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 3

PlugShare [42] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ 4

ChargeHub [43] ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ 3

Optiwatt [44] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

Routeplanner [45] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

Caura [46] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

Bp Plus [47] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 6

Electroverse [48] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 5

EV-Energy [49] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ 4

The visual analysis of available functions is represented in Figure ??. The figure shows the count
of functionality for each selected application, as well as the corresponding feature categories denoted
by F1 to F12. For example, if we look at the leftmost bar, we can see that the Tesla application offers five
functionalities, which are F2 (Vehicle controls), F4 (Media controls), F5 (Remote unlock), F6 (Charging
status) and F7 (Vehicle tracking). The figure helps to visualize and compare the functionalities and
features of the applications.

On the other hand, Figure ?? shows the widely available functionality that is present in most
applications. This gives insight into the importance of the most necessary functionality for drivers,
that must be considered while building new applications. For example, we can see from the graph that
the three most common features that are available in almost every application are F5 (Remote unlock),
F6 (Charging status), and F7 (vehicle tracking). This can be used as a fair minimum standard for new
applications to survive the market dynamics and fulfill basic user needs.

4. Security Accessment Methodology
This section describes the methodology which consists of four phases: 1) the static analysis phase,

2) the dynamic analysis phase, 3) the knowledge-building phase, and 4) the security assessment phase.
Figure ?? provides a broad outline of each phase.

To provide a comprehensive understanding of our methodology, it is important to describe the
specific timeframe within which each phase of our cybersecurity assessment was conducted. The static
analysis phase started immediately after selecting suitable applications and spanned over a period of
two weeks. During this time, applications were decompiled and thoroughly examined for potential
security vulnerabilities. Following this, the dynamic analysis phase was initiated, which involved
running applications in a controlled virtual environment to monitor real-time operations; this phase
lasted three weeks due to its complexity and depth of analysis required.

Subsequently, we allocated one week for the knowledge-building phase where data from both
static and dynamic analyses were synthesized using advanced Python visualization tools to create an
insightful knowledge base. Finally, in the security assessment phase which took another two weeks,
we leveraged our comprehensive knowledge base to evaluate all identified security vulnerabilities

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

7 of 21

critically. In total, our methodology was executed over an eight-week period ensuring meticulous
attention to detail at every stage. This systematic approach allowed us to conduct an in-depth and
comprehensive security assessment of each application. The details of these phases are discussed in
the subsequent sections.

4.1. Static Analysis Phase

In this phase, we performed a static analysis of the selected applications. We started by decom-
piling the applications using Apktool [50], which allowed us to extract their resources and retrieve
valuable information. After the decompilation, we extracted the Android manifest file, opened it
with the text editor, and manually extracted different permissions used by applications. This gave us
insights into the level of access each application requires. We identified third-party libraries used in the
applications by examining the decompiled code. This helped us understand the external dependencies
of the applications.

We extracted strings and XML files from the decompiled code using xmlstarlet [51], a toolkit
to identify hard-coded secrets, URLs, and other potential security risks. Finally, we examined the
AndroidManifest.xml file of each application to understand its configuration, including its components
(activities, services, receivers, and intents) and their respective permissions. Activities, Services,
Receivers, and Intents: We analyzed the inter-component communication in the applications by
examining their manifest files and decompiled code. This helped us identify potential vulnerabilities
related to intent spoofing, unprotected components, and more. This comprehensive approach to static
analysis allowed us to gain a deep understanding of the applications’ structure, behavior, and potential
security vulnerabilities. We retrieving the following information from the applications [52]:

1. Application permissions.
2. Third-party libraries.
3. Strings and XML files.
4. Improper resource handling.
5. Application configuration.
6. Activities, services, receivers, and intents.
7. Unused Variables and Resources.

4.2. Dynamic Analysis Phase

In the dynamic analysis phase, we utilized a combination of publically available tools and custom
scripts to monitor the real-time operations of the applications. We used an Android debug bridge
(ADB) for communication between the host computer and the emulator [53].

To detect malicious behaviors, dynamic code loading, privilege escalation, and data exfiltration,
we used MobSF [54], a mobile security framework that provides dynamic analysis and malware
detection. For detecting obfuscation, encryption, and anti-debugging techniques, we used JEB De-
compiler [55]. Finally, Wireshark was used to capture network traffic, allowing us to analyze network
activities, protocols, traffic flow, domains, and APIs [56]. This comprehensive toolset allowed us
to perform a thorough dynamic analysis of the applications, providing valuable insights into their
runtime behavior and potential security vulnerabilities. The following information was obtained from
the applications [57]:

1. Application interactions, inputs, outputs, and interprocess communication.
2. Network activities, network protocols, traffic flow, domains, and APIs.
3. System calls, file operations, processes, and socket operations.
4. Resource consumption, CPU usage, memory usage, and battery usage.
5. Event logs, malicious behaviors, dynamic code loading, privilege escalation, and data exfiltration.
6. Obfuscation and encryption, and anti-debugging.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

8 of 21

4.3. Knowledge Building Phase

In this phase, we analyzed the data gathered from the previous two phases and built a knowledge
base that contains insights about the applications using Python visualization libraries, to perform the
following tasks:

1. Data cleaning and transformation: This is the process of removing or correcting inaccurate,
incomplete, or irrelevant data from the data set, such as missing values, outliers, and duplicates.

2. Data Integration and Visualization: It is the process of combining or merging data from different
sources or formats into a unified data set and then displaying graphical representations of the
data.

3. Data Mining and Interpretation: This is the process of discovering and extracting useful patterns,
and trends from the data.

4.4. Security Assessment Phase

In this phase, we evaluated all security vulnerabilities of every application using the knowledge
base created in the previous phase and performed the following tasks [58–60].

1. Analysis of requested permissions, their necessity, legitimacy, and risk level.
2. Identification of OWASP Top Ten vulnerabilities, which serves as a standard reference for identi-

fying critical security risks.
3. Identifying the severity and impact of vulnerabilities, their likelihood of occurrence, and potential

consequences.
4. Analysis for CWE [14].

The underlined methodology is adopted to conduct an individual assessment of each application.
The results and findings of the analysis are discussed in the subsequent sections.

5. Results and Findings
This section provides details about the results obtained from the analysis of the selected mobile

applications using the methodology described in the previous section. The results are based on the
data gathered from the static and dynamic analysis phases and the knowledge base created from the
knowledge-building phase.

5.1. Analysis of Requested Permissions

Android operating system enforces application permissions to access device functionalities.
However, some permissions are considered dangerous for both the user and the system, as they may
expose sensitive information, compromise security, or affect performance. Therefore, we analyze the
permissions requested by the EV application and assess their necessity, legitimacy, and level of risk [61].
The permissions are classified into 10 groups, denoted by P1 to P10. This notation is consistent with
the previous scheme of using a letter and a number to represent the permissions and optimize the
table structures in subsequent sections.

P1 Access precise location.
P2 Access Camera.
P3 Read and Update Contacts.
P4 Manage Calendar.
P5 Read/Write External storage.
P6 Access Call logs/records.
P7 Access Accounts and Stored Credentials.
P8 Connect Bluetooth.
P9 Access network state.
P10 Search and Connect WIFI.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

9 of 21

Table 2 provides a comparative analysis of the permissions requested by both groups of ap-
plications. The first column categorizes the applications into two groups: Group:1 (applications
developed by EV manufacturers) and Group:2 (applications developed by third-party developers).
This categorization is crucial as it allows us to compare the security features and vulnerabilities be-
tween manufacturer-developed and third-party applications, which could have different development
practices and security standards.

The second column lists the names of the applications, and the third column shows the specific
application version that was tested. We mention the version here, as some versions may request
extended permissions, which could potentially introduce additional security risks. The remaining
columns detail the permissions that each application requests. This information is significant as it
helps us understand the level of access each application requires to function. Excessive permissions
could indicate potential privacy risks or security vulnerabilities. The last column lists the total number
of permissions requested by each application. This is an important metric as it gives us an idea of the
scope of access each application requires. Generally, more permissions could mean a larger attack
surface and potentially more vulnerabilities.

Table 2. List of permissions requested by EV mobile applications.

Group Application Name Version P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P
10 Total

Group 1

TESLA [30] 4.15.1 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ 8

Mercedes [31] 3.30.1 ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 8

BMW [32] 2.12.3 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ 7

Nissan [33] 6.0.1 ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ 6

Volkswagen [34] 5.5.0 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ 5

FERRARI [35] 3.0.5 ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 7

FordPass [36] 4.25.0 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ 6

MITSUBISHI [37] 1.0.1 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ 2

Land Rover [38] 1.90.0 ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ 6

Jaguar [39] 1.90.0 ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ 6

Group 2

EV Connect [40] 3.12.3 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ 3

EVgo [41] 7.12.0 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 5

PlugShare [42] 4.0.0 ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ 6

ChargeHub [43] 12.11.0 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 5

Optiwatt [44] 1.3.9 ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ 3

Routeplanner [45] 4.4.0 ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ 7

Caura [46] 2.2.7 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ 3

Bp Plus [47] 2.5.1 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 4

Electroverse [48] 56.0 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ 3

EV-Energy [49] 2.12 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 4

Figure ?? provides a high-level overview of the number of requested permissions in each applica-
tion. The chart visualizes the distribution of permissions and resources across the applications and
compares the applications based on their permission count.

5.2. Identification of OWASP top ten vulnerabilities

OWASP is a nonprofit organization dedicated to enhancing software application security [62,63].
In this subsection, we discuss vulnerabilities that were identified in the code of analyzed applications
and further managed using OWASP standards.

Identification and mapping of application vulnerabilities span over two tables. Table 3 covers
Group:1 and Table 4 covers Group:2. Both tables on the left provide the first column as the vulnerability
name, which is represented as V1 - V10, consistent with the previous naming scheme of word and
number. Column 2 maps the vulnerabilities based on their risk level, such as HIGH, MEDIUM, and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

10 of 21

WARNING. The rest of the table shows the applications that match the vulnerabilities. Finally, the last
row at the bottom shows the total number of vulnerabilities present in each application.

V1 Improper Platform Usage, root functionality, hardware manipulation, or bypassing security
measures that can result in unauthorized access, privilege escalation, or device compromise.

V2 Insecure Data Storage, storing data in plain text, using weak encryption, or lacking access controls.
V3 Insecure communication, unauthenticated connections, exposing data to interception, or leaking

data to third parties.
V4 Insecure authentication, default or hard-coded credentials, lagging password policies, or relying

on single-factor authentication.
V5 Insufficient cryptography, using outdated or broken algorithms, using weak or predictable keys,

or implementing cryptography incorrectly.
V6 Insecure Authorization, lack of role-based access control, lack of checking permissions, or exces-

sive privileges. This may result in unauthorized access, privilege escalation, or data exposure.
V7 Quality of the client code, using insecure libraries or frameworks, having vulnerabilities or bugs

in the code, or lacking code review or testing.
V8 Code Tampering, adding malicious code, removing security checks, or hiding vulnerabilities.
V9 Reverse Engineering, encryption keys, API keys, or credentials.
V10 Extraneous Functionality, backdoors, debug functions, or test functions.

Table 3. Identification of vulnerabilities in Group:1 applications developed by EV manufacturers.

Vul. Risk A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10

V 1
HIGH ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

V 2
HIGH ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

MEDIUM ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

WARNING ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

V 3
HIGH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

WARNING ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 4
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 5
HIGH ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

MEDIUM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

WARNING ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗

V 6
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 7
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

WARNING ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

V 8
HIGH ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 9
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

WARNING ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

V 10
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Total Total 12 14 12 11 10 5 5 3 9 5

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

11 of 21

Table 4. Identification of vulnerabilities in Group:2 applications developed by third-party developers

Vul. Risk A 11 A 12 A 13 A 14 A 15 A 16 A 17 A 18 A 19 A 20

V 1
HIGH ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ×

WARNING ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ×

V 2
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ×

MEDIUM ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗

WARNING ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

V 3
HIGH ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 4
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 5
HIGH ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

MEDIUM ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

WARNING ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

V 6
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 7
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓

WARNING ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

V 8
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

V 9
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

WARNING ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

V 10
HIGH ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MEDIUM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

WARNING ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Total Total 9 7 4 7 10 6 6 8 7 4

In addition to the OWASP Top Ten vulnerabilities, Potential zero-day vulnerabilities could exist
in these applications. Zero-day vulnerabilities are previously unknown vulnerabilities that could be
exploited by attackers before they are discovered and fixed by the developers. These vulnerabilities
pose a significant threat as they leave the applications exposed to potential attacks until they are
identified and patched.

5.3. Analysis for CWE

CWE is a list of flaws that may result in security breaches and serves as a common language for
describing these weaknesses and provides a standard for measuring and mitigating them. CWE is
industry-endorsed and supported by a community of information security professionals [64]. CWE
is free for public use and is maintained by the MITRE Corporation. It is closely related to common
attack pattern enumeration and classification (CAPEC) and common vulnerabilities and exposures
(CVE) [65].

This section analyzed the EV smartphone applications for the presence of CWE. Table 5 provides
a comparative analysis of CWE vulnerabilities by both groups of applications. The table is structured
as follows: The first column on the left shows the application name and the group to which it belongs.
The remaining columns show the identified CWE vulnerabilities that each application has. The last
column lists the total number of CWEs present in each application. The details of the identified CWE
are as follows:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

12 of 21

1. CWE-250: Execution with Unnecessary Privileges.
2. CWE-330: Insufficiently random values are used and vulnerable to spoofing attacks.
3. CWE-276: Incorrect Default Permissions.
4. CWE-532: Insertion of sensitive data into the log file, passwords, tokens, or keys, into log files by

mistake.
5. CWE-312: Cleartext Storage of Sensitive Information.
6. CWE-89: Improper neutralization of special elements used in a SQL command (’SQL injection’).
7. CWE-327: Use of a Compromised or Risky Cryptographic Algorithm.
8. CWE-295: Improper Certificate Validation.
9. CWE-749: Exposed to dangerous methods or functions.
10. CWE-919: Improper handling of sensitive data, insecure communication, or lack of authentication.

Table 5. CWE present in EV mobile applications

Application CWE-
250

CWE-
330

CWE-
276

CWE-
532

CWE-
312

CWE-
89

CWE-
327

CWE-
295

CWE-
749

CWE-
919 Total

TESLA [30] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ 8

Mercedes [31] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ 6

BMW [32] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ 7

Nissan [33] ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 4

Volkswagen [34] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ 5

FERRARI [35] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 5

FordPass [36] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ 5

Mitsubishi [37] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 2

Land Rover [38] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ 5

Jaguar [39] ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 2

EV Connect [40] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 5

EVgo [41] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 8

PlugShare [42] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8

ChargeHub [43] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 7

Optiwatt [44] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 1

Routeplanner [45] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 6

Caura [46] ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ 4

BP pulse [47] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 6

Electroverse [48] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 5

Ev Energy [49] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 5

Total 3 15 16 8 17 13 15 4 5 7

6. Discussion
After a detailed analysis of Table 1, Figure ??, and Figure ??, we concluded that some of the

functionalities that are available in most third-party applications are F1 (Charging points), F9 (Pay-
ments), F10 (Amenities), F11 (Energy use tracking) and F12 (Rewards and coupons). These feature
sets are possible reasons for the users to rely on third-party applications asneed is not fulfilled by the
applications provided by their EV manufacturer.

From Table 2 and Figure ??, we can identify patterns, such as The applications of Group 1 (EV
manufacturers) tend to request more permissions and resources than the applications from Group 2
(third-party applications). Group:1 applications have more functionalities that require access to devices
and data, this may also increase the risk of exposing sensitive information or compromising security,
as Group:1 applications may request extended sensitive permissions and resources, including calling
the phone and obtaining accounts. The most common permissions and resources requested by all
applications are P1 (access fine location), P2 (camera), and P5 (external storage). Moreover, the least
common permissions and resources requested by all applications are P3 (contacts), P4 (calendar), P6
(call phone), and P7 (get accounts). These permissions and resources may also create a high risk to the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

13 of 21

user’s privacy, security, or system stability, as they can access or modify the user’s contacts, calendar,
phone, or accounts.

From Figure 1, we can identify patterns and, such as the applications of Group:1 tend to have
more vulnerabilities than the applications from Group:2, it has more diverse functionalities, which
may introduce more security flaws and weaknesses. Also, Group:1 applications have more severe or
critical vulnerabilities, such as V1 (improper platform usage), V3 (insecure communication), or V5
(insufficient cryptography).

Figure 1b,c shows that the applications from Group:2 tend to have more MEDIUM or WARNING
level vulnerabilities. However, Figure 1d shows applications from Group:1 tend to have more HIGH-
level vulnerabilities than the applications from Group:2. This is because Group:1 applications have more
specific or unique functionalities and features, which may be subject to more novel or sophisticated
vulnerabilities.

Figure 1. Distribution of vulnerabilities across EV applications mapped with OWASP Top Ten categories based on
risk level.

Figure 1a The most common vulnerabilities identified for all applications are V2 (insecure data
storage), V3 (insecure communication), V5 (insufficient cryptography), and V9 (reverse engineering).
However, these vulnerabilities can also pose a high risk to user privacy, security, or system stability,
as they may allow attackers to access, modify, or decrypt sensitive data or analyze or manipulate the
code.

Figure 2 provides a high-level overview of the number of CWE vulnerabilities in each applica-
tion using different colors to represent the variety of CWE. This means that we can easily compare
applications based on their security weaknesses and identify the most common and severe CWE
vulnerabilities among them. For example, we can see from the left that the Tesla application has CWE
vulnerabilities, with 8 of 10. Also, CWE-312 (Sensitive information cleartext storage) and CWE-276
(Incorrect default permissions) are the most frequent CWE vulnerabilities in all applications.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

14 of 21

Figure 2. Common weakness enumeration (CWE) present in EV mobile applications.

6.1. User Impact Analysis

It is also important to understand the potential real-world consequences for users if these vulnera-
bilities are exploited. If a malicious actor were to exploit these vulnerabilities, users could face a range
of impacts. For instance, insecure data storage and transmission could lead to unauthorized access to
sensitive user data, such as location history and payment details. This could result in privacy breaches
and financial loss. Similarly, poor authentication mechanisms could allow unauthorized users to gain
control of the vehicle’s functions, posing significant safety risks.

6.1.1. Case Study: Insecure Data Handling in “PlugShare”

From Table 5, let’s consider the “PlugShare” app for our case study. It is a widely used third-party
Android app among EV owners. It provides functionalities such as locating charging stations and
sharing reviews about them. However, it has a significant vulnerability - CWE-919: Improper handling
of sensitive data, insecure communication, or lack of authentication.

The app collects sensitive user data, including location history and user reviews, but does not
handle this data securely. This makes it susceptible to various security threats. For example, PlugShare
users, use the app to find charging stations and share reviews. The app stores location history and
reviews in an insecure manner. A malicious actor, if manages to breach the app’s database and gains
access to users’s data, potentially misuses this information, leading to privacy breaches.

Similarly, if someone uses public Wi-Fi networks to access the app. Due to the app’s insecure
communication, a malicious actor present on the same network can perform a Man-in-the-Middle
attack. The attacker can intercept the communication between a user’s device and the app’s servers,
gaining access to the user’s location, history, and reviews.

In both scenarios, the users face serious privacy risks due to the insecure data handling in the
PlugShare app. This case study highlights the importance of secure coding practices, including
secure data handling and communication, in protecting user data. It also underscores the need for
robust authentication mechanisms to prevent unauthorized access to user data. These are areas where
PlugShare, and similar apps, need to improve to provide a safer user experience.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

15 of 21

6.2. Best Practices for Developers

In addition to our detailed analysis of the vulnerabilities in third-party applications, we believe
it’s key for developers to understand common security practices. While developing and publishing an
application to the Google Play Store, a developer should be aware of vulnerabilities and security flaws.
Our research indicates that while some developers follow best practices for secure coding, others may
lack the necessary knowledge or resources to implement robust security measures. This disparity
in security practices can lead to significant variations in the security posture of different third-party
applications.

Common security shortcomings in third-party applications often stem from a lack of secure
coding practices. For instance, developers may neglect to validate input properly, leading to vulnera-
bilities such as SQL injection or cross-site scripting. Insecure data storage and transmission are other
common issues, often resulting from the improper use of cryptographic APIs or the absence of secure
communication protocols.

To address these shortcomings, we suggest several best practices for third-party developers. First,
developers should adhere to secure coding guidelines, such as those provided by OWASP or CWE.
Regular code reviews and security testing can also help identify and fix potential vulnerabilities.
Second, developers should implement robust authentication and authorization mechanisms to protect
sensitive user data. Finally, developers should stay updated on the latest security threats and mitigation
strategies, ensuring their applications can withstand new and emerging cyber threats.

By following these best practices, third-party developers can significantly enhance the security of
their EV mobile applications, providing a safer and more reliable experience for users.

7. Defensive Measures
This section provides defensive measures of identified vulnerabilities and weaknesses in previous

sections. It provides countermeasures that can be used to secure EV mobile applications and make
them resilient against cyber attacks. There are two types of defenses presented as CWE defenses and
OWASP defences, details of both are as follows:

7.1. CWE Defenses

This subsection is dedicated to providing details on possible defenses that can be used to mitigate
the impact of CWEs identified in the applications. These mitigations are targeted and intended to use
while developing an application, and before deployment.

1. CWE-250: Execution with Unnecessary Privileges It is recommended to use the principle of
least privilege to limit the privileges or permissions of the application [66]. Also, use user ID and
process ID in containerization to isolate the application from the rest of the system or environment,
and secure coding and security by design techniques to ensure that the application is safe.

2. CWE-330: Use of Insufficiently Random Values Developers can use cryptographically secure
pseudorandom number generators (CSPRNGs) to generate random values for security pur-
poses [67]. Also, it is recommended to use long, secure random values to resist brute-force or
guessing attacks.

3. CWE-276: Incorrect Default Permissions It can be essential to use secure file permissions and
access control mechanisms and perform input sensitization for chmod, chown, and ACLs, among
others.

4. CWE-532: Insertion of sensitive information into log files Developers may use different data
masking or data obfuscation techniques to protect sensitive information in log files and imple-
ment secure log libraries to write log files for the application, such as using Logback, SLF4J, or
CocoaLumberjack [68].

5. CWE-312: Storage of sensitive information in clear text It can be important to implement
encryption at rest, hashing, and masking while storing sensitive information. Additionally,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

16 of 21

do not store any information in plain text on the device. Moreover, developers can use data
minimization to reduce the amount or type of sensitive information that is stored.

6. CWE-89: Improper Neutralization of Special Elements Used in an SQL Command (’SQL
Injection’) This vulnerability can be mitigated by using parameterized queries or prepared
statements to prevent SQL injection [69]. Similarly, implementation of input validation and
output encoding can be used to prevent SQL injection.

7. CWE-327: Use of a Compromised or Risky Cryptographic Algorithm It is recommended to use
resilient and reliable cryptographic algorithms or protocols to protect data. Additionally, imple-
ment secure key management and distribution mechanisms to protect keys and use mechanisms
such as FIPS 140-2, NIST SP 800-57, or PKCS [70].

8. CWE-295: Improper Certificate Validation Developers are encouraged to use SSL/TLS certificates
from trusted authorities and verify trusted authorities, such as VeriSign, DigiCert, and Let’s
Encrypt. Similarly, they can use certificate pinning to prevent accepting expired or forged
certificates.

9. CWE-749: Exposed Dangerous Method or Function It is important to implement secure authen-
tication and authorization mechanisms to protect the interface and secure communication to
protect the data.

10. CWE-919: Weaknesses in Mobile Applications The application can be secured using the OWASP
MSTG and the OWASP MASVS to test and verify the security of mobile applications.

7.2. OWASP Defenses

This subsection provides the guidelines and mitigation strategies for building applications without
security vulnerabilities. The below-provided techniques can be used to address the OWASP security
vulnerabilities identified in applications.

1. M1: Improper use of the platform This can be addressed by using secure coding approaches [71],
limiting sticky intentions, and restricting communication to only consent-based communication.
Moreover, developers can limit the use of public intents and libraries, implement access control
and authorization mechanisms, and check for possible misconfigurations.

2. M2: Insecure Data Storage Developers can use standard encryption algorithms such as AES
256-bit and triple DES, they can also, implement data security measures and harden the code
using data masking, data obfuscation, or data minimization [72]. Finally, they can deploy multiple
authorization checks that can grant or deny access to data in storage based on the user’s identity.

3. M3: Insecure communication Developers can use SSL/TLS protocol to send and receive informa-
tion and protect it from eavesdropping, tampering, and spoofing. They can verify the authenticity
of SSL/TLS certificates before sending or receiving sensitive information. Finally, they should
avoid sending sensitive information through SMS, email, and phone notifications.

4. M4: Insecure authentication This vulnerability can be significantly addressed by conducting
thorough tests, audits, and log data security measures with encryption, hashing, or masking.
Moreover, It is required to authenticate on the server side and store data on the mobile device
only after verification. Finally, encrypt client-side data when necessary, such as user preferences,
session tokens, and keys.

5. M5: Insufficient Cryptography It is significantly important to implement strong encryption
algorithms to protect sensitive data in transit or at rest, such as AES, RSA, or SHA-256. Developers
need to implement long and secure keys for encryption and not store them in device or application
code. Also, they need to up-to-date encryption protocols. Encryption protocols such as SSL/TLS,
HTTPS, or PGP. it is recommended to never use outdated algorithms and encryption protocols
that are prone to weaknesses.

6. M6: Insecure Authorization It can be significantly helpful to implement multiple authorization
checks to verify user permissions or roles. Also, developers can use secure authentication

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

17 of 21

protocols, such as two-factor authentication with OAuth, or OpenID Connect. In addition, they
can regularly update user permissions and roles and revoke unnecessary rights.

7. M7: Poor Code Quality It is beneficial to use a code review and software quality assurance testing
(SQA) to fix code security weaknesses or flaws, such as broken encryption, weak hashing, or
data leaks [73]. This can be fixed by updating the application regularly and performing bug fixes.
Moreover, this issue can be significantly resolved if, a developer performs static and dynamic
code analysis and fixes the identified issues.

8. M8: Code tampering To get ahead of tempering, it is beneficial to use a code signing technique.
This will increase the integrity of the code and it will also prevent code tampering and also it will
stop dynamic code loading [74].

9. M9: Reverse engineering is very common in Android applications, as attackers can reverse an
application to see and exploit its vulnerabilities. Therefore, it is required for developers to use
different code obfuscation techniques, and anti-debugging techniques that will make the code
difficult to reverse engineer and to see its initial code [75,76].

10. M10: Extraneous functionality Application developers can use a code-releasing mechanism when
developing an application to ensure the quality and security of each interactional release. This will
keep track of introduced functionalities and mitigate the impact of extraneous functionality that
becomes obsolete by simply removing it. Finally, developers can use different code monitoring
and runtime analytics platforms to observe and improve application crashes and fix them in the
next releases.

7.3. Long-Term Security Strategies

In addition to the immediate defensive measures, long-term strategies are very important to
maintain the security of EV mobile applications. These strategies focus on continuous improvement
and adaptation to evolving threats.

One of the key strategies is continuous monitoring and updating. It is needed to regularly monitor
the applications for any unusual activities or vulnerabilities and keep the applications updated with
the latest security patches and improvements. This ensures that the applications are always equipped
to handle the latest threats. Another important strategy is user education. Regularly educating users
about the best practices for using the applications securely can go a long way in preventing security
breaches. This includes guidance on permissions, secure communication, and data storage.

Additionally, Regular security audits are also an essential part of maintaining long-term security.
These audits help identify and fix any security vulnerabilities in the applications. Similarly, adapting
to new security standards and guidelines, such as the updated OWASP Mobile Top 10, is another
important strategy. This ensures that the applications are protected against the latest known threats
and are following the best practices in the industry. Finally, incorporating security at every stage of
the application development lifecycle is important. This includes secure coding practices, thorough
testing, and post-deployment monitoring. By following a Secure Development Lifecycle (SDLC),
we can ensure that security is not an afterthought but a fundamental part of the development pro-
cess. By implementing these long-term strategies, application developers can ensure that EV mobile
applications remain secure against evolving cyber threats.

8. Conclusion and Future Work
In this research, we performed a cybersecurity assessment of 20 EV applications that are avail-

able on the Google Play Store. The chosen applications were divided into two groups one which
is developed by third-party developers and one group of applications that are developed by EV
manufacturers. We used a rigorous methodology based on application permission, features, OWASP,
and CWE frameworks to analyze these applications. The findings of our assessment have shown a
range of security weaknesses in the applications. Moreover, we mapped these vulnerabilities against
the OWASP and CWE lists. Finally, we provided defensive measures and recommendations, to help
developers to improve their security and prevent cyber attacks.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

18 of 21

In light of the recent release of the OWASP Mobile Top 10 2024, our future work will focus on
updating our research to align with this new standard. We anticipate that this will require us to
conduct new experiments and collect fresh artifacts, thereby enriching our analysis and findings. By
doing so, we aim to ensure that our research remains relevant and continues to contribute valuable
insights into the cybersecurity landscape of Electric Vehicle Android applications.

To gain a deeper understanding of these risks, we plan to conduct user surveys and case studies
in our future work. These surveys could help us understand users’ awareness of these vulnerabilities
and their potential impacts.

Future work can also be dedicated to extending this manual analysis to a more automated
approach and expanding the scale of the research using a larger sample of applications. Moreover,
similar research can be conducted through the Apple app store to identify cybersecurity challenges in
EV applications developed for iPhone and other Apple devices. Also, future work can be carried out
to build a fully automated software toolkit that operates with less manual input uses the underlined
methodology to find vulnerabilities and weaknesses, and generates an automated defense report on
how to patch identified vulnerabilities.

References
1. Lau, Y.Y.; Wu, A.Y.; Yan, M.W. A way forward for electric vehicle in Greater Bay Area: Challenges and

opportunities for the 21st century. Vehicles 2022, 4, 420–432.
2. Gelmanova, Z.; Zhabalova, G.; Sivyakova, G.; Lelikova, O.; Onishchenko, O.; Smailova, A.; Kamarova, S.

Electric cars. Advantages and disadvantages. In Proceedings of the Journal of Physics: Conference Series.
IOP Publishing, 2018, Vol. 1015, p. 052029.

3. Weiss, M.; Cloos, K.C.; Helmers, E. Energy efficiency trade-offs in small to large electric vehicles. Environ-
mental Sciences Europe 2020, 32, 1–17.

4. Gray, S. 125 million electric vehicles will be on the road by 2030, Agency says, 2018.
5. Schloter, L. Empirical analysis of the depreciation of electric vehicles compared to gasoline vehicles. Transport

Policy 2022, 126, 268–279.
6. House, W. President Biden announces steps to drive American leadership forward on clean cars and trucks,

2021.
7. IEA. Global sales and sales market share of electric cars, 2010-2021. https://www.statista.com/statistics/66

5774/global-sales-of-plug-in-light-vehicles/, 2023. Accessed: 2023-11-15.
8. Sarieddine, K.; Sayed, M.; Torabi, S.; Atallah, R.; Assi, C. Investigating the Security of EV Charging Mobile

Applications As an Attack Surface. arXiv preprint arXiv:2211.10603 2022.
9. Gong, J.; Tang, Z.; Yu, X.; Yu, L.; Cheng, H. Feasibility analysis of regional electric vehicle market—A

case study of Panzhihua city. In Proceedings of the Computational Social Science: Proceedings of the 2nd
International Conference on New Computational Social Science (ICNCSS 2021), October 15-17, 2021, Suzhou,
Jiangsu, China. Taylor & Francis, 2022, p. 81.

10. Kotia, N. Ev charging app: Types, features, process, varieties, Journal of Konstant Infosolutions, 2021.
11. Topman, N.; Adnane, A. Mobile applications for connected cars: Security analysis and risk assessment. In

Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE,
2022, pp. 1–6.

12. Yang, K.H. Selling consumer data for profit: Optimal market-segmentation design and its consequences.
American Economic Review 2022, 112, 1364–93.

13. Saleem, B.; Ahmed, M.; Zahra, M.; Hassan, F.; Iqbal, M.A.; Muhammad, Z. A survey of cybersecurity laws,
regulations, and policies in technologically advanced nations: A case study of Pakistan to bridge the gap.
International Cybersecurity Law Review 2024, 5, 533–561.

14. Martin, R.A.; Barnum, S. Common weakness enumeration (cwe) status update. ACM SIGAda Ada Letters
2008, 28, 88–91.

15. Bach-Nutman, M. Understanding the top 10 owasp vulnerabilities. arXiv preprint arXiv:2012.09960 2020.
16. Shirvani, S.; Baseri, Y.; Ghorbani, A. Evaluation framework for electric vehicle security risk assessment.

IEEE Transactions on Intelligent Transportation Systems 2023.
17. Paverd, A.; Martin, A.; Brown, I. Modelling and automatically analysing privacy properties for honest-but-

curious adversaries. Tech. Rep 2014.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.statista.com/statistics/665774/global-sales-of-plug-in-light-vehicles/
https://www.statista.com/statistics/665774/global-sales-of-plug-in-light-vehicles/
https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

19 of 21

18. Vailoces, G.; Keith, A.; Almehmadi, A.; El-Khatib, K. Securing the Electric Vehicle Charging Infrastructure:
An In-Depth Analysis of Vulnerabilities and Countermeasures. In Proceedings of the Proceedings of the
Int’l ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, 2023,
pp. 31–38.

19. Hanelt, A.; Nastjuk. Disruption on the way? The role of mobile applications for electric vehicle diffusion,
Wirtschaftsinformatik Proceedings 2015.

20. Stillwater, T.; Woodjack, J.; Nicholas, M. Mobile app support for electric vehicle drivers: a review of today’s
marketplace and future directions. In Proceedings of the International Conference on Human-Computer
Interaction. Springer, 2013, pp. 640–646.

21. Chatzoglou, E.; Kambourakis, G.; Kouliaridis, V. A Multi-Tier Security Analysis of Official Car Management
Apps for Android. Future Internet 2021, 13, 58.

22. Mandal, A.K.; Cortesi, A.; Ferrara, P.; Panarotto, F.; Spoto, F. Vulnerability analysis of android auto
infotainment apps. In Proceedings of the Proceedings of the 15th ACM International Conference on
Computing Frontiers, 2018, pp. 183–190.

23. Panarotto, F.; Cortesi, A.; Ferrara, P.; Mandal, A.K.; Spoto, F. Static analysis of android apps interaction
with automotive can. In Proceedings of the Smart Computing and Communication: Third International
Conference, SmartCom 2018, Tokyo, Japan, December 10–12, 2018, Proceedings 3. Springer, 2018, pp.
114–123.

24. Muhammad, Z.; Anwar, Z.; Saleem, B. A cybersecurity risk assessment of electric vehicle mobile applications:
Findings and recommendations. In Proceedings of the 2023 3rd International Conference on Artificial
Intelligence (ICAI). IEEE, 2023, pp. 45–51.

25. Sarieddine, K.; Sayed, M.A.; Torabi, S.; Atallah, R.; Assi, C. Investigating the security of ev charging mobile
applications as an attack surface. ACM Transactions on Cyber-Physical Systems 2023, 7, 1–28.

26. Muhammad, Z.; Anwar, Z.; Saleem, B.; Shahid, J. Emerging cybersecurity and privacy threats to electric
vehicles and their impact on human and environmental sustainability. Energies 2023, 16, 1113.

27. Zhang, L.; Ma, D. Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android
Applications. Technical report, SAE Technical Paper, 2024.

28. Alaba, S.Y.; Gurbuz, A.C.; Ball, J.E. Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion
for 3D Object Detection. World Electric Vehicle Journal 2024, 15, 20.

29. Shahidinejad, A.; Abawajy, J. Blockchain-Based Self-Certified Key Exchange Protocol for Hybrid Electric
Vehicles. IEEE Transactions on Consumer Electronics 2023.

30. playstore. Tesla Available at. https://play.google.com/store/search?q=tesla&c=apps&hl=en&gl=US, 2023.
31. playstore. Mercedes me connect (USA) Available at. https://play.google.com/store/apps/details?id=com.

mbusa.mmusa.android&hl=en&gl=US, 2023.
32. playstore. BMW Available at. https://play.google.com/store/search?q=MY%20BMW&c=apps&hl=en&gl=

US, 2023.
33. playstore. NissanConnect® Services Available at. https://play.google.com/store/search?q=

NissanConnect%C2%AE%20Services&c=apps&hl=en&gl=US, 2023.
34. playstore. Volkswagen Available at. https://play.google.com/store/search?q=Volkswagen&c=apps&hl=

en&gl=US, 2023.
35. playstore. Available at. https://www.ferrari.com/en-EN/auto/myferrari, 2023.
36. playstore. Available at. https://play.google.com/store/apps/details?id=com.ford.fordpass&hl=en&gl=US,

2023.
37. playstore. Available at. https://play.google.com/store/apps/details?id=com.mitsubishi_motors.remote_

ps&hl=en_GB, 2023.
38. playstore. Available at. https://play.google.com/store/apps/details?id=com.bosch.myspin.launcherapp_

landrover&hl=en&gl=US, 2023.
39. playstore. Available at. https://play.google.com/store/apps/details?id=com.bosch.myspin.launcherapp_

jaguar&hl=en&gl=US, 2023.
40. playstore. Available at. https://www.evconnect.com/, 2023.
41. playstore. EVGO Available at. https://play.google.com/store/search?q=EVgo&c=apps&hl=en&gl=US,

2023.
42. playstore. PlugShare - EV & Tesla Map Available at. https://play.google.com/store/search?q=

PLUGSHARE&c=apps&hl=en&gl=US, 2023.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://play.google.com/store/search?q=tesla&c=apps&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.mbusa.mmusa.android&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.mbusa.mmusa.android&hl=en&gl=US
https://play.google.com/store/search?q=MY%20BMW&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=MY%20BMW&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=NissanConnect%C2%AE%20Services&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=NissanConnect%C2%AE%20Services&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=Volkswagen&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=Volkswagen&c=apps&hl=en&gl=US
https://www.ferrari.com/en-EN/auto/myferrari
https://play.google.com/store/apps/details?id=com.ford.fordpass&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.mitsubishi_motors.remote_ps&hl=en_GB
https://play.google.com/store/apps/details?id=com.mitsubishi_motors.remote_ps&hl=en_GB
https://play.google.com/store/apps/details?id=com.bosch.myspin.launcherapp_landrover&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.bosch.myspin.launcherapp_landrover&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.bosch.myspin.launcherapp_jaguar&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.bosch.myspin.launcherapp_jaguar&hl=en&gl=US
https://www.evconnect.com/
https://play.google.com/store/search?q=EVgo&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=PLUGSHARE&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=PLUGSHARE&c=apps&hl=en&gl=US
https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

20 of 21

43. playstore. ChargeHub EV & Tesla Charging Available at. https://play.google.com/store/search?q=
ChargeHub&c=apps&hl=en&gl=US, 2023.

44. playstore. Available at. https://play.google.com/store/apps/details?id=com.getoptiwatt.optiwatt&hl=en&
gl=US, 2023.

45. playstore. Available at. https://abetterrouteplanner.com/, 2023.
46. playstore. Available at. https://play.google.com/store/apps/details?id=com.caura.android&hl=en_IN&

gl=GB, 2023.
47. playstore. Available at. https://www.bpplus.com.au/, 2023.
48. playstore. Available at. https://electroverse.octopus.energy/, 2023.
49. playstore. Available at. https://www.ev.energy/, 2023.
50. Rawal, H.; Parekh, C. Android Internal Analysis of APK by Droid_Safe & APK Tool. International Journal of

Advanced Research in Computer Science 2017, 8.
51. Grushinskiy, M. XmlStarlet Command Line XML Toolkit User’s Guide.
52. Almomani, I.; Khayer, A. Android applications scanning: The guide. In Proceedings of the 2019 International

Conference on Computer and Information Sciences (ICCIS). IEEE, 2019, pp. 1–5.
53. Amarante, J.; Barros, J.P. Exploring USB connection vulnerabilities on Android devices breaches using

the Android debug bridge. In Proceedings of the 14th International Joint Conference on e-Business and
Telecommunications, ICETE 2017. SciTePress, 2017, pp. 572–577.

54. Kusreynada, S.U.; Barkah, A.S. Android Apps Vulnerability Detection with Static and Dynamic Analysis
Approach using MOBSF. Journal of Computer Science and Engineering (JCSE) 2024, 5, 46–63.

55. Balikcioglu, P.G.; Sirlanci, M.; A. Kucuk, O.; Ulukapi, B.; Turkmen, R.K.; Acarturk, C. Malicious code
detection in android: the role of sequence characteristics and disassembling methods. International Journal of
Information Security 2023, 22, 107–118.

56. Nath, A. Packet Analysis with Wireshark; Packt Publishing Ltd, 2015.
57. OLIVEIRA, L.C.C.A.d. Comparative study of techniques for detecting emulators on Android devices. B.S.

thesis, 2022.
58. LaMalva, G.; Schmeelk, S. MobSF: Mobile health care Android applications through the lens of open source

static analysis. In Proceedings of the 2020 IEEE MIT Undergraduate Research Technology Conference
(URTC). IEEE, 2020, pp. 1–4.

59. Rehman, A.U.; Nadeem, A.; Malik, M.Z. Fair feature subset selection using multiobjective genetic algorithm.
In Proceedings of the Proceedings of the Genetic and Evolutionary Computation Conference Companion,
2022, pp. 360–363.

60. Anwar, C.; Hady, S.; Rahayu, N.; Kraugusteeliana, K.; et al. The Application of Mobile Security Framework
(MOBSF) and Mobile Application Security Testing Guide to Ensure the Security in Mobile Commerce
Applications. Jurnal Sistim Informasi dan Teknologi 2023, pp. 97–102.

61. Khunt, A.R.; Prabu, P. An Empirical Analysis of Android Permission System Based on User Activities. J.
Comput. Sci. 2018, 14, 324–333.

62. Li, J. Vulnerabilities mapping based on OWASP-SANS: a survey for static application security testing (SAST).
arXiv preprint arXiv:2004.03216 2020.

63. Alanda, A.; Satria, D.; Mooduto, H.; Kurniawan, B. Mobile application security penetration testing based on
OWASP. In Proceedings of the IOP Conference Series: Materials Science and Engineering. IOP Publishing,
2020, Vol. 846, p. 012036.

64. Meng, H.; Thing, V.L.; Cheng, Y.; Dai, Z.; Zhang, L. A survey of Android exploits in the wild. Computers &
Security 2018, 76, 71–91.

65. Park, C.; Moon, S.Y.; Kim, R.Y.C. Detecting Common Weakness Enumeration (CWE) Based on the Transfer
Learning of CodeBERT Model. KIPS Transactions on Software and Data Engineering 2023, 12, 431–436.

66. Williams, I. Evaluating a method to develop and rank abuse cases based on threat modeling, attack patterns
and common weakness enumeration. PhD thesis, North Carolina Agricultural and Technical State University,
2015.

67. Fischer, T. Testing cryptographically secure pseudo random number generators with artificial neural
networks. In Proceedings of the 2018 17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, 2018, pp. 1214–1223.

68. Cheng, F.; Cheng, F. The platform logging api and service. Exploring Java 9: Build Modularized Applications in
Java 2018, pp. 81–86.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://play.google.com/store/search?q=ChargeHub&c=apps&hl=en&gl=US
https://play.google.com/store/search?q=ChargeHub&c=apps&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.getoptiwatt.optiwatt&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.getoptiwatt.optiwatt&hl=en&gl=US
https://abetterrouteplanner.com/
https://play.google.com/store/apps/details?id=com.caura.android&hl=en_IN&gl=GB
https://play.google.com/store/apps/details?id=com.caura.android&hl=en_IN&gl=GB
https://www.bpplus.com.au/
https://electroverse.octopus.energy/
https://www.ev.energy/
https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

21 of 21

69. Samarin, S.D.; Amini, M. Preventing SQL injection attacks by automatic parameterizing of raw queries
using lexical and semantic analysis methods. Scientia Iranica. Transaction D, Computer Science & Engineering,
Electrical 2019, 26, 3469–3484.

70. Barker, E.B.; Barker, W.C.; Lee, A. SP 800-21 Second edition. Guideline for Implementing Cryptography in the
Federal Government; National Institute of Standards & Technology, 2005.

71. Tran, A.D.; Nguyen, M.Q.; Phan, G.H.; Tran, M.T. Security Issues in Android Application Development and
Plug-in for Android Studio to Support Secure Programming. In Proceedings of the Future Data and Security
Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications: 8th International
Conference, FDSE 2021, Virtual Event, November 24–26, 2021, Proceedings 8. Springer, 2021, pp. 105–122.

72. Garcia, J.; Hammad, M.; Malek, S. Lightweight, obfuscation-resilient detection and family identification of
android malware. ACM Transactions on Software Engineering and Methodology (TOSEM) 2018, 26, 1–29.

73. Nazir, M. Software Quality Assurance and Android Application Development: A Comparison among
Traditional and Agile Methodology. Lahore Garrison University Research Journal of Computer Science and
Information Technology 2020, 4, 1–29.

74. Yin, Z.; Li, Z.; Cao, Y. A web application runtime application self-protection scheme against script injection
attacks. In Proceedings of the Cloud Computing and Security: 4th International Conference, ICCCS 2018,
Haikou, China, June 8-10, 2018, Revised Selected Papers, Part II 4. Springer, 2018, pp. 566–577.

75. Dong, S.; Li, M.; Diao, W.; Liu, X.; Liu, J.; Li, Z.; Xu, F.; Chen, K.; Wang, X.; Zhang, K. Understanding android
obfuscation techniques: A large-scale investigation in the wild. In Proceedings of the Security and Privacy in
Communication Networks: 14th International Conference, SecureComm 2018, Singapore, Singapore, August
8-10, 2018, Proceedings, Part I. Springer, 2018, pp. 172–192.

76. Saad, M.; Taseer, M. The Study of the Anti-Debugging Techniques and their Mitigations. International Journal
for Electronic Crime Investigation 2022, 6, 33–44.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2025 doi:10.20944/preprints202505.0903.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0903.v1
http://creativecommons.org/licenses/by/4.0/

