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Abstract: Generative Adversarial Networks (GANs) have emerged as a transformative approach for 
synthetic data generation in deep learning, addressing critical challenges such as data scarcity, 
privacy concerns, and algorithmic bias. This synthesis review provides a comprehensive analysis of 
GANs' role in creating high-fidelity synthetic data across diverse domains, including healthcare, 
finance, computer vision, and natural language processing. By leveraging an adversarial training 
process involving a generator and discriminator, GANs effectively capture complex data 
distributions, producing realistic synthetic samples that enhance model robustness and 
generalization. The review explores foundational GAN principles, advanced architectures like 
DCGANs, cGANs, CycleGANs, and TimeGANs, and their applications in generating medical 
images, financial time-series, and tabular data. It also discusses the advantages of GANs, such as 
privacy preservation and cost-efficiency, alongside limitations, including training instability, mode 
collapse, and the lack of standardized evaluation metrics. Comparative analysis with other methods 
like Variational Autoencoders and traditional statistical approaches highlights GANs' superior 
realism for complex data types. Future research directions include improving training stability, 
developing robust evaluation benchmarks, and integrating privacy-enhancing techniques. This 
review underscores GANs' potential to revolutionize deep learning applications while emphasizing 
the need for ethical guidelines to mitigate misuse risks. 

Keywords: Generative Adversarial Networks; synthetic data; deep learning; privacy preservation; 
data scarcity 
 

1. Introduction 

The rapid expansion of deep learning across various sectors has highlighted the essential need 
for large, high-quality datasets to achieve top-tier model performance (LeCun, Bengio, & Hinton, 
2015). These data-intensive models require vast amounts of information to identify complex patterns 
and generalize effectively to new data (Hei et al., 2025). However, obtaining real-world data is fraught 
with challenges, including data scarcity, high costs, and time-intensive processes for collection and 
annotation (Rolnick et al., 2019; Keskes and Nita, 2025). Additionally, stringent privacy regulations 
governing sensitive data—such as personal, health, and financial records—along with legal and 
ethical restrictions, create significant barriers (Veale & Binns, 2017). Real-world datasets may also 
contain algorithmic biases, further complicating their use (Barocas, Hardt, & Narayanan, 2019). 

Synthetic data has emerged as a powerful solution to these challenges. By generating artificial 
datasets that replicate the statistical characteristics of real-world data, synthetic data addresses data 
shortages, mitigates privacy concerns, and reduces biases (Goncalves et al., 2020; Hei et al., 2025). It 
can be scaled and customized for balanced class representation, making it especially useful for 
handling imbalanced datasets and simulating rare or complex scenarios (Frid-Adar et al., 2018). These 
capabilities enhance model robustness and generalization in deep learning applications (Xu & 
Veeramachaneni, 2018). 
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Generative Adversarial Networks (GANs) have become a cornerstone in synthetic data 
generation, gaining widespread recognition for their effectiveness (Li et al., 2025). GANs utilize an 
adversarial training framework involving two neural networks: a generator and a discriminator 
(Wang et al., 2025). The generator learns the real data's underlying distribution to create synthetic 
samples that closely mimic it, while the discriminator works to distinguish real data from the 
generated samples (Chen et al., 2022). This adversarial interplay, resembling a zero-sum game, 
pushes the generator to continuously improve, producing increasingly realistic synthetic data. The 
iterative feedback loop between the two networks ensures refined outputs, capturing complex data 
distributions with high fidelity (Creswell et al., 2018; Gui et al., 2021). 

Compared to traditional generative models, GANs excel in creating synthetic data that closely 
resembles real-world data (Goodfellow et al., 2014; Karras et al., 2019). A key advantage is that the 
generator does not directly access the original data during training, which reduces the risk of data 
disclosure and potential privacy breaches (Esteban et al., 2017). This makes GANs particularly 
valuable for applications requiring privacy preservation while maintaining the quality and utility of 
synthetic datasets (Li et al., 2025). 

This review synthesizes current research on using GANs for synthetic data generation in deep 
learning. It explores GANs' core principles, applications across various fields, and advanced 
architectural innovations. The review compares GANs' strengths and limitations with other synthetic 
data generation methods and discusses quality assessment techniques. It provides a comprehensive 
overview for researchers and practitioners, highlighting challenges and future research directions in 
this rapidly evolving field. 

2. Generative Adversarial Networks for Synthetic Data Generation: A 
Foundational Overview 

A GAN consists of two opposing neural networks: the generator and the discriminator, both 
typically deep neural networks trained via backpropagation as shown in Figure 1 (Goodfellow et al., 
2014). The generator learns the probability distribution of real-world data to produce synthetic 
samples that mimic the original data (Keskes, 2025a). It takes a random noise vector, often drawn 
from a Gaussian or uniform distribution, as input and transforms it into synthetic outputs such as 
images, tabular data, or time-series sequences (Radford et al., 2016). The generator effectively learns 
a complex, non-linear mapping from a low-dimensional latent space to a higher-dimensional data 
space, generating new instances that are statistically similar to the training data (Li et al., 2025). 

In contrast, the discriminator acts as a binary classifier, distinguishing real data samples from 
synthetic ones produced by the generator (Wang et al., 2025). It outputs a probability score indicating 
whether an input sample is real or fake, assigning high probabilities to real samples and low ones to 
synthetic ones (Hei et al., 2025). This classification provides critical feedback to the generator, 
enabling it to refine its outputs and improve realism through the adversarial learning process 
(Creswell et al., 2018). 

GAN training is a competitive, zero-sum game. The generator aims to produce samples that fool 
the discriminator, while the discriminator strives to accurately classify real and fake samples (Li et 
al., 2025). Both networks are trained simultaneously in an iterative process: the discriminator 
improves its classification, and the generator refines its outputs to evade detection (Wang et al., 2022). 
This adversarial loop continues until equilibrium, where the discriminator cannot reliably distinguish 
synthetic samples from real data, indicating the generator has approximated the true data 
distribution effectively (Goodfellow, 2016; Creswell et al., 2018). 

The adversarial training process in GANs can be formally represented as a minimax 
optimization problem (Wang et al., 2025). The objective function that governs this process typically 
involves the discriminator aiming to maximize the expected log-likelihood of correctly identifying 
real data and correctly identifying fake data (as fake). Simultaneously, the generator strives to 
minimize the expected log-likelihood of the discriminator correctly identifying its generated data as 
fake (Goodfellow et al., 2014). Mathematically, this can be expressed as: 
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minGmaxD VሺD, Gሻ ൌ  𝐸௑∼௉೏ೌ೟ೌሺ௑ሻ ൅  𝐸௓∼௣೥ሺ௓ሻ 
where: 

● D(x) represents the discriminator's output (the probability that x is real) for a real data 
sample x drawn from the real data distribution 𝑝ୢୟ୲ୟ ሺ𝑥ሻ. 

● G(z) represents the generator's output (a synthetic data sample) for a random noise 
vector z drawn from a noise distribution  𝑝୸ሺ𝑧ሻ. 

● D(G(z)) represents the discriminator's output for the synthetic sample G(z) (the 
probability that the synthetic sample is real). 

● E denotes the expected value. 

The discriminator seeks to maximize this value function by correctly classifying both real and 
fake data. The generator, on the other hand, aims to minimize this value function by producing 
synthetic data G(z) that the discriminator is likely to classify as real (i.e., maximizing D(G(z)) or, 
equivalently, minimizing 1−D(G(z))). The equilibrium of this minimax game signifies that the 
generator has learned to produce synthetic data that is statistically indistinguishable from the real 
data (Goodfellow, 2016; Wang et al., 2025). 

 
Figure 1. Generative Adversarial Networks general structure. 

3. Applications Across Diverse Domains 

The influence of GANs is expanding rapidly, transforming sectors such as healthcare, finance, 
computer vision, and natural language processing. In healthcare, GANs generate synthetic medical 
images such as MRI and CT scans, aiding in diagnosis, treatment planning, and data augmentation 
for deep learning models (Yi et al., 2019; Singh & Raza, 2021). They also enable data anonymization, 
addressing privacy concerns, with applications in brain imaging, cardiology, and oncology. For 
instance, models like medGAN generate synthetic electronic health records to alleviate data scarcity 
and preserve patient confidentiality (Armanious et al., 2020). 
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In finance, GANs produce synthetic time-series data such as stock prices for fraud detection, 
forecasting, and trading strategy development (Chen et al., 2022). TimeGAN is particularly effective 
at capturing temporal dependencies in financial data, enhancing risk modeling and algorithmic 
trading performance (Yoon, Jarrett, & van der Schaar, 2019). Similarly, FinGAN demonstrates GANs' 
capability in modeling complex financial distributions, supporting regulatory and market behavior 
analysis (Wiese et al., 2020). 

Computer vision has been a primary driver of GAN advancement, with applications in synthetic 
image and video generation, 3D model creation, and data augmentation for classification and 
detection tasks (Goodfellow et al., 2014; Isola et al., 2017). GANs also facilitate image-to-image 
translation (e.g., changing weather or season), super-resolution, and artistic generation such as anime 
character synthesis or photo restoration (Karras et al., 2019). 

In NLP, while GANs are less prevalent than in vision, they generate synthetic text for tasks like 
text summarization and translation and support creative applications like poetry or story generation 
(Yu et al., 2017). Though large language models dominate current NLP, GANs contribute to data 
augmentation and domain-specific text synthesis (Yu et al., 2017). 

Beyond these, GANs are increasingly used in cybersecurity, fraud detection, and supply chain 
modeling. They generate synthetic fraudulent transactions or network traffic to improve model 
robustness and support imbalanced data training (Lin et al., 2020). Models like table-GAN (Park et 
al., 2018) and CTAB-GAN (Zhou et al., 2021) highlight GANs’ flexibility in structured data 
applications, underscoring their transformative potential across diverse fields. 

4. Advanced GAN Architectures and Methodologies 

Since the introduction of the original GAN framework, advanced architectures have been 
developed to overcome its limitations and enhance synthetic data generation (Gui et al., 2021). These 
innovations address diverse data types and applications, improving the quality and utility of 
generated data (Pan et al., 2019).  

Deep Convolutional GANs (DCGANs) marked a significant advancement by integrating 
convolutional neural networks (CNNs) into the generator and discriminator (Zhang et al., 2017). This 
enabled DCGANs to synthesize realistic images by leveraging CNNs’ ability to learn hierarchical 
spatial features, as seen in applications like generating fashion images from the Fashion MNIST 
dataset (Isola et al., 2017). DCGANs set the stage for more sophisticated image synthesis models 
(Karras et al., 2018). 

Conditional GANs (cGANs) introduced controlled generation by conditioning the process on 
additional information, such as class labels or textual descriptions (Reed et al., 2016). This allows 
targeted data synthesis, particularly in healthcare, where cGANs generate medical images for specific 
pathologies (Frid-Adar et al., 2018). CTAB-GAN, a conditional tabular GAN, applies this principle to 
structured data, enhancing realism in synthetic tabular datasets (Zhao et al., 2021). 

CycleGANs facilitate unpaired image-to-image translation, learning mappings between 
domains without direct correspondences. Using cycle consistency loss, CycleGANs ensure reversible 
translations (Zhu et al., 2017), proving valuable in healthcare for tasks like transforming MRI 
contrasts without paired data, showcasing GANs’ ability to handle complex data mappings (Yang et 
al., 2020). 

TimeGANs tackle time-series data generation, capturing temporal dependencies through a 
combination of supervised and unsupervised objectives. Applied to financial data like stock prices, 
TimeGAN outperforms alternatives by modeling realistic temporal dynamics, highlighting the need 
for specialized GAN designs for sequential data (Yoon et al., 2019). 

Tabular GANs address the challenges of structured data, which mixes numerical and categorical 
variables. Models like medGAN, CTAB-GAN, and table-GAN enhance synthetic tabular data 
generation. MedGAN uses an autoencoder-GAN hybrid for electronic health records (Armanious et 
al., 2020), while CTAB-GAN and table-GAN incorporate classifiers to maintain semantic integrity 
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(Majeed & Hwang, 2024). Table-GAN employs hinge loss and classification loss to balance privacy 
and compatibility, demonstrating effectiveness in generating realistic tabular data (Xu et al., 2019). 

Training GANs requires careful optimization to overcome instability, vanishing gradients, and 
mode collapse. Strategies like hinge loss, gradient penalties, and hyperparameter tuning—such as 
adjusting epochs, batch sizes, and learning rates in FinGAN—stabilize training and improve 
outcomes (Xiaopeng et al., 2020). For instance, FinGAN’s adjustments enhanced its ability to capture 
complex financial patterns (Takahashi et al., 2019). 

These advancements—DCGANs, cGANs, CycleGANs, TimeGANs, and tabular GANs—
demonstrate the versatility of GANs in generating high-quality synthetic data across images, time-
series, and structured datasets, with careful training ensuring their effectiveness in diverse 
applications (Creswell et al., 2018). 

Table 1. Comparative Table of GAN Architectures for Synthetic Data Generation. 

Architecture Key Features Applications Limitations 

DCGAN Incorporation of 

CNNs in generator 

and discriminator. 

Image synthesis, 

feature learning. 

Can still suffer from 

training instability 

and mode collapse. 

cGAN Generation 

conditioned on 

additional input (e.g., 

labels, text). 

Controlled data 

generation, image 

editing, text-to-image 

synthesis. 

Requires labeled or 

conditional data. 

CycleGAN Unpaired image-to-

image translation 

using cycle 

consistency loss. 

Style transfer, domain 

adaptation, image 

enhancement. 

Can sometimes 

produce 

geometrically 

inconsistent results. 

TimeGAN Explicit modeling of 

temporal correlations 

for time-series data. 

Synthetic financial 

data, healthcare time-

series data. 

Complexity in 

implementation and 

training. 

medGAN Combines 

autoencoder with 

GAN for mixed-type 

data (binary, 

continuous). 

Synthetic electronic 

health records (EHR). 

Originally designed 

for binary and 

continuous data; 

extensions needed for 

multi-categorical data. 
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CTAB-GAN Conditional GAN 

with a classifier to 

learn data semantics 

for tabular data. 

Synthetic tabular data 

generation, handling 

mixed data types. 

Evaluation metrics for 

tabular data can be 

inconsistent.12 

table-GAN Adds a classifier 

network to enhance 

semantic integrity of 

synthetic tables. 

Synthetic tabular data 

generation, privacy 

preservation. 

Performance can vary 

across different 

datasets and may not 

always capture all 

statistical nuances.13 

5. Advantages and Benefits of Using GANs for Synthetic Data 

GANs offer significant advantages in synthetic data generation across various domains. A key 
benefit is addressing data scarcity by creating vast amounts of realistic synthetic data, augmenting 
limited real-world datasets (Guo et al., 2023). This is critical in fields like rare disease research or 
specialized industries where data collection is costly or challenging (Armanious et al., 2020). By 
generating diverse samples, GANs enable the training of robust deep learning models, reducing 
overfitting and improving generalization (Wang et al., 2025). 

GANs also mitigate privacy risks by producing synthetic data that preserves the statistical 
properties of original datasets without exposing sensitive information. This facilitates data sharing 
and collaboration while complying with regulations like GDPR and HIPAA (Jordon et al., 2019). 
Models like table-GAN are designed to synthesize tabular data, minimizing disclosure risks, which 
is vital in sensitive sectors such as healthcare and finance (Park et al., 2018). 

Additionally, GANs help address algorithmic bias in datasets. By generating synthetic data to 
balance imbalanced classes or represent underrepresented groups, GANs support the development 
of fairer machine learning models (Xu et al., 2020). This is crucial for preventing AI systems from 
perpetuating societal biases, ensuring more equitable outcomes. 

Synthetic data from GANs enhances model robustness and generalization by exposing models 
to a wider range of scenarios, including rare or complex cases do not present in real data. This makes 
models more resilient to variations and noise, improving performance on unseen data. For example, 
GANs can simulate challenging conditions, enabling models to handle diverse real-world inputs 
effectively (Shmelkov et al., 2018). 

Finally, GANs offer cost and time efficiency compared to collecting and processing real-world 
data. Once trained, GANs can quickly generate large volumes of synthetic data, accelerating the 
development and deployment of deep learning models (Torfi et al., 2020). This efficiency, combined 
with their ability to overcome data limitations, privacy concerns, and biases, makes GANs a 
transformative tool for advancing AI applications. 

6. Challenges, Limitations, and Considerations 

Despite the numerous advantages of using GANs for synthetic data generation, several 
challenges, limitations, and considerations need to be carefully addressed. One major issue is the 
instability of the training process, often requiring extensive hyperparameter tuning and sophisticated 
architectural design to achieve convergence (Keskes, 2025b). Mode collapse, where the generator 
produces limited sample variety, further complicates capturing the full diversity of real data, 
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reducing the utility of synthetic data (Srivastava et al., 2017). Advanced training techniques and 
careful monitoring are essential to mitigate these issues. 

Another limitation is the lack of standardized evaluation metrics to assess synthetic data quality 
and utility. Existing metrics often focus on specific aspects, like visual fidelity, but fail to capture the 
data’s usefulness for downstream tasks or preservation of complex relationships, hindering model 
comparisons (Borji, 2019). The high computational cost of training GANs, requiring powerful GPUs 
and significant time, poses a barrier for those with limited resources (Lucic et al., 2018). 

Privacy concerns arise when generators memorize training data patterns, risking information 
leakage. Balancing privacy and utility require ongoing research into privacy-preserving techniques 
(Chen et al., 2020). Additionally, the ability of GANs to create realistic synthetic data raises ethical 
concerns, including the potential for deepfakes and misinformation (Westerlund, 2019). Addressing 
these risks demands ethical guidelines, responsible data practices, and robust detection mechanisms 
to maintain trust in information sources. 

7. GANs in Comparison to Other Synthetic Data Generation Techniques 

The Generative Adversarial Networks are not the sole method for synthetic data generation; 
other techniques like Variational Autoencoders (VAEs), Large Language Models (LLMs), and 
traditional statistical methods also play significant roles. VAEs, which encode data into a probabilistic 
latent space and decode it to generate new samples, offer greater training stability than GANs but 
often produce less realistic outputs, especially for complex data like images (Kingma & Welling, 
2014). Both GAN-based (e.g., CTGAN) and VAE-based (e.g., TVAE) models are popular for tabular 
data (Majeed & Hwang, 2024). 

LLMs excel in generating coherent, contextually relevant synthetic text, leveraging their training 
on vast text corpora, but are less versatile for structured data like images or tables compared to GANs 
(Miletic & Sariyar, 2024). Traditional statistical methods, which model data properties like means and 
correlations, are computationally lighter and suitable for simpler tasks but struggle to capture 
complex, high-dimensional patterns (Du et al., 2024). These methods often require more manual 
domain expertise, unlike the automated learning of GANs. While GANs provide a strong balance of 
realism and fidelity for complex data like images and time-series, the choice of technique depends on 
application needs, data type, and trade-offs in training stability, computational cost, and data realism 
Miletic & Sariyar, 2024; Deng & Chen, 2024). 

8. Conclusion 

As a breakthrough in synthetic data generation, GANs produce highly realistic datasets, driving 
advancements in healthcare, finance, computer vision, and natural language processing. Their 
adversarial training process enables them to tackle data scarcity, mitigate privacy risks, and reduce 
algorithmic bias, advancing AI applications. However, challenges such as training instability, the lack 
of robust evaluation metrics, and ethical concerns persist. Ongoing research focuses on developing 
advanced GAN architectures, refining training techniques, and establishing standardized evaluation 
methods to address these issues. As these efforts progress, GANs promise to enhance data sharing, 
model development, and the creation of fair, privacy-preserving, and robust deep learning solutions, 
with future improvements targeting stability, efficiency, controllability, and ethical deployment. 
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