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Abstract: Sparse reward environments pose significant challenges in reinforcement learning,
especially within multi-agent systems (MAS) where feedback is delayed and shared across agents,
leading to suboptimal learning. We propose Collaborative Multi-dimensional Course Learning
(CCL), a novel curriculum learning framework that addresses this by (1) refining intermediate tasks
for individual agents, (2) using a variational evolutionary algorithm to generate informative subtasks,
and (3) co-evolving agents with their environment to enhance training stability. Experiments on five
cooperative tasks in the MPE and Hide-and-Seek environments show that CCL outperforms existing
methods in sparse reward settings.

Keywords: multi-agent reinforcement learning (MARL); sparse reward environments; curriculum
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1. Introduction

Deep Reinforcement Learning (DRL) has shown substantial success in Multi-Agent Systems
(MAS), with notable applications in robotics [1,2], gaming [3], and autonomous driving [4]. Despite
this progress, sparse reward environments continue to hinder learning efficiency, as agents often
receive feedback only after completing complex tasks. This delayed reward signal limits exploration
and makes policy optimization difficult.

To improve exploration under sparse rewards, several strategies have been proposed, including
reward shaping [5,6], imitation learning [7], policy transfer [8], and curriculum learning [9,10]. These
methods aim to strengthen the reward signal and guide agents toward effective behaviors. While
effective in single-agent environments, their performance often degrades in MAS, where multiple
interacting agents exacerbate environmental dynamics and expand the joint state-action space [11-
13].

In response, we propose Collaborative Multi-dimensional Course Learning (CCL), a co-
evolutionary curriculum learning framework tailored for sparse-reward cooperative MAS. CCL
introduces three core innovations:

(1) It generates agent-specific intermediate tasks using a variational evolutionary algorithm,
enabling balanced strategy development.

(2) It models co-evolution between agents and their environment [14], aligning task complexity
with agents’ learning progress.
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(3) Itimproves training stability by dynamically adapting task difficulty to match agent skill levels.

Through extensive experiments across five tasks in the MPE and Hide-and-Seek (HnS)
environments, CCL consistently outperforms existing baselines, demonstrating enhanced learning
efficiency and robustness in sparse-reward multi-agent scenarios.
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Figure 1. MPE is validated with three different collaborative task scenarios.

2. Problem Statement

In reinforcement learning, the reward signal is a critical feedback mechanism guiding agents to
assess their actions and learn optimal policies via the Bellman equation [15]. While a well-designed
reward function defines the task objective and measures agent behavior, agents may still pursue
suboptimal strategies. Nonetheless, carefully crafted rewards greatly enhance learning efficiency and
policy convergence [16].
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Figure 2. Intermediate task generation in MAS is more complex than in single-agent settings due to the need to
account for agent-specific subtasks. In sparse reward environments where rewards are shared, incorporating an

individual perspective mechanism becomes essential to ensure effective task decomposition and learning.

Designing dense rewards in complex MAS is challenging due to reliance on prior knowledge,
which often fails to capture all interaction dynamics. Sparse rewards offer a more flexible alternative
by providing feedback only upon reaching a critical goal state [17], reducing dependence on manual
reward design and improving generalization.

In non-sparse reward settings, at each time step Z, the agent observes its current state St € S
and selects an action @ € 4 based on its policy 7(at|$t) . The chosen action results in a transition to
a new state St+1, determined by the environment’s transition dynamics p(sti1]st,61) | and an
associated reward Tt is obtained from the reward function 7($t»@t8t11) | The sequence of states,
actions, following states, and rewards over an episode of T time steps form the trajectory

T-1
7= (84, @ty 8111, 7) =g , where T is either determined by the maximum episode length or specific task
termination conditions. This outlines the process of reinforcement learning for a single agent.

The goal of this individual agent is to learn and maximize its expected cumulative rewarded

policy:
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J =Ex lz '}"r'r] (1)

where 7 is the discount factor, representing future rewards’ diminishing value refinement degree
of the optimization process is carried out by each time step inside the trajectory, that is, the
optimization granularity is accurate to each time step.

However, the system dynamics significantly intensify when extending this general framework
to MAS under sparse reward conditions. In this system, there are N decision-making agents, where
each agent ¢ takes an action @i at time step # based on the observed state information and
following its dedicated policy 7i(ails:). The global state st of the system is composed of the joint states
of all individual agents, denoted as 5t = (51,52,--,$n) Correspondingly, the joint action @: at each
time step is also formed by the combination of actions from all agents, i.e., a = (@42,-..,a:) In the sparse
reward environment, reward signals only emerge when the system achieves specific predefined goal
states, posing more significant challenges for agent collaboration and strategy optimization.

In cooperative multi-agent tasks, the goal of each agent is no longer focused on maximizing its
reward but instead shifts toward optimizing the cumulative reward of the entire system. This
requires agents to collaborate effectively, coordinating their actions to achieve the shared objective,
thereby improving the overall performance of the multi-agent system. Consequently, the objective

Ji(mi) = Er, { WtTi(Sz,at)}
zt: , where 7i(8t, 1) represents the

function J foreach agent 2 is transformed into
reward received by agent 2 at time step £ given the state st and joint action a:. The overall goal of
thezmulti—agent system (MAS) then becomes the sum of the individual objectives, denoted as
T=Y"Ji(m)

At this point, it becomes evident that the essence of a multi-agent reinforcement learning
algorithm lies in utilizing the rewards earned by all agents to optimize the overall collaborative
strategy. However, this challenge is significantly heightened in a sparse reward environment, where
agents receive limited feedback, making it difficult to effectively guide their actions and improve
coordination toward the collective goal. In the case that there are only very few 0-1 reward signals,
the total reward of the system can be simplified to a binary function:

I, s =
r(se,9) = {0‘ Ott.hefwisc @)

As the number of agents increases, training variance in MAS grows exponentially. In sparse
reward settings, agents must achieve sub-goals aligned with a shared objective, yet often receive little
to no feedback, making learning difficult. This lack of guidance hampers exploration and destabilizes
training, rendering many single-agent methods ineffective. To address these challenges, we propose
Collaborative Multi-dimensional Course Learning (CCL) for more stable and efficient multi-agent
training.

§t =g <= YiEn,s; = g; (3)

3. Related Work

3.1. Curriculum Learning

Sparse reward environments have driven the development of various exploration strategies in
reinforcement learning, including reward shaping [18], intrinsic motivation [19], and curriculum
learning [20]. While the first two enhance learning by densifying rewards, curriculum learning adopts
a divide-and-conquer approach—decomposing complex tasks into simpler subtasks arranged in
increasing difficulty [1,21,22].

In reinforcement learning, curriculum learning involves three main components: task
generation, task ranking, and transfer learning [23]. These can be guided by automated methods [9]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.0657.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 9 May 2025

or expert knowledge, though the latter often introduces biases [24,25]. Adaptive Automatic
Curriculum Learning (ACL) addresses this by dynamically tailoring task sequences to agent
progress, without manual intervention.

Despite its promise, ACL faces challenges in defining effective evaluation metrics and managing
computational cost [26-28]. Current approaches often rely on coarse performance metrics or costly
replay mechanisms [29,30], making it difficult to scale in complex multi-agent settings.

3.2. Evolutionary Reinforcement Learning

Evolutionary Algorithms (EAs) optimize policies through selection, mutation, and
recombination of candidate solutions based on fitness scores [31]. Their integration with
reinforcement learning aims to address issues like sparse rewards and limited policy diversity
[29,30,34].

Though promising [32,33], combining EAs with RL introduces challenges, notably the
computational overhead from large populations [24] and the difficulty of retaining informative
environmental features during evolutionary encoding. Effective integration requires balancing
exploration benefits with computational feasibility[44-51].

4. Methodology

4.1. The Variational Individual-Perspective Evolutionary Operator

In this section, we provide a detailed explanation of all the components of CMCL. As a
coevolutionary system with two primary parts, the agents are trained using the existing Multi-Agent
Proximal Policy Optimization (MAPPO) algorithm[35], which will not be elaborated on here. The
complete workflow of the CMCL algorithm is outlined in Algorithm 1.

Evolutionary Curriculum Initialization Due to the low initial policy performance of a MAS at
the start of training, agents struggle to accomplish complex tasks. Therefore, minimizing the norm of
task individuals within the initial population is essential. Assuming the initial task domain is 2o, the
randomly initialized task population should meet the following conditions, where d represents the
initial Euclidean norm between the agent and the task, and J is a robust hyperparameter, typically
set to be about one percent of the total task space size.

1
o] Z d(si,gi) <0 (4)

'.CQU

Algorithm 1 Coevolving Multidirectional Curriculum Learning

Require: training episode N, curriculum population in episode i: Cj, total number of tasks in the curriculum population n,,
sampling number of tasks n,, initial region of the task €, soft selection rate @, prototype number k

: Initialize Cy by uniform sampling n,, initial tasks in Qg

: Sample n, tasks from C)

: Initialize MAS policy 8

: for i+ 1to N do

Parallel train MAS on all #, tasks

r; 4 success rate on task j, j=0ton,

Delete bad tasks

fie ﬁ, je0ton

9: fan + k-prototyped fitness estimator(f1, f>,.... f,)

R - NI TSR

10: Initialize empty curriculum population C;

11: for curriculum pair Cp €y e in C; do

12: if uniform noise & ~ (0,1) > 0.5 then

13: kid — Multi-directional Cruss(q,cHEF Jan)
1d: C; — Ci+kid B

1s: else

16: kid — Multi-directional Muiat.e(q,cﬂg_‘ﬂ J fan)
17: C; = C;+kid .

18: end if

19: end for

20: new task — sample n, x o tasks on Ci4q

21: old task — sample n, x (1 — ) taskson Cj, j=0to i
22: tasks — new task + old task

23: Update 8 using MAPPO

24: end for
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Task Fitness Definition: Previous methods often assessed intermediate tasks using agent
performance metrics [24,30,36] or simple binary filters [37], which fail to capture the non-linear nature
of task difficulty. Tasks with success rates near 0 or 1 offer little training value, while those closer to
the midpoint present a more suitable challenge. To address this, we model fitness as a non-linear
function, favoring tasks of moderate difficulty that best support learning progression. To capture this
non-linear relationship, we establish a sigmoid-shaped fitness function to describe the adaptability
of tasks to the current level of agent performance, where r represents the average success rate of the
agents on task Z.

1

I =T ®)

Variational Individual-perspective Crossover In a MAS, the single reward signal is distributed
across multiple dimensions, especially from the perspective of different agents, leading to imbalances
in the progression of individual strategies. Therefore, based on the encoding method mentioned
earlier, operating on intermediate tasks at the individual level within the MAS is necessary.
Assuming that in a particular round of intermediate task generation, N individuals from the
previous task generation {T =t1,t2,...,tn} are randomly divided into two groups T4 and 5:3
Then, we take ¥/2task pairs tA’ t” from T4 and IB to produce new children in the population.

i+ 1 Y T
LTt S'l_)‘;, i 1,2,....£ (6)
t?* «— tf + S:D;

—_
In the above formula, Si represents the crossover step size for pair Z, and Di represents the
H
crossover direction for pair Z. The calculations of $i andD: are shown below:
_ e - sl
max(f(T)) — min(f(T))

@)

%
Di - [Di,h Di,2) s 7Di,n]
D denotes the direction of the J-th agent in pair Z, obtained by uniform random sampling.

D 0, if random variable §; < 0.5
" 168 - 6F;,  if random variable §; > 0.5 (8)

The proposed variational individual-perspective crossover ensures each agent's subtask
direction contributes equally to curriculum evolution, enabling broader exploration compared to
traditional methods. In a MAS with nnn entities, this results in 2n2”n2n possible direction
combinations, enhancing diversity in intermediate task generation.

To address catastrophic forgetting [38,39], we adopt a soft selection strategy. Rather than
discarding low-fitness individuals, the entire population is retained, and a fraction (a\alphaa,
typically 0.2-0.4) of historical individuals is reintroduced each iteration. This maintains task diversity,
preserves challenging tasks for future stages, and helps avoid local optima.

4.2. Elite Prototype Fitness Evaluation

Evolutionary algorithms often require maintaining a sufficiently large population to ensure
diversity and prevent being trapped in local optima or influenced by randomness. However,
evaluating the fitness of intermediate tasks in a large curriculum population significantly increases
computational cost. To mitigate this issue, we propose a prototype-based fitness estimation method.

First, we uniformly sample tasks in each iteration and measure their success rate r and fitness f

. These sampled tasks, called prototypes, are used in actual training. Next, we employ a K-Nearest
Neighbor (KNN) approach to estimate the fitness of tasks not directly used in training.
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Assume there are 7 individuals in the prototype task set P, with fitness values fifor each @
,and 71 individuals in the query task set @, represented as vectors 95 foreach J. For any individual
95 in the query set @, its fitness value /J can be calculated as shown below

fj:%Zef.

e N
ieN;

)

In the formula, Vi represents the set of indices of the k-closest individuals in the prototype task

set P to the vector J , based on the Euclidean distance. This can be expressed as follows:

N; = arg min —pill?
j=org min D lla;—pil (10)

5. Experiment

5.1. Main Result

We evaluate CCL on five cooperative tasks across two environments: simple/complex
propagation and Push-ball from the MPE benchmark [40], and ramp-passing and lock-back from the
MuJoCo-based HnS environment [41]. All tasks use a binary (0-1) sparse reward structure, with
results averaged over three random seeds. Training is conducted using MAPPO [35] on a system with
an Nvidia RTX 3090 GPU and a 14-core CPU. Attention mechanisms [42] are also integrated to
improve agent coordination.

We compare CCL with five baselines:

Vanilla MAPPO [35] - Direct training on the target task without intermediate tasks.
POET [24] — Uses task evolution; implemented with the same setup as CCL for fairness.
GC [36] - An improved version of POET with enhanced task generation.

GoalGAN [10] - Combines curriculum learning with attention-based enhancements.
VACL [43] — Applies variational methods to create robust intermediate tasks.

G L

Across all environments, baseline methods struggle under sparse rewards, especially in HnS.
CCL consistently outperforms them in both learning speed and final performance, achieving over
95% success in the most complex tasks (see Tables 1 and 2).

Table 1. The Performance Comparison of CCL and Other Baselines on Simulated Environments.

Method Ramp-Use Lock and Return Simple-Spread Hard-Spread Push-Ball
num_agent = 2 num_box =2 num_agent = 4 num_landmark = 4 num_agent = 2
num_agent =2 | num_landmark = 4 num_agent = 4 num_ball =2

num_landmark =2

MAPPO? <1% < 1% <1% < 1% 2% +0.5%
GC36 37.2% + 18.6% 8.7% +3.2% 65% +12.1% 79% + 15.6% 59% + 12.3%
POET* < 1% < 1% 44% +9.7% 10% + 8.1% 80% + 8.4%
GoalGAN'? || 9.2%4+4.2% < 1% 82% £ 0.9% 86% £ 8.8% 61%+8.7%
VACL® 94.7% + 0.8% 95.4%+0.1% 90% + 1.6% 91% +6.9% 90% + 3.0%
CCL (Ours) || 98.4% +0.3% 99.1% +0.7% 99% + 0.2% 95% + 3.4% 96% + 1.5%

Table 2. Performance Metrics for Various Methods across Different Tasks.

Method Simple-Spread | Push-Ball | Hard-Spread
MAPPO™ > 5e7 > le8 > 1e8
GC3¢ > 5¢7 > 1e8 1e8
POET* > 5¢7 > le8 1e8
GoalGAN (att)!” > 5¢7 1e8 1e8
VACL* > Se7 1e8 1e8
CCL (Ours) 2e7 6e7 7e7
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5.2. Ablation Studies

Adaptive Mutation Step: Ablation studies show that using an adaptive mutation step size
enhances flexibility and performance in sparse reward environments compared to fixed or no
mutation. While mutation promotes strategy diversity, improper step sizes can degrade learning.
Notably, adaptive mutation proves as effective as crossover and individual-perspective variation in
improving CCL'’s performance (see Figure 3).

Non-linear Factor in Fitness Function: As shown in Figure 4, the sigmoid fitness function

f = —Hlr -

the sigmoid function’s properties: as the agent’s success rate approaches 0 or 1, the task’s suitability

delivers better performance than the linear form 0.5 ‘ . This improvement stems from
to the agent’s abilities decreases exponentially. Specifically, when the success rate is exactly 0.5, the
fitness value remains consistently at 0.5. This approach effectively integrates nonlinear elements into
the success rate distribution, enabling the fitness function to more accurately represent the
relationship between task difficulty and the agent’s skill level.

Ablation study en different types of mutation step setfing

—— CMCL{Ours)
Crossover Only
—.— Fixed Step

Cover_rate

0.4 i

0z
v
.
00 s e e o

T T T T T T T T T
0.00 025 050 0.75 1.00 125 150 175 200
Step 1e7

Figure 3. The adaptive step usage ablation experiments which shows its effect.

Ablation Study of fitness funclion

084

Cover_rate

—— CMCL with ssgmoicform finess

0.04 CMCL with abs finess

T T T T T T T T T
0.0 05 1.0 15 2.0 25 30 35 4.0
Step 107

Figure 4. The comparison of using absolute value and sigmoid-shaped fitness function.

6. Conclusion

This paper presents CCL, a co-evolutionary curriculum learning framework designed to
improve training stability and performance in sparse-reward multi-agent systems (MAS). By
generating a population of intermediate tasks, using a variational individual-perspective crossover,
and employing elite prototype-based fitness evaluation, CCL enhances exploration and coordination.
Experiments in MPE and HnS environments show that CCL consistently outperforms existing
baselines. Ablation studies further validate the importance of each component.

Despite its strengths, CCL’s current design is focused on cooperative MAS. Future work should
explore its applicability in competitive or mixed-behavior settings, where coordination and conflict
coexist. Moreover, the storage of historical tasks for soft selection increases memory usage;
optimizing this via compression or selective retention is a promising direction for reducing overhead.
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