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Abstract: When referring to modeling, we consider it to involve two steps: 1) identifying relevant
data elements or regions and 2) encoding them effectively. Transformer, leveraging self-attention,
can adaptively identify these elements or regions but rely on absolute position encoding for their
representation. In contrast, Convolution encodes elements or regions in a relative manner, yet their
fixed kernel size limits their ability to adaptively select the relevant regions. We introduce Translution,
a new neural network module that unifies the adaptive identification capability of Transformer and the
relative encoding advantage of Convolution. However, this integration results in a substantial increase
in parameters and memory consumption, exceeding our available computational resources. Therefore,
we evaluate Translution on small-scale datasets, i.e., MNIST and CIFAR. Experiments demonstrate
that Translution achieves higher accuracy than Transformer. We encourage the community to further
evaluate Translution using larger-scale datasets across more diverse scenarios and to develop optimized
variants for broader applicability.

Keywords: deep neural network; transformer; convolution

1. Introduction

When employing deep neural networks to model a specific type of data (e.g., images or text),
it can be decoupled into two steps: 1) identifying relevant data elements (e.g., patches in images or
words in text) or regions, and 2) encoding these elements into effective representations.

In Convolution [1-5], as shown in Figure 1a, the relevant region identification step is handled by
convolutional filters with a fixed local receptive field (kernel). This fixed kernel defines a neighborhood
of elements considered relevant. For visual data like images, such local focus is often effective because
spatially adjacent pixels or patches tend to be related (e.g., forming parts of the same object). However,
the rigid nature of a fixed-size kernel makes Convolution inevitably covers some irrelevant pixels or
regions — especially near object boundaries or in background areas that fall inside the window. In
contrast, as shown in Figure 1b, Transformer [6-10] uses a self-attention mechanism to adaptively
identify relevant regions. Instead of being limited to a predetermined locality, self-attention allows the
model to dynamically attend to relevant regions. This means a Transformer can focus on important
features regardless of their distance, potentially ignoring irrelevant context more flexibly than a
Convolution’s fixed receptive field, which makes it highly suitable for processing long texts.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Comparison of Convolution and Transformer in identifying relevant regions (blue patches) for the
kernel center or query area (yellow patch). 1) Convolution utilizes a fixed kernel size to define a neighborhood of
regions considered relevant, inadvertently including some irrelevant patches or regions, particularly near object
boundaries or within background areas inside the window. 2) Transformer employs a self-attention mechanism to
adaptively and flexibly identify relevant regions, thereby avoiding including noisy or irrelevant areas.

When it comes to encoding the structure from these relevant regions, Convolution and Trans-
former employ different strategies. As shown in Figure 2a, a convolutional kernel learns distinct
weights for each relative position within its receptive field. In other words, the filter has separate
parameters for each offset (direction and distance) from the center. This design enables Convolution
to encode local structure relatively — capturing orientation and distance relationships. On the other
hand, as shown in Figure 2b, Transformer uses a shared set of weights to process inputs from all
positions. The same value-projection weights are applied universally across positions. Consequently,
the Value of Transformer does not encode whether one patch is to the left or right of another. To
introduce positional information, Transformer incorporates absolute positional embeddings (either
fixed sinusoidal or learned positional vectors) into the input features at the outset. Although these
embeddings enable Transformer to infer order or spatial relationships, they introduce noise into each
token’s representation. The absolute position information becomes part of the input features. Conse-
quently, when the same object moves to a different location, Transformer may struggle to recognize
it. Note that as the dataset scale increases, Transformer will become effective because the data might
include scenarios where the object appears in different locations.
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Figure 2. Comparison of Convolution and Transformer in encoding relevant regions: consider the scenario where
Convolution and Transformer are tasked with recognizing a circle. 1) Convolution learns separate parameters for
each offset (direction and distance) from the kernel center, allowing it to effectively encode relative local structures.
Thus, when the circle appears in a different location, it is still readily recognized due to this relative awareness. 2)
Transformer incorporates absolute position information into each token’s representation and uses a shared set of
weights across all tokens for computing Value. While this method facilitates general processing, the inclusion of
absolute position embeddings makes it more challenging to recognize the circle when it is moved to a different
location.
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In summary, Convolution encodes structure through fixed local filters with position-specific
weights, whereas Transformer relies on adaptive global attention and requires absolute positional
encoding to capture order or spatial patterns. In this article, we introduce Translution, a new neural
network module that combines the adaptive identification capabilities of the Transformer with the
relative encoding advantages of Convolution. Translution retains the self-attention mechanism of
Transformer but utilizes separate parameters to compute Value. This design enables Translution to
effectively encode relative structures. However, this integration leads to a significant increase in the
number of parameters and memory consumption. Specifically, for an input with N tokens, Transformer
requires only 1 set of shared parameters to calculate Value, whereas Translution consumes (2N — 1)2
sets of parameters. This exceeds our available computational resources for high-resolution datasets.
Consequently, we restricted our evaluation of Translution to low-resolution datasets, specifically
MNIST and CIFAR. Experiments demonstrate that Translution outperforms Transformer in terms
of accuracy. However, these experiments are not comprehensive. We encourage the community to
further evaluate Translution on larger-scale datasets in a variety of scenarios and to develop optimized
versions for wider applicability.

2. Related Work

Transformer [6] eschews recurrence and kernel size, relying on self-attention for relevant regin
identification. Because it has no built-in notion of order, Transformer layers add explicit positional
encodings to token embeddings so the model can use sequence order. Transformer employs sinusoidal
(fixed) position vectors and note that learned embeddings produce nearly identical performance,
with the fixed sinusoidal encodings chosen because they may allow better extrapolation to longer se-
quences. Subsequent work has explored “relative attention” [11-17]. For example, Shaw et al.enhanced
Transformer by adding learnable relative positional vectors into the key and value computation for lan-
guage modeling [11]. Bello et al.expanded this approach to two dimensions for image processing [18].
HaloNet employs learnable relative positional vectors to modify the query, making it aware of relative
positions [19]. CoAtNet [17] adds a learnable scalar for each direction and distance into attention.
ConViT also incorporates relative position embedding into the attention mechanism, employing a
more complex strategy [20]. Unlike these existing relative attention methods, Translution divides
the modeling process into two distinct phases: relevant region identification and relative structure
encoding. In the first phase, Translution utilizes attention to only identify related regions. In the second
phase, it employs a convolution-style method that uses separate weights (matrices) for each relative
position within its receptive field to encode the relative structure.

Convolutional neural networks (CNNs) [1,2] have been the backbone of vision and sequence
models for years. By using small, shared kernels and pooling, CNNs efficiently capture local spatial or
temporal patterns with translation-invariant filters. Recent architectural developments increasingly
seek to integrate self-attention with convolution. A prevalent strategy, particularly in vision applica-
tions, involves combining convolutional modules and Transformer-like blocks. For instance, BoTNet
substitutes the spatial convolutions with global self-attention in the final three bottleneck blocks of
ResNet [18], while CeiT combines convolutions for extracting low-level features with Transformers to
manage long-range dependencies [21]. In contrast to these approaches, Translution functions at the
module or layer level, blending the the advantages of Transformer and Convolution into a fundamental
and unified operation.
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3. Proposed Method
3.1. Convolution

Suppose Fyy, € R!*C represents the feature or representation at location (x,) in an image with
dimensions H x W, where C is the number of feature channels, H is the height, and W is the width.
Convolution is designed to capture the local structure centered at (x, y) with a fixed kernel size h x w,

[h/2] [w/2]

F;,y = Z 2 Fx+5x,y+§y : Wo“x,éyr 1)
Se=—1h/2] 6,=—[w/2)

where Wy, 5 € REXC represents the learnable weights for displacement (dy, d,), C’ represents the
output feature dimension, and - is matrix multiplication.

By assigning a set of weights for each offset within the receptive field, Convolution is able to
discern direction and distance, and capture the local structure relatively. This means that when the
absolute location of an object changes, it can still capture the same structure. However, Convolution
employs a rigid method to identify relevant regions, using a fixed-size window, making it inevitably
include irrelevant pixels or regions — particularly near object boundaries or in background areas
within the window.

3.2. Transformer

Suppose X; € R1*C represents the feature or representation of the i-th patch at location (x;, ;).
Transformer first incorporates the embedding of absolute position into the input X;, as follows,

E = X; + Embed(i), ()

and then performs two separate linear projections on the feature map to generate queries Q € RN xc”

and keys K € RN *C" where C" is the dimension for queries or keys. Subsequently, scaled dot-product

attention A € RN*N (where N = H x W) is computed for each query, and a softmax function is

applied to normalize the attention weights for a query across all tokens,
QKT ebii

—F W, K=FW, A=<— g.=_—°>""
Q q k ol TN oA

®)

where W, Wy € RCXC”, Next, Transformer conducts another feature encoding on the input feature
map to generate values V € RN *C' where C' is the value dimension. Finally, the output is computed
as a weighted sum of the values,

N
V=F W, F/:gwi,jxvj, @)
]:

where W, € RE*C" and F € RN*C, With self-attention, Transformer can adaptively search for related
regions, providing greater flexibility than methods that use local fixed-size windows. However, unlike
Convolution, which learns a feature encoding for every direction and distance, Transformer does not
encode the structure in a relative manner.

3.3. Translution

Translution is designed to integrate the adaptive relative region identification capabilities of
Transformer with the relative encoding strengths of Convolution. Specifically, Translution maintains
the self-attention mechanism of Transformer but employs distinct parameters to compute Value,

lf—attention: @ — F-W,, K—F-w, 4-2K e
self —attention: Q = F - W,, =F- W, == ==
q /C’ L ZnNzl €A"”
relative encoding: V;; = F;- W;_; , where &y = x; — Xj, Sy =Yi—Yj )

N
weighted sum: F/ = ) ;i X Vij,
j=1
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where Wy, 5, € RE*C" denotes the learnable weights for displacement (x, dy ).
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A € RVN V € RVxC’ cotmul value
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Figure 3. Comparison of Transformer and Translution in computing Value. 1) Transformer uses a shared set
of weights, i.e., Wy, across all patches for computing Value. 2) Translution employs separate parameters for
each offset (direction and distance), i.e., {W_n _n, -+, Wop, -+, Wn N}, to encode relative structures. Suppose
there are N tokens, Translution consumes (2N — 1)? more parameters than Transformer. This may be one of the
major issues with Translution. However, with the upgrading of computational resources and the increase in GPU
memory, this will not be a problem in the near future.

4. Discussion
4.1. Translution unifies Transformer and Convolution.

The fixed receptive field in Convolution can be viewed as a form of attention, where the weight
is set to 1 within the receptive field and 0 elsewhere. The weights W, for computing Value in Trans-
former act as a shared linear projection across all directions and distances. Consequently, Translution
represents an operation that integrates the functionalities of Convolution and Transformer, as follows,

1, (‘51‘/5]') € kernel,
0, otherwise.

COR _yvN _
Convolution:  F/ = Yiiqij x F-Ws 5,  where a;; = {

A
. I —vN .. - L= et

Transformer: F = ijl a;; X Fi - W, where ;= ):,,N:Ae"im'
P /I _ +N - - el

Translution: F = Zj:l a;i < F W(;x,(;y, where «;; = T

In other words, Convolution and Transformer can be viewed as specific instances of Translution, where
Convolution simplifies the attention mechanism and Transformer omits the encoding of direction and
distance.

4.2. Why not integrate relative encoding into self-attention rather than into the computation of Value?

The attention weight a; ; between two tokens is a scalar ranging from 0 to 1. As a scalar, it
cannot convey extensive information such as displacement. However, being a scalar within the (0,1)
range, it effectively reflects relationships. If two tokens are highly related, the attention weight tends
towards 1. Conversely, if two tokens are unrelated, the attention weight approaches 0. In contrast,
the computation of Value involves vectors, which can encapsulate sufficient information to represent
direction and distance. This aligns with the motivation to decouple modeling into identification and
encoding of relevant regions. Here, self-attention is responsible for identifying relevant regions, while
the computation of Value handles the encoding of these regions.
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4.3. General Translution: a more general version of Translution.

The calculation of the Value in Translution, i.e., Eq. (5), assumes that positions in the data (e.g.,
images or text) are discrete. In this setting, it is feasible to assign a different set of weights for each
direction and distance. However, if the positions are continuous variables, e.g., in point clouds, it
becomes impractical to assign individual weights for each direction and distance, as there are infinitely
many possible variations in continuous space. In this case, it may be necessary to design new functions
for the relative encoding of relevant regions.

Suppose p; denotes the position of the i-th token. For language, p; can represent the index of the
i-th word in the text. For images, p; corresponds to the row and column indices of the i-th patch. For
point clouds, p; refers to the 3D coordinates of the i-th point. A more general version of Translution
can be formulated as follows,

General Translution: F/ = ZL: i % f(pi—pj F), (6)
j=1

where &;; € [0,1] denotes the attention weight measuring the relevance of the j-th token to the i-th
token, and f : R¥*C — R is a function that encodes relative positional information into the token
features (d denotes the dimensionality of the position, C is the number of input feature channels,
and C’ is the number of output feature channels). When applying Translution to a new type of data,
the key is to develop an effective attention mechanism « and structure encoding function f. Point
Spatio-Temporal Transformer [22] can be viewed as a specific instance of general Translution, which
has been demonstrated to be effective for 3D point cloud video classification tasks, particularly on
small-scale datasets.

5. Experiment

We compare Translution and Transformer using the same Vision Transformer (ViT)! [9] archi-
tecture. For our method, we substitute the Transformer component in ViT with Translution, while
maintaining the remaining architecture unchanged.

5.1. MNIST, CIFAR-10 and CIFAR-100

For MNIST images of size 28 x 28, we set the patch size to 7, resulting in % X ? +1 =17 input
tokens (the ‘1" represents the additional CLS token). For CIFAR images of size 32 x 32, we set the
patch size to 8, also yielding % X % + 1 = 17 input tokens. The dimension of the embedding vectors
is set to 64, the MLP hidden layer dimension is set to 128, the number of head is set to 1 and the head
dimension is 64. All training starts from scratch.

As shown in Figure 4, Translution outperforms Transformer in terms of accuracy. Moreover,
the advantage is more pronounced in shallower networks, e.g., at a depth of 1. As the network
depth increases, the differences diminish. This may indicate that as the network becomes deeper, the
influence of absolute positioning embedding decreases because it is only used once at the initial input
stage.

1 https:/ /github.com/lucidrains/vit-pytorch
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Figure 4. Accuracy on MNIST, CIFAR-10, and CIFAR-100 with different depths, respectively.

5.2. Moving MNIST

The location of digits in MNIST and objects in CIFAR is typically centered within the images. To
assess the capability of modeling relative structures, we synthesize a Moving MNIST dataset [23,24]
featuring MNIST digits that move within a 64 x 64 area, as shown in Figure 5a. We set the patch size
to 8, resulting in % X % +1 = 65 input tokens.

Z 5
ANE DN EE
- (©
ANBNAEAN

(a) Examples from the Moving MNIST dataset.
EEE Translution

~ ©
o] ©

Accuracy (%)
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(b) Accuracy on Moving MNIST with different depths.
Figure 5. Moving MNIST.
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As shown in Figure 5b, the relative modeling of Translution effectively improves accuracy on the
Moving MNIST dataset. Furthermore, comparing Figure 4a with Figure 5b, it is evident that changes
in absolute location in Moving MNIST significantly affect Transformer. In contrast, when the depth of
the network increases, it does not significantly impact Translution.

6. Conclusion

In this article, we propose Translution, a novel neural network module that integrates the adaptive
identification capabilities of Transformer with the advantageous relative encoding properties of Con-
volution. Preliminary experimental results demonstrate the effectiveness of the method. Nevertheless,
further validation using larger-scale datasets across diverse scenarios is required to comprehensively
assess its performance. Additionally, the increasing number of parameters involved in the relative
Value computation poses potential learning challenges, suggesting that optimized variants should be
explored in future work.
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