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Abstract: Generative Adversarial Networks (GANSs) have emerged as a transformative approach for
synthetic data generation in deep learning, addressing critical challenges such as data scarcity,
privacy concerns, and algorithmic bias. This synthesis review provides a comprehensive analysis of
GANSs' role in creating high-fidelity synthetic data across diverse domains, including healthcare,
finance, computer vision, and natural language processing. By leveraging an adversarial training
process involving a generator and discriminator, GANs effectively capture complex data
distributions, producing realistic synthetic samples that enhance model robustness and
generalization. The review explores foundational GAN principles, advanced architectures like
DCGANSs, cGANs, CycleGANs, and TimeGANSs, and their applications in generating medical
images, financial time-series, and tabular data. It also discusses the advantages of GANSs, such as
privacy preservation and cost-efficiency, alongside limitations, including training instability, mode
collapse, and the lack of standardized evaluation metrics. Comparative analysis with other methods
like Variational Autoencoders and traditional statistical approaches highlights GANs' superior
realism for complex data types. Future research directions include improving training stability,
developing robust evaluation benchmarks, and integrating privacy-enhancing techniques. This
review underscores GANs' potential to revolutionize deep learning applications while emphasizing
the need for ethical guidelines to mitigate misuse risks.

Keywords: Generative Adversarial Networks; synthetic data; deep learning; privacy preservation;
data scarcity

1. Introduction

The rapid expansion of deep learning across various sectors has highlighted the essential need
for large, high-quality datasets to achieve top-tier model performance (LeCun, Bengio, & Hinton,
2015). These data-intensive models require vast amounts of information to identify complex patterns
and generalize effectively to new data (Hei et al., 2025). However, obtaining real-world data is fraught
with challenges, including data scarcity, high costs, and time-intensive processes for collection and
annotation (Rolnick et al., 2019; Keskes and Nita, 2025). Additionally, stringent privacy regulations
governing sensitive data—such as personal, health, and financial records—along with legal and
ethical restrictions, create significant barriers (Veale & Binns, 2017). Real-world datasets may also
contain algorithmic biases, further complicating their use (Barocas, Hardt, & Narayanan, 2019).

Synthetic data has emerged as a powerful solution to these challenges. By generating artificial
datasets that replicate the statistical characteristics of real-world data, synthetic data addresses data
shortages, mitigates privacy concerns, and reduces biases (Goncalves et al., 2020; Hei et al., 2025). It
can be scaled and customized for balanced class representation, making it especially useful for
handling imbalanced datasets and simulating rare or complex scenarios (Frid-Adar et al., 2018). These
capabilities enhance model robustness and generalization in deep learning applications (Xu &
Veeramachaneni, 2018).
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Generative Adversarial Networks (GANs) have become a cornerstone in synthetic data
generation, gaining widespread recognition for their effectiveness (Li et al., 2025). GANs utilize an
adversarial training framework involving two neural networks: a generator and a discriminator
(Wang et al.,, 2025). The generator learns the real data's underlying distribution to create synthetic
samples that closely mimic it, while the discriminator works to distinguish real data from the
generated samples (Chen et al., 2022). This adversarial interplay, resembling a zero-sum game,
pushes the generator to continuously improve, producing increasingly realistic synthetic data. The
iterative feedback loop between the two networks ensures refined outputs, capturing complex data
distributions with high fidelity (Creswell et al., 2018; Gui et al., 2021).

Compared to traditional generative models, GANs excel in creating synthetic data that closely
resembles real-world data (Goodfellow et al., 2014; Karras et al., 2019). A key advantage is that the
generator does not directly access the original data during training, which reduces the risk of data
disclosure and potential privacy breaches (Esteban et al.,, 2017). This makes GANs particularly
valuable for applications requiring privacy preservation while maintaining the quality and utility of
synthetic datasets (Li et al., 2025).

This review synthesizes current research on using GANs for synthetic data generation in deep
learning. It explores GANs' core principles, applications across various fields, and advanced
architectural innovations. The review compares GANSs' strengths and limitations with other synthetic
data generation methods and discusses quality assessment techniques. It provides a comprehensive
overview for researchers and practitioners, highlighting challenges and future research directions in
this rapidly evolving field.

2. Generative Adversarial Networks for Synthetic Data Generation: A
Foundational Overview

A GAN consists of two opposing neural networks: the generator and the discriminator, both
typically deep neural networks trained via backpropagation as shown in Figure 1 (Goodfellow et al.,
2014). The generator learns the probability distribution of real-world data to produce synthetic
samples that mimic the original data (Keskes, 2025a). It takes a random noise vector, often drawn
from a Gaussian or uniform distribution, as input and transforms it into synthetic outputs such as
images, tabular data, or time-series sequences (Radford et al., 2016). The generator effectively learns
a complex, non-linear mapping from a low-dimensional latent space to a higher-dimensional data
space, generating new instances that are statistically similar to the training data (Li et al., 2025).

In contrast, the discriminator acts as a binary classifier, distinguishing real data samples from
synthetic ones produced by the generator (Wang et al., 2025). It outputs a probability score indicating
whether an input sample is real or fake, assigning high probabilities to real samples and low ones to
synthetic ones (Hei et al.,, 2025). This classification provides critical feedback to the generator,
enabling it to refine its outputs and improve realism through the adversarial learning process
(Creswell et al., 2018).

GAN training is a competitive, zero-sum game. The generator aims to produce samples that fool
the discriminator, while the discriminator strives to accurately classify real and fake samples (Li et
al., 2025). Both networks are trained simultaneously in an iterative process: the discriminator
improves its classification, and the generator refines its outputs to evade detection (Wang et al., 2022).
This adversarial loop continues until equilibrium, where the discriminator cannot reliably distinguish
synthetic samples from real data, indicating the generator has approximated the true data
distribution effectively (Goodfellow, 2016; Creswell et al., 2018).

The adversarial training process in GANs can be formally represented as a minimax
optimization problem (Wang et al., 2025). The objective function that governs this process typically
involves the discriminator aiming to maximize the expected log-likelihood of correctly identifying
real data and correctly identifying fake data (as fake). Simultaneously, the generator strives to
minimize the expected log-likelihood of the discriminator correctly identifying its generated data as
fake (Goodfellow et al., 2014). Mathematically, this can be expressed as:
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minGmaxD V(D,G) = Ex.p, ,.cx) t Ez~p,(2)

where:

e D(x) represents the discriminator's output (the probability that x is real) for a real data
sample x drawn from the real data distribution pgae, (X).

e ((z) represents the generator's output (a synthetic data sample) for a random noise
vector z drawn from a noise distribution p,(z).

e D(G(z)) represents the discriminator's output for the synthetic sample G(z) (the
probability that the synthetic sample is real).

e E denotes the expected value.

The discriminator seeks to maximize this value function by correctly classifying both real and
fake data. The generator, on the other hand, aims to minimize this value function by producing
synthetic data G(z) that the discriminator is likely to classify as real (i.e., maximizing D(G(z)) or,
equivalently, minimizing 1-D(G(z))). The equilibrium of this minimax game signifies that the
generator has learned to produce synthetic data that is statistically indistinguishable from the real
data (Goodfellow, 2016; Wang et al., 2025).
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Figure 1. Generative Adversarial Networks general structure.

3. Applications Across Diverse Domains

The influence of GANs is expanding rapidly, transforming sectors such as healthcare, finance,
computer vision, and natural language processing. In healthcare, GANs generate synthetic medical
images such as MRI and CT scans, aiding in diagnosis, treatment planning, and data augmentation
for deep learning models (Yi et al., 2019; Singh & Raza, 2021). They also enable data anonymization,
addressing privacy concerns, with applications in brain imaging, cardiology, and oncology. For
instance, models like medGAN generate synthetic electronic health records to alleviate data scarcity
and preserve patient confidentiality (Armanious et al., 2020).
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In finance, GANs produce synthetic time-series data such as stock prices for fraud detection,
forecasting, and trading strategy development (Chen et al., 2022). TimeGAN is particularly effective
at capturing temporal dependencies in financial data, enhancing risk modeling and algorithmic
trading performance (Yoon, Jarrett, & van der Schaar, 2019). Similarly, FinGAN demonstrates GANs'
capability in modeling complex financial distributions, supporting regulatory and market behavior
analysis (Wiese et al., 2020).

Computer vision has been a primary driver of GAN advancement, with applications in synthetic
image and video generation, 3D model creation, and data augmentation for classification and
detection tasks (Goodfellow et al., 2014; Isola et al., 2017). GANs also facilitate image-to-image
translation (e.g., changing weather or season), super-resolution, and artistic generation such as anime
character synthesis or photo restoration (Karras et al., 2019).

In NLP, while GANSs are less prevalent than in vision, they generate synthetic text for tasks like
text summarization and translation and support creative applications like poetry or story generation
(Yu et al.,, 2017). Though large language models dominate current NLP, GANs contribute to data
augmentation and domain-specific text synthesis (Yu et al., 2017).

Beyond these, GANSs are increasingly used in cybersecurity, fraud detection, and supply chain
modeling. They generate synthetic fraudulent transactions or network traffic to improve model
robustness and support imbalanced data training (Lin et al., 2020). Models like table-GAN (Park et
al., 2018) and CTAB-GAN (Zhou et al, 2021) highlight GANs’ flexibility in structured data
applications, underscoring their transformative potential across diverse fields.

4. Advanced GAN Architectures and Methodologies

Since the introduction of the original GAN framework, advanced architectures have been
developed to overcome its limitations and enhance synthetic data generation (Gui et al., 2021). These
innovations address diverse data types and applications, improving the quality and utility of
generated data (Pan et al., 2019).

Deep Convolutional GANs (DCGANs) marked a significant advancement by integrating
convolutional neural networks (CNNs) into the generator and discriminator (Zhang et al., 2017). This
enabled DCGANSs to synthesize realistic images by leveraging CNNs’ ability to learn hierarchical
spatial features, as seen in applications like generating fashion images from the Fashion MNIST
dataset (Isola et al., 2017). DCGANSs set the stage for more sophisticated image synthesis models
(Karras et al., 2018).

Conditional GANs (cGANSs) introduced controlled generation by conditioning the process on
additional information, such as class labels or textual descriptions (Reed et al., 2016). This allows
targeted data synthesis, particularly in healthcare, where cGANs generate medical images for specific
pathologies (Frid-Adar et al., 2018). CTAB-GAN, a conditional tabular GAN, applies this principle to
structured data, enhancing realism in synthetic tabular datasets (Zhao et al., 2021).

CycleGANs facilitate unpaired image-to-image translation, learning mappings between
domains without direct correspondences. Using cycle consistency loss, CycleGANs ensure reversible
translations (Zhu et al.,, 2017), proving valuable in healthcare for tasks like transforming MRI
contrasts without paired data, showcasing GANs’ ability to handle complex data mappings (Yang et
al., 2020).

TimeGANSs tackle time-series data generation, capturing temporal dependencies through a
combination of supervised and unsupervised objectives. Applied to financial data like stock prices,
TimeGAN outperforms alternatives by modeling realistic temporal dynamics, highlighting the need
for specialized GAN designs for sequential data (Yoon et al., 2019).

Tabular GANs address the challenges of structured data, which mixes numerical and categorical
variables. Models like medGAN, CTAB-GAN, and table-GAN enhance synthetic tabular data
generation. MedGAN uses an autoencoder-GAN hybrid for electronic health records (Armanious et
al., 2020), while CTAB-GAN and table-GAN incorporate classifiers to maintain semantic integrity
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(Majeed & Hwang, 2024). Table-GAN employs hinge loss and classification loss to balance privacy

and compatibility, demonstrating effectiveness in generating realistic tabular data (Xu et al., 2019).

Training GANs requires careful optimization to overcome instability, vanishing gradients, and

mode collapse. Strategies like hinge loss, gradient penalties, and hyperparameter tuning—such as

adjusting epochs, batch sizes, and learning rates in FiInGAN—stabilize training and improve

outcomes (Xiaopeng et al., 2020). For instance, FiInGAN’s adjustments enhanced its ability to capture

complex financial patterns (Takahashi et al., 2019).
These advancements—DCGANs, ¢GANs, CycleGANs, TimeGANSs, and tabular GANs—
demonstrate the versatility of GANs in generating high-quality synthetic data across images, time-

series, and structured datasets, with careful training ensuring their effectiveness in diverse

applications (Creswell et al., 2018).

Table 1. Comparative Table of GAN Architectures for Synthetic Data Generation.

Architecture Key Features Applications Limitations

DCGAN Incorporation of | Image synthesis, | Can still suffer from
CNNs in generator | featurelearning. training  instability
and discriminator. and mode collapse.

cGAN Generation Controlled data | Requires labeled or
conditioned on | generation, image | conditional data.
additional input (e.g., | editing, text-to-image
labels, text). synthesis.

CycleGAN Unpaired image-to- | Style transfer, domain | Can sometimes
image translation | adaptation, image | produce
using cycle | enhancement. geometrically
consistency loss. inconsistent results.

TimeGAN Explicit modeling of | Synthetic  financial | Complexity in
temporal correlations data, healthcare time- implementation and
for time-series data. series data. training.

medGAN Combines Synthetic  electronic | Originally designed
autoencoder with | health records (EHR). for binary and
GAN for mixed-type continuous data;
data (binary, extensions needed for
continuous). multi-categorical data.
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CTAB-GAN Conditional GAN | Synthetic tabular data | Evaluation metrics for
with a classifier to | generation, handling | tabular data can be
learn data semantics | mixed data types. inconsistent.!?

for tabular data.

table-GAN Adds a classifier | Synthetic tabular data | Performance can vary
network to enhance | generation, privacy | across different
semantic integrity of | preservation. datasets and may not
synthetic tables. always capture all

statistical nuances.!3

5. Advantages and Benefits of Using GANSs for Synthetic Data

GAN:s offer significant advantages in synthetic data generation across various domains. A key
benefit is addressing data scarcity by creating vast amounts of realistic synthetic data, augmenting
limited real-world datasets (Guo et al., 2023). This is critical in fields like rare disease research or
specialized industries where data collection is costly or challenging (Armanious et al.,, 2020). By
generating diverse samples, GANs enable the training of robust deep learning models, reducing
overfitting and improving generalization (Wang et al., 2025).

GANS’s also mitigate privacy risks by producing synthetic data that preserves the statistical
properties of original datasets without exposing sensitive information. This facilitates data sharing
and collaboration while complying with regulations like GDPR and HIPAA (Jordon et al., 2019).
Models like table-GAN are designed to synthesize tabular data, minimizing disclosure risks, which
is vital in sensitive sectors such as healthcare and finance (Park et al., 2018).

Additionally, GANs help address algorithmic bias in datasets. By generating synthetic data to
balance imbalanced classes or represent underrepresented groups, GANs support the development
of fairer machine learning models (Xu et al., 2020). This is crucial for preventing Al systems from
perpetuating societal biases, ensuring more equitable outcomes.

Synthetic data from GANs enhances model robustness and generalization by exposing models
to a wider range of scenarios, including rare or complex cases do not present in real data. This makes
models more resilient to variations and noise, improving performance on unseen data. For example,
GANSs can simulate challenging conditions, enabling models to handle diverse real-world inputs
effectively (Shmelkov et al., 2018).

Finally, GANSs offer cost and time efficiency compared to collecting and processing real-world
data. Once trained, GANs can quickly generate large volumes of synthetic data, accelerating the
development and deployment of deep learning models (Torfi et al., 2020). This efficiency, combined
with their ability to overcome data limitations, privacy concerns, and biases, makes GANs a
transformative tool for advancing Al applications.

6. Challenges, Limitations, and Considerations

Despite the numerous advantages of using GANs for synthetic data generation, several
challenges, limitations, and considerations need to be carefully addressed. One major issue is the
instability of the training process, often requiring extensive hyperparameter tuning and sophisticated
architectural design to achieve convergence (Keskes, 2025b). Mode collapse, where the generator
produces limited sample variety, further complicates capturing the full diversity of real data,
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reducing the utility of synthetic data (Srivastava et al., 2017). Advanced training techniques and
careful monitoring are essential to mitigate these issues.

Another limitation is the lack of standardized evaluation metrics to assess synthetic data quality
and utility. Existing metrics often focus on specific aspects, like visual fidelity, but fail to capture the
data’s usefulness for downstream tasks or preservation of complex relationships, hindering model
comparisons (Borji, 2019). The high computational cost of training GANSs, requiring powerful GPUs
and significant time, poses a barrier for those with limited resources (Lucic et al., 2018).

Privacy concerns arise when generators memorize training data patterns, risking information
leakage. Balancing privacy and utility require ongoing research into privacy-preserving techniques
(Chen et al., 2020). Additionally, the ability of GANs to create realistic synthetic data raises ethical
concerns, including the potential for deepfakes and misinformation (Westerlund, 2019). Addressing
these risks demands ethical guidelines, responsible data practices, and robust detection mechanisms
to maintain trust in information sources.

7. GANs in Comparison to Other Synthetic Data Generation Techniques

The Generative Adversarial Networks are not the sole method for synthetic data generation;
other techniques like Variational Autoencoders (VAEs), Large Language Models (LLMs), and
traditional statistical methods also play significant roles. VAEs, which encode data into a probabilistic
latent space and decode it to generate new samples, offer greater training stability than GANs but
often produce less realistic outputs, especially for complex data like images (Kingma & Welling,
2014). Both GAN-based (e.g., CTGAN) and VAE-based (e.g., TVAE) models are popular for tabular
data (Majeed & Hwang, 2024).

LLMs excel in generating coherent, contextually relevant synthetic text, leveraging their training
on vast text corpora, but are less versatile for structured data like images or tables compared to GAN’s
(Miletic & Sariyar, 2024). Traditional statistical methods, which model data properties like means and
correlations, are computationally lighter and suitable for simpler tasks but struggle to capture
complex, high-dimensional patterns (Du et al.,, 2024). These methods often require more manual
domain expertise, unlike the automated learning of GANs. While GANs provide a strong balance of
realism and fidelity for complex data like images and time-series, the choice of technique depends on
application needs, data type, and trade-offs in training stability, computational cost, and data realism
Miletic & Sariyar, 2024; Deng & Chen, 2024).

8. Conclusion

As a breakthrough in synthetic data generation, GANs produce highly realistic datasets, driving
advancements in healthcare, finance, computer vision, and natural language processing. Their
adversarial training process enables them to tackle data scarcity, mitigate privacy risks, and reduce
algorithmic bias, advancing Al applications. However, challenges such as training instability, the lack
of robust evaluation metrics, and ethical concerns persist. Ongoing research focuses on developing
advanced GAN architectures, refining training techniques, and establishing standardized evaluation
methods to address these issues. As these efforts progress, GANs promise to enhance data sharing,
model development, and the creation of fair, privacy-preserving, and robust deep learning solutions,
with future improvements targeting stability, efficiency, controllability, and ethical deployment.
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