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Abstract:  Sparse  reward  environments  pose  significant  challenges  in  reinforcement  learning, 

especially within multi‐agent systems (MAS) where feedback is delayed and shared across agents, 

leading  to  suboptimal  learning. We  propose  Collaborative Multi‐dimensional  Course  Learning 

(CCL), a novel curriculum learning framework that addresses this by (1) refining intermediate tasks 

for individual agents, (2) using a variational evolutionary algorithm to generate informative subtasks, 

and (3) co‐evolving agents with their environment to enhance training stability. Experiments on five 

cooperative tasks in the MPE and Hide‐and‐Seek environments show that CCL outperforms existing 

methods in sparse reward settings. 

Keywords: multi‐agent  reinforcement  learning  (MARL); sparse  reward environments; curriculum 

learning;  Co‐evolutionary  Algorithms;  task  generation;  Evolutionary  Reinforcement  Learning; 

Cooperative Problem Solving 

 

1. Introduction 

Deep Reinforcement Learning  (DRL) has  shown  substantial  success  in Multi‐Agent Systems 

(MAS), with notable applications in robotics [1,2], gaming [3], and autonomous driving [4]. Despite 

this progress, sparse  reward environments continue  to hinder  learning efficiency, as agents often 

receive feedback only after completing complex tasks. This delayed reward signal limits exploration 

and makes policy optimization difficult. 

To improve exploration under sparse rewards, several strategies have been proposed, including 

reward shaping [5,6], imitation learning [7], policy transfer [8], and curriculum learning [9,10]. These 

methods aim  to strengthen  the reward signal and guide agents toward effective behaviors. While 

effective  in single‐agent environments,  their performance often degrades  in MAS, where multiple 

interacting agents exacerbate environmental dynamics and expand the joint state‐action space [11–

13]. 

In  response,  we  propose  Collaborative Multi‐dimensional  Course  Learning  (CCL),  a  co‐

evolutionary  curriculum  learning  framework  tailored  for  sparse‐reward  cooperative MAS.  CCL 

introduces three core innovations: 

(1) It  generates  agent‐specific  intermediate  tasks  using  a  variational  evolutionary  algorithm, 

enabling balanced strategy development. 

(2) It models  co‐evolution between agents and  their environment  [14], aligning  task  complexity 

with agents’ learning progress. 
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(3) It improves training stability by dynamically adapting task difficulty to match agent skill levels. 

Through  extensive  experiments  across  five  tasks  in  the  MPE  and  Hide‐and‐Seek  (HnS) 

environments, CCL consistently outperforms existing baselines, demonstrating enhanced  learning 

efficiency and robustness in sparse‐reward multi‐agent scenarios. 

 

Figure 1. MPE is validated with three different collaborative task scenarios. 

2. Problem Statement 

In reinforcement learning, the reward signal is a critical feedback mechanism guiding agents to 

assess their actions and learn optimal policies via the Bellman equation [15]. While a well‐designed 

reward  function defines  the  task objective and measures agent behavior, agents may  still pursue 

suboptimal strategies. Nonetheless, carefully crafted rewards greatly enhance learning efficiency and 

policy convergence [16]. 

 

Figure 2. Intermediate task generation in MAS is more complex than in single‐agent settings due to the need to 

account for agent‐specific subtasks. In sparse reward environments where rewards are shared, incorporating an 

individual perspective mechanism becomes essential to ensure effective task decomposition and learning. 

Designing dense rewards in complex MAS is challenging due to reliance on prior knowledge, 

which often fails to capture all interaction dynamics. Sparse rewards offer a more flexible alternative 

by providing feedback only upon reaching a critical goal state [17], reducing dependence on manual 

reward design and improving generalization. 

In non‐sparse reward settings, at each time step  , the agent observes its current state   

and selects an action    based on its policy  . The chosen action results in a transition to 

a  new  state  ,  determined  by  the  environment’s  transition  dynamics  ,  and  an 

associated  reward    is obtained  from  the  reward  function  . The  sequence of  states, 

actions,  following  states,  and  rewards  over  an  episode  of    time  steps  form  the  trajectory 

, where    is either determined by the maximum episode length or specific task 

termination conditions. This outlines the process of reinforcement learning for a single agent. 

The goal of this  individual agent  is to  learn and maximize  its expected cumulative rewarded 

policy: 
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(1)

where    is the discount factor, representing future rewards’ diminishing value refinement degree 

of  the  optimization  process  is  carried  out  by  each  time  step  inside  the  trajectory,  that  is,  the 

optimization granularity is accurate to each time step. 

However, the system dynamics significantly intensify when extending this general framework 

to MAS under sparse reward conditions. In this system, there are    decision‐making agents, where 

each  agent    takes  an  action    at  time  step    based  on  the  observed  state  information  and 

following its dedicated policy  . The global state st of the system is composed of the joint states 

of all individual agents, denoted as  . Correspondingly, the joint action    at each 

time step is also formed by the combination of actions from all agents, i.e.,  . In the sparse 

reward environment, reward signals only emerge when the system achieves specific predefined goal 

states, posing more significant challenges for agent collaboration and strategy optimization. 

In cooperative multi‐agent tasks, the goal of each agent is no longer focused on maximizing its 

reward  but  instead  shifts  toward  optimizing  the  cumulative  reward  of  the  entire  system.  This 

requires agents to collaborate effectively, coordinating their actions to achieve the shared objective, 

thereby improving the overall performance of the multi‐agent system. Consequently, the objective 

function    for each agent    is transformed into  , where    represents the 

reward received by agent    at time step    given the state st and joint action  . The overall goal of 

the multi‐agent  system  (MAS)  then  becomes  the  sum  of  the  individual  objectives,  denoted  as 

. 

At  this  point,  it  becomes  evident  that  the  essence  of  a multi‐agent  reinforcement  learning 

algorithm  lies  in utilizing  the  rewards  earned by  all  agents  to optimize  the overall  collaborative 

strategy. However, this challenge is significantly heightened in a sparse reward environment, where 

agents receive  limited  feedback, making  it difficult  to effectively guide  their actions and  improve 

coordination toward the collective goal. In the case that there are only very few 0‐1 reward signals, 

the total reward of the system can be simplified to a binary function: 

 
(2)

As  the number of agents  increases,  training variance  in MAS grows exponentially.  In sparse 

reward settings, agents must achieve sub‐goals aligned with a shared objective, yet often receive little 

to no feedback, making learning difficult. This lack of guidance hampers exploration and destabilizes 

training, rendering many single‐agent methods ineffective. To address these challenges, we propose 

Collaborative Multi‐dimensional Course Learning (CCL)  for more stable and efficient multi‐agent 

training. 

  (3)

3. Related Work 

3.1. Curriculum Learning 

Sparse reward environments have driven the development of various exploration strategies in 

reinforcement  learning,  including  reward  shaping  [18],  intrinsic motivation  [19],  and  curriculum 

learning [20]. While the first two enhance learning by densifying rewards, curriculum learning adopts 

a  divide‐and‐conquer  approach—decomposing  complex  tasks  into  simpler  subtasks  arranged  in 

increasing difficulty [1,21,22]. 

In  reinforcement  learning,  curriculum  learning  involves  three  main  components:  task 

generation, task ranking, and transfer learning [23]. These can be guided by automated methods [9] 
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or  expert  knowledge,  though  the  latter  often  introduces  biases  [24,25].  Adaptive  Automatic 

Curriculum  Learning  (ACL)  addresses  this  by  dynamically  tailoring  task  sequences  to  agent 

progress, without manual intervention. 

Despite its promise, ACL faces challenges in defining effective evaluation metrics and managing 

computational cost [26–28]. Current approaches often rely on coarse performance metrics or costly 

replay mechanisms [29,30], making it difficult to scale in complex multi‐agent settings. 

3.2. Evolutionary Reinforcement Learning 

Evolutionary  Algorithms  (EAs)  optimize  policies  through  selection,  mutation,  and 

recombination  of  candidate  solutions  based  on  fitness  scores  [31].  Their  integration  with 

reinforcement  learning  aims  to  address  issues  like  sparse  rewards  and  limited  policy  diversity 

[29,30,34]. 

Though  promising  [32,33],  combining  EAs  with  RL  introduces  challenges,  notably  the 

computational  overhead  from  large  populations  [24]  and  the  difficulty  of  retaining  informative 

environmental  features  during  evolutionary  encoding.  Effective  integration  requires  balancing 

exploration benefits with computational feasibility[44–51]. 

4. Methodology 

4.1. The Variational Individual‐Perspective Evolutionary Operator 

In  this  section,  we  provide  a  detailed  explanation  of  all  the  components  of  CMCL.  As  a 

coevolutionary system with two primary parts, the agents are trained using the existing Multi‐Agent 

Proximal Policy Optimization  (MAPPO) algorithm[35], which will not be elaborated on here. The 

complete workflow of the CMCL algorithm is outlined in Algorithm 1. 

Evolutionary Curriculum Initialization Due to the low initial policy performance of a MAS at 

the start of training, agents struggle to accomplish complex tasks. Therefore, minimizing the norm of 

task individuals within the initial population is essential. Assuming the initial task domain is  , the 

randomly initialized task population should meet the following conditions, where    represents the 

initial Euclidean norm between the agent and the task, and    is a robust hyperparameter, typically 

set to be about one percent of the total task space size. 

 
(4)
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Task  Fitness  Definition:  Previous  methods  often  assessed  intermediate  tasks  using  agent 

performance metrics [24,30,36] or simple binary filters [37], which fail to capture the non‐linear nature 

of task difficulty. Tasks with success rates near 0 or 1 offer little training value, while those closer to 

the midpoint present a more suitable challenge. To address this, we model fitness as a non‐linear 

function, favoring tasks of moderate difficulty that best support learning progression. To capture this 

non‐linear relationship, we establish a sigmoid‐shaped fitness function to describe the adaptability 

of tasks to the current level of agent performance, where r represents the average success rate of the 

agents on task  . 

 
(5)

Variational Individual‐perspective Crossover In a MAS, the single reward signal is distributed 

across multiple dimensions, especially from the perspective of different agents, leading to imbalances 

in  the progression of  individual  strategies. Therefore, based on  the  encoding method mentioned 

earlier,  operating  on  intermediate  tasks  at  the  individual  level  within  the  MAS  is  necessary. 

Assuming  that  in  a  particular  round  of  intermediate  task  generation,    individuals  from  the 

previous task generation    are randomly divided into two groups    and  . 

Then, we take  task pairs    from    and    to produce new children in the population. 

 

(6)

In the above formula,    represents the crossover step size for pair  , and    represents the 

crossover direction for pair  . The calculations of    and   are shown below: 

 

(7)

 
  denotes the direction of the  ‐th agent in pair  , obtained by uniform random sampling. 

 
(8) 

The  proposed  variational  individual‐perspective  crossover  ensures  each  agentʹs  subtask 

direction  contributes  equally  to  curriculum  evolution,  enabling broader  exploration  compared  to 

traditional  methods.  In  a  MAS  with  nnn  entities,  this  results  in  2n2^n2n  possible  direction 

combinations, enhancing diversity in intermediate task generation. 

To  address  catastrophic  forgetting  [38,39], we  adopt  a  soft  selection  strategy.  Rather  than 

discarding  low‐fitness  individuals,  the  entire  population  is  retained,  and  a  fraction  (α\alphaα, 

typically 0.2–0.4) of historical individuals is reintroduced each iteration. This maintains task diversity, 

preserves challenging tasks for future stages, and helps avoid local optima. 

4.2. Elite Prototype Fitness Evaluation 

Evolutionary  algorithms  often  require maintaining  a  sufficiently  large population  to  ensure 

diversity  and  prevent  being  trapped  in  local  optima  or  influenced  by  randomness.  However, 

evaluating the fitness of intermediate tasks in a large curriculum population significantly increases 

computational cost. To mitigate this issue, we propose a prototype‐based fitness estimation method. 

First, we uniformly sample tasks in each iteration and measure their success rate r and fitness   

. These sampled tasks, called prototypes, are used in actual training. Next, we employ a K‐Nearest 

Neighbor (KNN) approach to estimate the fitness of tasks not directly used in training. 
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Assume there are    individuals in the prototype task set  , with fitness values  for each 

, and    individuals in the query task set  , represented as vectors    for each  . For any individual 

  in the query set  , its fitness value    can be calculated as shown below 

 

(9)

In the formula,    represents the set of indices of the k‐closest individuals in the prototype task 

set    to the vector    , based on the Euclidean distance. This can be expressed as follows: 

 
(10)

5. Experiment 

5.1. Main Result 

We  evaluate  CCL  on  five  cooperative  tasks  across  two  environments:  simple/complex 

propagation and Push‐ball from the MPE benchmark [40], and ramp‐passing and lock‐back from the 

MuJoCo‐based HnS  environment  [41]. All  tasks use  a binary  (0‐1)  sparse  reward  structure, with 

results averaged over three random seeds. Training is conducted using MAPPO [35] on a system with 

an Nvidia RTX  3090 GPU  and  a  14‐core CPU. Attention mechanisms  [42]  are  also  integrated  to 

improve agent coordination. 

We compare CCL with five baselines: 

1. Vanilla MAPPO [35] – Direct training on the target task without intermediate tasks. 

2. POET [24] – Uses task evolution; implemented with the same setup as CCL for fairness. 

3. GC [36] – An improved version of POET with enhanced task generation. 

4. GoalGAN [10] – Combines curriculum learning with attention‐based enhancements. 

5. VACL [43] – Applies variational methods to create robust intermediate tasks. 

Across all environments, baseline methods struggle under sparse rewards, especially  in HnS. 

CCL consistently outperforms them  in both  learning speed and final performance, achieving over 

95% success in the most complex tasks (see Tables 1 and 2). 

Table 1. The Performance Comparison of CCL and Other Baselines on Simulated Environments. 

 

Table 2. Performance Metrics for Various Methods across Different Tasks. 
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5.2. Ablation Studies 

Adaptive Mutation  Step: Ablation  studies  show  that  using  an  adaptive mutation  step  size 

enhances  flexibility  and  performance  in  sparse  reward  environments  compared  to  fixed  or  no 

mutation. While mutation promotes strategy diversity,  improper step sizes can degrade  learning. 

Notably, adaptive mutation proves as effective as crossover and individual‐perspective variation in 

improving CCL’s performance (see Figure 3). 

Non‐linear  Factor  in  Fitness  Function: As  shown  in  Figure  4,  the  sigmoid  fitness  function 

delivers better performance than the linear form  . This improvement stems from 

the sigmoid function’s properties: as the agent’s success rate approaches 0 or 1, the task’s suitability 

to the agent’s abilities decreases exponentially. Specifically, when the success rate is exactly 0.5, the 

fitness value remains consistently at 0.5. This approach effectively integrates nonlinear elements into 

the  success  rate  distribution,  enabling  the  fitness  function  to  more  accurately  represent  the 

relationship between task difficulty and the agent’s skill level. 

 

Figure 3. The adaptive step usage ablation experiments which shows its effect. 

 

Figure 4. The comparison of using absolute value and sigmoid‐shaped fitness function. 

6. Conclusion 

This  paper  presents  CCL,  a  co‐evolutionary  curriculum  learning  framework  designed  to 

improve  training  stability  and  performance  in  sparse‐reward  multi‐agent  systems  (MAS).  By 

generating a population of intermediate tasks, using a variational individual‐perspective crossover, 

and employing elite prototype‐based fitness evaluation, CCL enhances exploration and coordination. 

Experiments  in MPE  and HnS  environments  show  that  CCL  consistently  outperforms  existing 

baselines. Ablation studies further validate the importance of each component. 

Despite its strengths, CCL’s current design is focused on cooperative MAS. Future work should 

explore its applicability in competitive or mixed‐behavior settings, where coordination and conflict 

coexist.  Moreover,  the  storage  of  historical  tasks  for  soft  selection  increases  memory  usage; 

optimizing this via compression or selective retention is a promising direction for reducing overhead. 
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