Pre prints.org

Article Not peer-reviewed version

MQTT Broker Architectural
Enhancements for High-Performance
P2P Messaging: TBMQ Scalability and
Reliability in Distributed loT Systems

Dmytro Shvaika i , Andrii Shvaika , Volodymyr Artemchuk

Posted Date: 7 May 2025
doi: 10.20944/preprints202505.0445.v1

Keywords: MQTT; TBMQ; P2P messaging; Kafka; Redis; Lettuce

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4433817
https://sciprofiles.com/profile/2407703

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025 d0i:10.20944/preprints202505.0445.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

MOQTT Broker Architectural Enhancements for
High-Performance P2P Messaging: TBMQ Scalability
and Reliability in Distributed IoT Systems

Dmytro Shvaika 1>*{, Andrii Shvaika >*(0 and Volodymyr Artemchuk 1345%

1 G.E. Pukhov Institute for Modelling in Energy Engineering of the NAS of Ukraine, Kyiv, 02000, Ukraine

2 ThingsBoard, Inc., New York, 10007, USA

Center for Information-Analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine,
Kyiv, 03142, Ukraine

Kyiv National Economic University named after Vadym Hetman, Kyiv, 03057, Ukraine

State Non-Profit Enterprise "State University "Kyiv Aviation Institute", Kyiv, 03058, Ukraine

Correspondence: shvaikad@gmail.com

These authors contributed equally to this work.

w

+ % g

Abstract: The Message Queuing Telemetry Transport (MQTT) protocol remains a key enabler for
lightweight and low-latency messaging in Internet of Things (IoT) applications. However, traditional
broker implementations often struggle with the demands of large-scale point-to-point (P2P) commu-
nication. This paper presents a performance and architectural evaluation of TBMQ, an open-source
MOQTT broker designed to support reliable P2P messaging at scale. The broker employs Redis Cluster
for session persistence and Apache Kafka for message routing, with additional optimizations including
asynchronous Redis access via Lettuce and Lua-based atomic operations. Stepwise load testing was
performed using Kubernetes-based deployments on Amazon EKS, progressively increasing message
rates to 1 million messages per second (msg/s). The results demonstrate that TBMQ achieves lin-
ear scalability and stable latency under increasing load, reaching an average throughput of 8900
msg/s per CPU core while maintaining end-to-end delivery latency within two-digit milliseconds
bounds. These findings confirm that TBMQ's architecture provides an effective foundation for reliable,
high-throughput messaging in distributed IoT systems.

Keywords: MQTT; TBMQ, P2P messaging; kafka; redis; lettuce

1. Introduction

The increasing complexity and scale of IoT systems have created a pressing need for messaging
solutions that combine lightweight protocols with the ability to handle high device density, low
latency, and reliable delivery [1,2]. However, in high-throughput IoT deployments, these requirements
remain a challenge for many MQTT brokers—particularly under point-to-point (P2P) communication
patterns that impose strict performance and persistence guarantees. With billions of connected devices
exchanging data across domains such as industrial automation, urban infrastructure, and healthcare,
efficient device-to-device communication is becoming increasingly important in scenarios that demand
direct, low-latency delivery between endpoints [3,4].

As the ecosystem evolved and performance demands increased, the ThingsBoard development
team—well known in the academic community due to the platform’s widespread adoption in scientific
research, as evidenced by the mapping study of Di Felice and Paolone [5] and numerous applied
studies [6-12]—identified the need for a specialized messaging solution capable of providing scalability,
fault tolerance, and real-time delivery.

This led to the creation of TBMQ), a distributed MQTT broker optimized for high-performance
communication in the Internet of Things. The system was initially developed in 2020, deployed in
production environments by 2021, and released as open-source software in 2023. Internal testing

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0009-0001-3088-3997
https://orcid.org/0009-0006-8461-3550
https://orcid.org/0000-0001-8819-4564
https://doi.org/10.20944/preprints202505.0445.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

demonstrated its ability to support over 100 million concurrent connections and process several million
messages per second.

The majority of MQTT brokers face significant bottlenecks in terms of scalability and latency;,
primarily due to their reliance on disk-based storage systems aimed at maximizing crash durability.
While MQTT brokers typically excel in one-to-many [13] and many-to-one [14] communication patterns,
they often encounter performance bottlenecks in high-throughput one-to-one (point-to-point, P2P)
messaging scenarios. These challenges become more pronounced in large-scale deployments, where
high concurrency, low latency, and efficient resource utilization are critical. Common architectural
limitations include blocking 1/O operations, centralized routing logic, and poor scalability under
concurrent load.

The scientific problem addressed in this work is how to design an MQTT broker architecture that
overcomes these scalability and latency limitations in the context of high-throughput P2P messaging,
while ensuring reliable message persistence and support for horizontal scalability. While distributed
message brokers have been studied extensively, there remains a lack of horizontally scalable archi-
tectures that implement multi-layered persistence models capable of delivering low-latency message
processing while preserving system resilience and fault tolerance.

This research addresses that gap by presenting the architectural evolution of TBMQ, an open-
source MQTT broker that was originally designed to reliably aggregate data from IoT devices and
forward it to back-end systems using Kafka for durable message routing. To support high-throughput
point-to-point messaging at scale, the persistence layer of TBMQ was redesigned by transitioning from
a PostgreSQL-based architecture to a horizontally scalable, in-memory model based on Redis. This shift
eliminated key performance bottlenecks associated with disk-based storage and enabled low-latency
message delivery with reliable session management. This paper details how this transformation was
implemented and demonstrates its practical benefits in distributed IoT environments where efficient
resource usage, resilience, and reliable message delivery are essential.

The scientific contribution of this study lies in the design and implementation of a horizontally
scalable, multi-layered persistence architecture for MQTT brokers, which combines Redis for low-
latency in-memory session management with Kafka for fast and reliable message routing. Unlike
traditional approaches that rely on monolithic, disk-based databases for session and message persis-
tence, this architecture offloads operational workloads to distributed, in-memory storage layers. This
enables true horizontal scalability for high-throughput point-to-point (P2P) messaging patterns in
MQTT systems, while preserving reliability and message ordering.

The goal of this study is to demonstrate how the architectural decisions and performance im-
provements defined in the recent 2.0.x releases of TBMQ [15], optimize persistent session handling,
enhance P2P messaging, and improve overall system efficiency within a scalable IoT architecture.

1.1. Related Work

The architectural scalability of MQTT brokers has been extensively studied in recent years.
Spohn [16] provides a comprehensive analysis of typical MQTT scalability bottlenecks and explores
clustering and federation techniques to mitigate broker overload in distributed environments. Hmissi
and Ouni [17] proposed SDN-DMQTT, a reconfigurable MQTT architecture that leverages software-
defined networking to dynamically adapt broker topologies, thereby improving resilience and adapt-
ability. Akour et al. [18] introduced a multi-level elasticity model that enables brokers to scale respon-
sively based on workload demands. Despite these advancements, most existing work focuses on
one-to-many or many-to-one communication patterns and does not explicitly address point-to-point
(P2P) messaging scenarios.

Several researchers have conducted benchmark-driven evaluations of MQTT brokers under load.
Mishra et al. [19?] performed stress testing of various brokers under concurrent workloads, identifying
key factors influencing throughput and latency. Dizdarevic et al. [?] experimentally benchmarked
multiple open-source MQTT brokers, revealing significant performance variation across implemen-
tations. Kashyap et al. [?] analyzed EMQX’s internal architecture to demonstrate how it supports

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

scalability and high availability. However, these studies rarely examine one-to-one communication or
persistence strategies under high-throughput conditions.

Recent efforts have explored integrating MQTT brokers with modern stream-processing and
caching backends such as Kafka and Redis. Gupta [20] investigated a Redis—Kafka architecture for
time-series ingestion, highlighting its suitability for latency-sensitive workloads. Likewise, EMQX [21]
demonstrated how Redis-based extensions can enhance MQTT with real-time data processing capa-
bilities. These integrations have informed the design of TBMQ, which employs Redis for in-memory
session persistence and Kafka for durable message routing.

Although point-to-point messaging is increasingly critical for direct device-to-device commu-
nication in IoT systems, it remains underrepresented in MQTT research. Mishra and Kertesz [22]
surveyed MQTT usage in M2M and IoT contexts but did not focus on the architectural challenges of
P2P messaging. Ma et al. [23] applied queueing theory to model server availability and contention
in P2P content delivery, showing its impact on performance and energy efficiency. Shen and Ma [24]
extended this analysis to networks with malicious peers, proposing repairable breakdown models
to maintain robustness. Dong and Chen [25] proposed ARPEC, an adaptive routing strategy for
edge P2P systems using graph-based optimization, though its computational complexity may hinder
real-time deployment. Security concerns were addressed by Dinculeand and Cheng [26], who proposed
lightweight alternatives to conventional encryption, such as Value-to-HMAC, to reduce overhead in
resource-constrained P2P deployments.

Despite these contributions, horizontally scalable architectures that explicitly support reliable,
high-throughput point-to-point messaging in MQTT systems remain underexplored. To address this
gap, the present study introduces TBMQ—an open-source MQTT broker enhanced with a multi-layered
persistence design combining Kafka for durable message routing and Redis for low-latency in-memory
session state management. This architecture is intended to support scalable and fault-tolerant P2P
communication in distributed IoT environments. Preliminary results and architectural motivations
were previously outlined in a short paper presented at CEUR Workshop Proceedings [27]. This article
extends that work with a more detailed analysis, broader experimental validation, and a structured
discussion of architectural trade-offs, particularly concerning horizontal scalability, persistent session
handling, and reliable point-to-point messaging at scale.

2. Materials and Methods

This section describes the architectural and implementation details of TBMQ, the configuration
and optimization of the persistence layer, and the experimental environment used to evaluate the
system’s performance.

2.1. Architecture and Implementation Details

While the TBMQ 1.x version can 100 million clients [28] at once and 3 million msg/s [29], as a
high-performance MQTT broker it was primarily designed to aggregate data from IoT devices and
deliver it to back-end applications reliably (QoS 1). This architecture is based on operational experience
accumulated by the TBMQ development team through IIoT and other large-scale IoT deployments,
where millions of devices transmit data to a limited number of applications.

These deployments highlighted that IoT devices and applications follow distinct communication
patterns. IoT devices or sensors publish data frequently but subscribe to relatively few topics or
updates. In contrast, applications subscribe to data from tens or even hundreds of thousands of devices
and require reliable message delivery. Additionally, applications often experience periods of downtime
due to system maintenance, upgrades, failover scenarios, or temporary network disruptions.

To address these differences, TBMQ introduces a key feature: the classification of MQTT clients as
either standard (IoT devices) or application clients. This distinction enables optimized handling of
persistent MQTT sessions for applications. Specifically, each persistent application client is assigned
a separate Kafka topic. This approach ensures efficient message persistence and retrieval when an
MQTT client reconnects, improving overall reliability and performance. Additionally, application

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

clients support MQTT’s shared subscription feature, allowing multiple instances of an application to
efficiently distribute message processing.

Kafka [30] serves as one of the core components. Designed for high-throughput, distributed
messaging, Kafka efficiently handles large volumes of data streams, making it an ideal choice for TBMQ
[31]. With the latest Kafka versions capable of managing a huge number of topics, this architecture is
well-suited for enterprise-scale deployments. Kafka’s robustness and scalability have been validated
across diverse applications, including real-time data streaming and smart industrial environments
[31-33].

Figure 1 illustrates the full fan-in setup in a distributed TBMQ cluster.

== 1-100 Persistent MQTT Clients
(applications)
| I I
Persistent session Persistent session Persistent session
Qos1 Qos1 Qos1

== 101-200 Persistent MQTT Clients
(applications)

== 201-300 Persistent MQTT Clients
(applications)

TBMQ Cluster

Publish QoS 1
600K msg/s

6k msg/s per subscriber

%, TBMQ Node A

Kafka cluster ‘

3 Separate Kafka topic for each persistent
B MQTT client (1-100)

1

Publish QoS 1
600k msg/s
6k msg/s per subscriber

7% TBMQ Node B

) {}2 Separate Kafka topic for each persistent

MQTT client (101-200)

Publish QoS 1
800k msg/s
6k msgls per subscriber

%% TBMQ Node C

|

% Separate Kafka topic for each persistent
MQTT client (201-300)

b

1 1

§€ Shared Kafka topic for all published messages
from MQTT Clients

M

R, TBMQ Node A

Publish Qos 1

120k msgfs
|

£ 4M MQTT Clients
(devices)

7%, TBMQ Node B

Publish Qos 1

120k msgfs
|

£} 4M MQTT Clients
(devices)

g, TBMQ Node C

Publish QoS 1
120k msg/s
|

£} 4M MQTT Clients
(devices)

Figure 1. Overview of the TBMQ fan-in communication pattern in a distributed cluster.

In TBMQ 1.x, standard MQTT clients relied on PostgreSQL for message persistence and retrieval,
ensuring that messages were delivered when a client reconnected. While PostgreSQL performed well
initially, it had a fundamental limitation—it could only scale vertically. It was anticipated that, as
the number of persistent MQTT sessions grew, PostgreSQL’s architecture would eventually become
a bottleneck. To address these scalability limitations, more robust alternatives were investigated to
meet the increasing performance demands of TBMQ. Redis was quickly chosen as the best fit due to its
horizontal scalability, native clustering support, and widespread adoption.

Unlike the fan-in, the point-to-point (P2P) communication pattern enables direct message ex-
change between MQTT clients. Typically implemented using uniquely defined topics, P2P is well-
suited for private messaging, device-to-device communication, command transmission, and other
direct interaction use cases.

One of the key differences between fan-in and peer-to-peer MQTT messaging is the volume and
flow of messages. In a P2P scenario, subscribers do not handle high message volumes, making it
unnecessary to allocate dedicated Kafka topics and consumer threads to each MQTT client. Instead,
the primary requirements for P2P message exchange are low latency and reliable message delivery,
even for clients that may go offline temporarily. To meet these needs, TBMQ optimizes persistent
session management for standard MQTT clients, which include IoT devices.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

Figure 2 shows how standard MQTT clients publish and receive direct messages via TBMQ, while
Redis supports session persistence and Kafka facilitates routing.

£} 30k Persistent MQTT Clients £ 30k Persistent MQTT Clients £¥ 30k Persistent MQTT Clients
(devices) (devices) (devices)
| I |
Persistent session Persistent session Persistent session
Qos1 Qos 1 Qos 1
TBMQ Cluster
Publish QoS 1 Publish Qos 1 Publish QoS 1
30k msg/s 30k msg/s 30k msg/s
1 msgfs per subscriber 1 msg/s per subscriber 1 msg/s per subscriber
& TBMQ Node A % TBMQ Node B % TBMQ Node C

l J

/4'_—__‘\«

PostgreSQL performance bottleneck ' PostgreSQL

—

Kafka cluster

§€ Shared Kafka topic for messages published to
persistent MQTT clients

I

§€ Shared Kafka topic for all published messages
from MQTT Clients

8, TBMQ Node A 8, TBMQ Node B % TBMQ Node C

Publish QoS 1 Publish QoS 1 Publish QoS 1
30k msg/s 30k msg/s 30k msg/s
1 msg/s per publisher 1 msg/s per publisher 1 msgfs per publisher
£¥ 30k MQTT Clients £} 30k MQTT Clients £ 30k MQTT Clients
(devices) (devices) (devices)

Figure 2. P2P communication in TBMQ using Redis for scalable persistence.

2.2. PostgreSQL Usage and Limitations

To fully understand the reasoning behind this shift, it’s important to first examine how MQTT
clients operated within the PostgreSQL architecture. This architecture was built around two key tables.
The device_session_ctx was responsible for maintaining the session state of each persistent

MQTT client:

Table "public.device_session_ctx"

Column | Type | Nullable
__________________ B S
client_id | character varying(255)| not null
last_updated_time | bigint | not null
last_serial_number| bigint |
last_packet_id | integer |

Indexes:

"device_session_ctx_pkey" PRIMARY KEY, btree (client_id)

The key columns are last_packet_id and last_serial number, which is used to maintain message
order for persistent MQTT clients:

e last_packet_id represents the packet ID of the last MQTT message received.
e last_serial_number acts as a continuously increasing counter, preventing message order issues
when the MQTT packet ID wraps around after reaching its limit of 65535.

The device_publish_msg table was responsible for storing messages that must be published to
persistent MQTT clients (subscribers).

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

Table "public.device_publish_msg"

Column | Type | Nullable
________________________ T S
client_id | character varying(255)| not null
serial_number | bigint | not null
topic | character varying | not null
time | bigint | not null

packet_id | integer

packet_type | character varying(255) |

qos | integer | not null
payload | bytea | not null
user_properties | character varying |

retain | boolean

msg_expiry_interval | integer
payload_format_indicator| integer

content_type | character varying(255) |
response_topic | character varying(255) |
correlation_data | bytea

Indexes:

"device_publish_msg_pkey" PRIMARY KEY, btree (client_id, serial_number)
"idx_device_publish_msg_packet_id" btree (client_id, packet_id)

The key columns to highlight:

* time — captures the system time (timestamp) when the message is stored. This field is used for
periodic cleanup of expired messages.

e msg_expiry_interval — represents the expiration time (in seconds) for a message. This is set only for
incoming MQTT 5 messages that include an expiry property. If the expiry property is absent, the
message does not have a specific expiration time and remains valid until it is removed by time or
size-based cleanup.

While this design ensured reliable message delivery, it also introduced performance constraints.
To better understand its limitations, prototype testing was performed to evaluate PostgreSQL’s per-
formance under the P2P communication pattern. Using a single instance with 64GB RAM and 12
CPU cores, message loads were simulated with a dedicated performance testing tool [34] capable of
generating MQTT clients and simulating the desired message load. The primary performance metric
was the average message processing latency, measured from the moment the message was published
to the point it was acknowledged by the subscriber. The test was considered successful only if there
was no performance degradation, meaning the broker consistently maintained an average latency in
the two-digit millisecond range.

Prototype testing ultimately revealed a throughput limit of 30k msg/s when using PostgreSQL for
persistent message storage. Throughput refers to the total number of msg/s, including both incoming
and outgoing messages, Figure 3.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

Tuplesin [l Inserts] Updates [Jjj Deletes

100K

sk f\ ,f\ A ; - Iv‘ \ r“)’ \

25647 dshvaika
25650 dshvaika

21512
23654
25638 dshvaika

14T,

Figure 3. The graph reflects 75k tuples in/5s, corresponding to 15k msg/s for persistent MQTT clients, or half of
the 30k msg/s throughput measured.

Based on the TimescaleDB blog post [35], vanilla PostgreSQL can handle up to 300k inserts per
second under ideal conditions. However, this performance depends on factors such as hardware,
workload, and table schema. While vertical scaling can provide some improvement, PostgreSQL’s
per-table insert throughput eventually reaches a hard limit. This experiment confirmed a fundamental
scalability limit inherent to PostgreSQL'’s vertically scaled architecture. Although PostgreSQL has
demonstrated strong performance in benchmark studies under concurrent read-write conditions [36],
and has been used in large-scale industrial systems handling hundreds of thousands of transactions
per second [37], its architecture is primarily optimized for single-node operation and lacks built-
in horizontal scaling. As the number of persistent sessions in TBMQ deployments scaled into the
millions, this model created a bottleneck. Confident in Redis’s ability to overcome this bottleneck, the
migration process was initiated to achieve greater scalability and efficiency. The migration process
began with an evaluation of Redis data structures that could replicate the essential logic implemented
with PostgreSQL.

2.3. Redis as a Scalable Alternative

The decision to migrate to Redis was driven by its ability to address the core performance
bottlenecks encountered with PostgreSQL. Unlike PostgreSQL, which relies on disk-based storage and
vertical scaling, Redis operates primarily in memory, significantly reducing read and write latency.
Additionally, Redis’s distributed architecture enables horizontal scaling, making it an ideal fit for high-
throughput messaging in P2P communication scenarios [38]. Recent studies demonstrate the successful
application of Redis in cloud and IoT scenarios, including enhancements through asynchronous I/O
frameworks such as io_uring to further boost throughput under demanding conditions [39]. In
addition, migration pipelines from traditional relational databases to Redis have been validated as
efficient strategies for improving system responsiveness and scalability [40]. Figure 4 illustrates the
updated architecture, where Redis replaces PostgreSQL as the persistence layer for standard MQTT
clients.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

£¥ 100k Persistent MQTT Clients
(devices)

Persistent session
Qos1
TBMQ Cluster
Publish QoS 1
100k msg/s
1 msg/s per subscriber

% TBMQ Node A
T

£¥ 100k Persistent MQTT Clients
(devices)

Persistent session
Qos1

Publish QoS 1

100k msg/s
1 msgfs per subscriber

A%, TBMQ Node B

£¥ 100k Persistent MQTT Clients
(devices)

Persistent session
Qos1

Publish Qos 1
100k msg/s
1 msg/s per subscriber

A%, TBMQ Node C
j)

Redis cluster l [

€ Redis — SRedis — & Redis

Kafka cluster

g Shared Kafka topic for messages published to

persistent MQTT clients

I I I

§3 Shared Kafka topic for all published messages

from MQTT Clients

J I

7%, TBMQ Node A

Publish Qos 1
100k msg/s
1 msg/s pelr publisher

43 100k MQTT Clients
(devices)

R, TBMQ Node B

Publish Qos 1
100k msg/s
1 msgfs per publisher

£} 100k MQTT Clients
(devices)

%, TBMQ Node C

Publish QoS 1
100k msg/s
1 msgls pelr publisher

£ 100k MQTT Clients
(devices)

Figure 4. Updated TBMQ architecture using Redis for session persistence in high-throughput P2P messaging
scenarios.

With these benefits in mind, the migration process was initiated by evaluating data structures
capable of preserving the functionality of the PostgreSQL approach while aligning with Redis Cluster
constraints to enable efficient horizontal scaling. This also presented an opportunity to improve certain
aspects of the original design, such as periodic cleanups, by leveraging Redis features like built-in
expiration mechanisms.

2.3.1. Redis Cluster Constraints

During the migration from PostgreSQL to Redis, it was identified that replicating the existing
data model would require the use of multiple Redis data structures to efficiently handle message
persistence and ordering. This, in turn, meant using multiple keys for each persistent MQTT Client
session (see Figure 5)..

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

|
|
Shard[0] I
) slot: 0 to 5460 !
|
Key 1 : !
et |
- |
! Shard[1] I

. I
Client Key 2 > slot: 5461 to 10922 |
|
! |
Key 3 : Master Slave :

|

|

Slot = CRC16(key)%16384 |
o ! Shard[2]

|
|
|
slot: 10923 to 16383 |
|
|
|
|

Figure 5. Redis Cluster slot-based sharding model. Each key is hashed to one of 16,384 slots and routed to the
corresponding shard, [41]

Redis Cluster distributes data across multiple slots to enable horizontal scaling. However, multi-
key operations must access keys within the same slot. If the keys reside in different slots, the operation
triggers a cross-slot error, preventing the command from executing. The persistent MQTT client ID
was embedded as a hash tag in key names to address this. By enclosing the client ID in curly braces,
Redis ensures that all keys for the same client are hashed to the same slot. This guarantees that related
data for each client stays together, allowing multi-key operations to proceed without errors.

2.3.2. Atomic Operations with Lua Scripting

Consistency is critical in a high-throughput environment like TBMQ, where many messages can
arrive simultaneously for the same MQTT client. Hashtagging helps to avoid cross-slot errors, but
without atomic operations, there is a risk of race conditions or partial updates. This could lead to
message loss or incorrect ordering. It is important to make sure that operations updating the keys for
the same MQTT client are atomic, Figure ??2.

While Redis ensures atomic execution of individual commands, updating multiple data structures
for each MQTT client required additional handling. Executing these sequentially without atomicity
opens the door to inconsistencies if another process modifies the same data in between commands.
That’s where Lua scripting comes in. Lua script executes as a single, isolated unit. During script
execution, no other commands can run concurrently, ensuring that the operations inside the script
happen atomically.

Based on this information, for operations such as saving messages or retrieving undelivered
messages upon reconnection, a separate Lua script is executed. This ensures that all operations within
a single Lua script reside in the same hash slot, maintaining atomicity and consistency.

2.3.3. Choosing the right Redis data structures

One of the key requirements of the migration was maintaining message order, a task previously
handled by the serial_number column in PostgreSQL’s device_publish_msg table. An evaluation of
Redis data structures identified sorted sets (ZSETs) as the most suitable replacement.

Redis sorted sets naturally organize data by score, enabling quick retrieval of messages in ascend-
ing or descending order. While sorted sets provided an efficient way to maintain message order, storing
full message payloads directly in sorted sets led to excessive memory usage. Redis does not support
per-member TTL within sorted sets. As a result, messages persisted indefinitely unless explicitly
removed. Periodic cleanups using ZREMRANGEBYSCORE were required, similar to the approach used in
PostgreSQL, to remove expired messages. This operation carries a complexity of O(log N + M), where

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

10 of 24

N is the number of elements in the set and M is the number of elements removed. To address this
limitation, message payloads were stored in string data structures, while the sorted set maintained
references to these string keys. Figure 6 illustrates this structure, client_id is a placeholder for the
actual client ID, while the curly braces around it are added to create a hash tag.

Key name Value type

5

{client_id}_messages zset

{client_id}_messages_65534 65534
{client_id}_messages_65535 65535
{client_id}_messages_1 65536

g

Messages references, Scores, ordered
ordered by associated score by numeric value

Figure 6. Redis sorted set structure used for MQTT message ordering.

In the image above, you can see that the score continues to grow even when the MQTT packet ID
wraps around. Figure 6 illustrates the details illustrated in this image. At first, the reference for the
message with the MQTT packet ID equal to 65534 was added to the sorted set:

ZADD {client_id}_messages 65534 {client_id}_messages_65534

Here, client_id_messages is the sorted set key name, where client_id acts as a hash tag derived
from the persistent MQTT client’s unique ID. The suffix _messages is a constant added to each sorted
set key name for consistency. Following the sorted set key name, the score value 65534 corresponds to
the MQTT packet ID of the message received by the client. Finally, the reference key links to the actual
payload of the MQTT message. Similar to the sorted set key, the message reference key uses the MQTT
client’s ID as a hash tag, followed by the _messages suffix and the MQTT packet ID value.

In the following step, the message reference with a packet ID of 65535 is added to the sorted set.
This is the maximum packet ID, as the range is limited to 65535.

ZADD {client_id}_messages 65535 {client_id}_messages_65535

Since the MQTT packet ID wraps around after 65535, the next message will receive a packet ID of
1. To preserve the correct sequence in the sorted set, the score is incremented beyond 65535 using the
following Redis command:

ZADD {client_id}_messages 65536 {client_id}_messages_1

So at the next iteration MQTT packet ID should be equal to 1, while the score should continue to
grow and be equal to 65536.

This approach ensures that the message’s references will be properly ordered in the sorted set
regardless of the packet ID’s limited range.

Message payloads are stored as string values with SET commands that support expiration (EX),
providing O(1) complexity for writes and TTL applications:

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

11 0of 24

SET {client_id}_messages_1 "{
\"packetType\" :\"PUBLISH\",
\"payload\":\"eyJkYXRhIjoidGJtcWlzYXd1c29tZSJIO\",
\"time\":1736333110026,
\"clientId\":\"client\",
\"retained\":false,
\"packetId\":1,
\"topicName\":\"europe/ua/kyiv/client/0\",
\"gos\":1

}" EX 600

Another benefit aside from efficient updates and TTL applications is that the message payloads
can be retrieved:

GET {client_id}_messages_1
or removed:

DEL {client_id}_messages_1

with constant complexity O(1) without affecting the sorted set structure.
Another very important element of Redis architecture for persistence message storage is the use
of a string key to store the last MQTT packet ID processed:

GET {client_id}_last_packet_id "1"

This approach serves the same purpose as in the PostgreSQL solution. When a client reconnects,
the server must determine the correct packet ID to assign to the next message that will be saved in
Redis. An initial approach involved using the highest score in the sorted set as a reference. However,
because scenarios may arise where the sorted set is empty or removed, storing the last packet ID
separately was identified as the most reliable solution.

2.3.4. Managing Sorted Set Size Dynamically

This hybrid approach, leveraging sorted sets and string data structures, eliminates the need
for periodic cleanups based on time, as per-message TTLs are now applied. In addition, to remain
consistent with the PostgreSQL design, it was necessary to implement cleanup of the sorted set based
on the message limit defined in the configuration.

Maximum number of PUBLISH messages stored for each persisted DEVICE client
limit: "${MQTT_PERSISTENT_SESSION_DEVICE_PERSISTED_MESSAGES_LIMIT:10000}"

This limit is an important part of a design that allows control and prediction of the memory
allocation required for each persistent MQTT client. For example, a client might connect, triggering
the registration of a persistent session, and then rapidly disconnect. In such scenarios, it is essential to
ensure that the number of messages stored for the client (while waiting for a potential reconnection)
remains within the defined limit, preventing unbounded memory usage.

if (messagesLimit > Oxffff) {
throw new IllegalArgumentException(

"Persisted messages limit can’t be greater than 65535!");

To reflect the natural constraints of the MQTT protocol, the maximum number of persisted
messages for individual clients is set to 65535.

Dynamic management of the sorted set’s size was introduced in the Redis implementation to
address this requirement. When new messages are added, the sorted set is trimmed to ensure the total
number of messages remains within the desired limit, and the associated strings are also cleaned up to
free up memory.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

12 of 24

-- Get the number of elements to be removed
local numElementsToRemove = redis.call(’ZCARD’, messagesKey) - maxMessagesSize
-- Check if trimming is needed
if numElementsToRemove > O then
-- Get the elements to be removed (oldest omes)
local trimmedElements = redis.call(’ZRANGE’, messagesKey, O, numElementsToRemove - 1)
-- Iterate over the elements and remove them
for _, key in ipairs(trimmedElements) do
-- Remove the message from the string data structure
redis.call(’DEL’, key)
-- Remove the message reference from the sorted set
redis.call(’ZREM’, messagesKey, key)
end
end

2.3.5. Message Retrieval and Cleanup

The design not only ensures dynamic size management during the persistence of new messages
but also supports cleanup during message retrieval, which occurs when a device reconnects to process
undelivered messages. This approach keeps the sorted set clean by removing references to expired
messages.

-- Define the sorted set key
local messagesKey = KEYS[1]
-- Define the maximum allowed number of messages
local maxMessagesSize = tonumber (ARGV[1])
-- Get all elements from the sorted set
local elements = redis.call(’ZRANGE’, messagesKey, 0, -1)
-- Initialize a table to store retrieved messages
local messages = {}
-- Iterate over each element in the sorted set
for _, key in ipairs(elements) do
-- Check if the message key still exists in Redis
if redis.call(’EXISTS’, key) == 1 then
-- Retrieve the message value from Redis
local msgJson = redis.call(’GET’, key)
-- Store the retrieved message in the result table
table.insert (messages, msgJson)
else
-- Remove the reference from the sorted set if the key does not exist
redis.call(’ZREM’, messagesKey, key)
end
end
-- Return the retrieved messages
return messages

By leveraging Redis’ sorted sets and strings, along with Lua scripting for atomic operations,
TBMQ achieves efficient message persistence and retrieval, as well as dynamic cleanup. This design
addresses the scalability limitations of the PostgreSQL-based solution.

The following sections present the performance comparison between the new Redis-based archi-
tecture and the original PostgreSQL solution.

2.4. Migration from Jedis to Lettuce

As previously discussed, a prototype test revealed the limit of 30k msg/s throughput when using
PostgreSQL for persistent message storage. At the time of the migration to Redis, the Jedis library
was already in use for Redis interactions, primarily for cache management, and had been extended
to handle message persistence for persistent MQTT clients. However, the initial results of the Redis
implementation with Jedis were unexpected. Although Redis was expected to significantly outper-
form PostgreSQL, the performance improvement was modest, reaching only 40k msg/s throughput
compared to the 30k msg/s limit with PostgreSQL (Figure 7).

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

BEVELECEY 5 Slow Log

OSS Cluster 7.015 Default 3 min

& Memory 2 Keys
23902 MB 100 275

ey @ < &l
3 Primary nodes ™ Commands/s Network Input Network Output Total Memory

66 713 4633.56 5907.53 8.247

Figure 7. RedisInsight shows ~66k commands/s per node, aligning with TBMQ’s 40k msg/s, as Lua scripts
trigger multiple Redis operations per message.

This observation prompted an investigation into the bottlenecks, which revealed that Jedis was
a limiting factor. While reliable, Jedis operates synchronously, processing each Redis command
sequentially. This forces the system to wait for one operation to complete before executing the next. In
high-throughput environments, this approach significantly limited Redis’s potential, preventing the
full utilization of system resources.

To overcome this limitation, the migration to Lettuce, an asynchronous Redis client built on top of
Netty, was performed [42—44]. With Lettuce, throughput increased to 60k msg/s, demonstrating the
benefits of non-blocking operations and improved parallelism, Figure 8

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

Database s Slow Log

0SS Cluster 7.0.15 Default 6 min

& Memory £ Keys

30428 MB 150149

A () &l

3 Primary nodes T Commands/s Network Input Network Output
552719 73697

100134

Figure 8. At 60k msg/s, RedisInsight shows ~100k commands/s per node, aligning with the expected increase
from 40k msg/s, which produced ~66k commands/s per node.

Lettuce allows multiple commands to be sent and processed in parallel, fully exploiting Redis’s
capacity for concurrent workloads. Ultimately, the migration unlocked the expected performance
gains from Redis, paving the way for successful P2P testing at scale.

2.5. Experimental Setup

With Redis and Lettuce fully integrated, the next challenge was ensuring TBMQ'’s ability to handle
large-scale P2P messaging in a distributed environment. To simulate real-world conditions, TBMQ
was deployed on AWS Elastic Kubernetes Service (EKS) [45], enabling dynamic scaling and stress
testing of the system.

2.5.1. Test Methodology

To assess the TBMQ'’s ability to handle point-to-point communication at scale, five tests were
conducted to measure performance, efficiency, and latency, with a maximum throughput of 1M
msg/sec. Throughput refers to the total number of messages per second, including both incoming
and outgoing messages. The performance test environment was deployed on an AWS EKS cluster and
scaled horizontally as the workload increased. This allowed to evaluate how TBMQ handles growing
demands while maintaining reliable performance.

Each test ran for 10 minutes, using an equal number of publishers and subscribers. Both pub-
lishers and subscribers operated with QoS 1, ensuring reliable message delivery. Subscribers were
configured with clean_session=false, ensuring that messages were retained and delivered even dur-
ing offline periods. Published messages were 62 bytes in size, assigned to unique topics such as
"europe/ua/kyiv/$number", with Corresponding subscriptions to "europe/ua/kyiv/$number+", where $number
identified each publisher-subscriber pair.

2.5.2. Test Agent Setup

To evaluate TBMQ's performance under increasing message traffic, a test agent architecture was
designed to simulate large-scale publisher and subscriber activity. The test agent consisted of two main

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

15 of 24

components: runner pods and an orchestrator pod. Each component was deployed on Amazon Elastic
Compute Cloud (EC2) instances, a scalable virtual computing service provided by AWS [45,46]. EC2
enables users to provision virtual machines with configurable CPU, memory, and network capacity,
offering flexibility to handle varying workloads [47].

Runner Pods

Runner pods were specialized for either publishing or subscribing. The number of publisher
pods always matched the number of subscriber pods, ensuring symmetry in message flow. Pods were
deployed on EC2 instances, with the number of instances and pods per instance adjusted based on the
desired throughput.

Table 1 shows that throughput increases were managed by scaling the number of EC2 instances
or pods per instance. For example, a throughput of 1 million messages per second required 4 instances,
each hosting 5 pods. This flexible configuration enabled the test agent to adapt to rising traffic demands
while addressing infrastructure constraints, such as port limitations.

Table 1. Scaling Configuration of EC2 Instances for Runner Pods.

Throughput (msg/sec) Pods/Instance Number of EC2 Instances
200k 5 1
400k 5 1
600k 10 1
800k 5 2
1M 5 4
Orchestrator Pod

The orchestrator pod managed the execution and coordination of runner pods and was hosted on
a dedicated EC2 instance. This instance also supported auxiliary monitoring tools, including:

e Kafka Redpanda Console: For real-time broker monitoring [48].
* Redis Insight: For analyzing database performance [49].

This modular architecture allowed the test agent to adapt dynamically to increasing traffic
demands. By effectively distributing workloads across EC2 instances, it maintained consistent perfor-
mance and reliable message delivery, even at high throughput levels.

2.5.3. Infrastructure Overview

This section provides an overview of the test infrastructure, highlighting the hardware specifica-
tions of the services utilized in EKS cluster. EKS is a managed platform that simplifies the deployment
and management of containers using the popular Kubernetes system [50]. In the test environment,
services such as TBMQ), Kafka, and Redis were deployed in containers within an EKS cluster and dis-
tributed across AWS EC2 virtual machines. This setup ensures optimal resource allocation, scalability,
and performance during the testing process.

AWS RDS (Amazon Web Services Relational Database Service) is used for managing PostgreSQL
database where the TBMQ stores different entities such as users, user credentials, MQTT client
credentials, statistics, WebSocket connections, WebSocket subscriptions, and others.

The Table 2 below presents the hardware specifications for the services used in the tests:

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

16 of 24
Table 2. Hardware Specifications for the Services Used in the Tests.
Service Name TBMQ Kafka Redis (PAo‘sAt,gsreI:{SDQSL)
Instance Type c7a.4xlarge c7alarge c7alarge db.méi.large
vCPU 16 2 2 2

Memory (GiB) 32 4 4 8

Storage (GiB) 20 30 8 20
Network

Bandwidth 12.5 12.5 12.5 12.5

(Gibps)

Note: To minimize costs during the load testing phase, only the Redis master nodes were used
without replicas. This configuration enabled us to focus on achieving the target throughput without
excessive resource provisioning.

Instance scaling was adjusted during each test to match workload demands, as described in the
next section.

2.5.4. Performance tests

To evaluate performance and prove that the system can scale efficiently, testing started with
200,000 msg/s, with the load increased by 200,000 messages in each iteration. In each phase, the number
of TBMQ brokers and Redis nodes was scaled to handle the growing traffic while maintaining system
stability. For the 1M msg/sec test, the number of Kafka brokers was also increased to accommodate
the corresponding workload (Table 3).

Table 3. Scaling configuration for P2P throughput evaluation.

Throughput Publishers Subscribers TBMQ Redis Nodes Kafka
(msg/s) Brokers Brokers
200k 100k 100k 1 3 3
400k 200k 200k 2 5 3
600k 300k 300k 3 7 3
800k 400k 400k 4 9 3
M 500k 500k 5 11 5

Beyond adding resources, each increase in load required fine-tuning of Kafka topic partitioning
and Lettuce command batching parameters. These adjustments ensured even traffic distribution and
stable latency, effectively preventing bottlenecks during system scaling (Table 4).

Table 4. Kafka and Redis tuning parameters at different throughput levels.

Throughput (msg/s) Kafka Partitions Lettuce Batch Size
200k 12 150
400k 12 250
600k 12 300
800k 16 400
™M 20 500

The target of 1 million msg/s was successfully reached, validating TBMQ’s capability to support
high-throughput, reliable P2P messaging. To better illustrate the test setup and results, the following
diagram provides a visual breakdown of the final performance test, Figure 9.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED |

Posted: 7 May 2025 doi:10.20944/

reprints202505.0445.v1

17 of 24

£¥ 100k Persistent MQTT Clients £¥ 100k Persistent MQTT Clients £¥ 100k Persistent MQTT Clients

(devices) (devices) (devices)
[
Persistent session Persistent session Persistent session
Qos1 Qos1 Qos1
£ 100k Persistent MQTT Clients £} 100k Persistent MQTT Clients
(devices) (devices)
Persistent session Persistent session
Qos1 Qos1
TEMQ Cluster
Publish QoS 1 Publish Qos 1 Publish QoS 1
100k msg/s 100k msg/s 100k msg/s
1 msgis per subscriber 1 msgfs per subscriber 1 msg/s per subscriber
% TBMQ Node A 7% TBMQ Node C g%, TBMQ Node E
Publish Qo5 1 Publish QoS 1
100k msg/s 100k msg/s
1 msg/s per subscriber 1 msg/s per subscriber

R, TBMQ Node B
1

Redis cluster (11 nodes)

|

%, TBMQ Node D
1

-

& Redis — @Redis — $Redis — &Redis — & Redis

Kafka cluster (5 nodes)

§€ Shared Kafka topic for messages published to
persistent MQTT clients

I I I

§3 Shared Kafka topic for all published messages

from MQTT Clients

|

%, TBMQ Node A

Publish Qo5 1
100k msg/s

1 msg/s per publisher
|

£} 100k MQTT Clients
(devices)

£} 100k MQTT Clients

%, TBMQ Node B

%, TBMQ Node C

Publish Qos 1
100k msg/s
1 msg/s per publisher
|

(devices)

Publish Qos 1
100k msg/s

1 msg/s per publisher
|

£} 100k MQTT Clients
(devices)

£¥ 100k MQTT Clients

% TBMQ Node D

%%, TBMQ Node E

Publish Qos 1
100k msg/s
1 msg/s per publisher
|

(devices)

Publish Qos 1
100k msg/s
1 msgfs per publisher
|

£¥ 100k MQTT Clients
(devices)

Figure 9. TBMQ architecture and traffic distribution during the 1 million msg/s test. Each TBMQ node handled
100k publishers and 100k subscribers using persistent MQTT sessions with QoS 1. Redis nodes provided session
storage, while Kafka brokers handled message routing.

3. Results

Throughout the testing process, key performance indicators such as CPU utilization, memory

usage, and message processing latency were continuously monitored. One of TBMQ'’s advantages,

highlighted in P2P testing, is its exceptional messages-per-second per CPU core performance. Com-
pared to public benchmarks of other brokers, TBMQ consistently delivers higher throughput with
fewer resources, reinforcing its efficiency in large-scale deployments.

Key takeaways from tests include:

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

18 of 24

e Scalability: TBMQ exhibited linear scalability, with reliable performance maintained as message
throughput increased from 200k to 1M msg/s through the incremental addition of TBMQ nodes,
Redis nodes, and Kafka nodes.

e Efficient Resource Utilization: CPU utilization on TBMQ nodes remained consistently around
90% across all test phases, indicating that the system effectively used available resources without
overconsumption.

¢ Latency Management: The observed latency across all tests remained within two-digit bounds.
This was predictable given the QoS 1 level chosen for the test, applied to both publishers and
persistent subscribers. The average acknowledgment latency for publishers was also tracked,
which stayed within single-digit bounds across all test phases.

. High Performance: TBMQ'’s one-to-one communication pattern showed excellent efficiency,
processing about 8900 msg/s per CPU core. This was calculated by dividing the total throughput
by the total number of CPU cores used in the setup.

Additionally, the following table provide a comprehensive summary of the key elements and results of
the final 1M msg/sec test, Table 5:

Table 5. Summary of performance metrics at 1M msg/s throughput

Publish Latency TBMQ CPU
QoS P2P Latency (ms) (ms) Usage (avg) Payload (bytes)
1 ~75 ~8 91% 62

TBMQ CPU usage: The average CPU utilization across all TBMQ nodes.

P2P latency: The average duration from when a PUB message is sent by the publisher to when it
is received by the subscriber.

Publish latency: The average time elapsed between the PUB message sent by the publisher and
the reception of the PUBACK acknowledgment.

Figure 10 demonstrates CPU utilization (%) of five managed nodes in the TBMQ cluster during
the performance evaluation experiment. The peak load was observed at 16:40 UTC, with the highest
value reaching 96.4% for one of the nodes. After this peak, the CPU utilization gradually decreased,
demonstrating effective system stabilization after the peak period.

CPU utilization (%)

Figure 10. CPU utilization (%) of five managed nodes in the TBMQ cluster.

Figure 11 shows the Java Management Extensions (JMX) monitoring of the Central Processing
Unit (CPU) confirming steady CPU load.

® The system handles the load effectively even under high activity levels (approximately 90% CPU
usage).

* The absence of GC (Garbage Collection) activity confirms the stability and efficiency of Java
Virtual Machine (JVM) performance during the tests.

* The current low CPU usage after the test completion indicates that the system quickly releases
resources and returns to its normal operational state.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025 d0i:10.20944/preprints202505.0445.v1

19 of 24

Monitor
Uptime: 16 min 17 sec
CPU X
CPU usage: 2.6% GC activity: 0.0%
100%

90% |

80%

70%

60%

50%

40%

30%

20%

10%

0% -
6:37 PM 6:38 PM 6:39 PM 6:40 PM 6:41 PM 6:42 PM 6:43 PM 6:44 PM 6:45 PM 6:46 PM 6:47 PM 6:48 PM

E CPUusage B GC activity

Figure 11. JMX monitoring of CPU on the TBMQ node.

Figure 12 shows the Java Management Extensions (JMX) monitoring of the RAM usage on one of
the TBMQ nodes during the test, confirming no memory leaks after the warm-up period.

CPU Memory Classes Threads
Perform GC ' Heap Dump

Heap | Metaspace X

Size: 25,769,803,776 B Used: 12,422,060,280 B
Max: 25,769,803,776 B
24GB

22GB

20GB

18 GB

16 GB

14GB

12GB

10GB f

8GB

6 GB

4GB

6:37 PM 6:38 PM 6:39 PM 6:40 PM 6:41 PM 6:42 PM 6:43 PM 6:44 PM 6:45 PM 6:46 PM 6:47 PM 6:48 PM
D Heap size BUsedheap

Figure 12. JMX monitoring of RAM on the TBMQ node.

* Initial Growth of Heap Memory: The initial increase in heap memory usage (from 2 GB to 12 GB)
indicates the start of the performance test and the allocation of memory required for handling the
workload.

® Cyclic Memory Usage Patterns: Following stabilization, cyclic patterns in memory usage are
observed, reflecting the regular activity of the Garbage Collection (GC) process. GC effectively
frees unused memory, maintaining a stable memory footprint.

* No Memory Overflow: The total allocated heap size (25 GB) was sulfficient, as the memory usage
never reached a critical threshold, preventing any OutOfMemory errors.

e Stable Performance Under Load: The consistent memory usage patterns without significant
spikes confirm the system’s ability to handle high workloads efficiently while maintaining GC
effectiveness.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

20 of 24

e Return to Baseline: After test completion, memory usage gradually decreased, demonstrating the
system’s capability to release resources promptly and return to its baseline state.

These results highlight the system’s optimized JVM configuration and heap management, ensur-
ing reliable performance under intensive load conditions.

For a deeper dive into the testing architecture, methodology, and results, check out the detailed
performance testing article [51].

4. Discussion

The results demonstrate that TBMQ achieves linear scalability and low-latency message delivery
in large-scale P2P scenarios, reaching throughput levels of 1 million messages per second while
maintaining approximately 8900 messages per second per CPU core and 2-digit bound millisecond
end-to-end delivery latencies. The Redis-based session persistence layer enabled efficient handling of
persistent MQTT sessions, while Kafka provided reliable backend message durability and routing.

Compared to EMQX and HiveMQ approaches, TBMQ shows clear advantages in infrastruc-
ture cost efficiency and architectural simplicity. While EMQX and HiveMQ demonstrate substantial
progress in scaling MQTT brokers using one-to-one communication patterns, the underlying persis-
tence architectures and infrastructure requirements differ significantly from those of TBMQ. Both
EMQX and HiveMQ rely primarily on disk-based persistence (RocksDB and file-based storage, re-
spectively) to ensure high data durability. In contrast, TBMQ leverages an in-memory persistence
model via Redis Cluster, combined with Kafka-based routing, to prioritize low-latency delivery and
infrastructure cost efficiency.

Table 6 summarizes the architectural differences between TBMQ, EMQX, and HiveMQ.

Table 6. Comparison of Persistence Models and Infrastructure Focus Across MQTT Brokers.

Feature TBMQ EMQX HiveMQ
Primary Storage Redis (in-memory) RocksDB (disk) File system (disk)
Latenc Verv low Moderate Moderate
y y (SSD-dependent) (SSD-dependent)
s Medium (depends on High (RocksDB Very High (file
Crash Durability Redis snapshot/AOF) durability) persistence)
Memory Usage High Lower Lower
Persistence Overhead Mlmmalo(}ljr;;memory Higher (disk writes) Higher (disk writes)

Compared to previous approaches, such as EMQX and HiveMQ, TBMQ shows clear advantages
in infrastructure cost efficiency and architectural simplicity. These suggest that TBMQ provides a
compelling alternative for edge-oriented IoT deployments where minimizing latency and operational
overhead is critical. The Redis-based model efficiently serves real-time messaging needs, while Kafka
acts as a durable safety net, capturing message streams even in the event of transient Redis issues.

However, several limitations should be acknowledged. First, while Redis enables extremely
low-latency operations, its volatility compared to disk-based storage remains a factor to be carefully
managed through persistence policies (AOF, snapshots) and cluster replication. Second, the perfor-
mance evaluation focused on typical IoT message sizes; extremely large payloads (exceeding 1 MB)
were not tested. Such workloads could introduce additional memory pressure and might require
architecture adjustments, although these cases are uncommon in practice for P2P IoT scenarios.

Future work could focus on optimizing Redis utilization further by adjusting Lua scripting
strategies. Currently, Lua scripts operate per client session to comply with Redis Cluster’s slot
boundaries. By grouping multiple clients into the same hash slot, batch processing could be achieved,
reducing scripting overhead and improving Redis efficiency. Additionally, exploring dynamic payload-
aware routing strategies between Redis and Kafka could further enhance TBMQ’s flexibility and
performance for a broader range of loT messaging workloads.

https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

21 of 24

5. Conclusions

This study presented the architectural transformation of TBMQ, an open-source MQTT broker,
to support high-throughput, low-latency point-to-point (P2P) messaging at scale. By migrating
from a PostgreSQL-backed persistence layer to a horizontally scalable Redis-based architecture, and
optimizing access using Lettuce and Lua scripting, TBMQ overcomes critical limitations faced by
traditional MQTT brokers under high-concurrency loads. The redesigned architecture effectively
separates session state management and message routing concerns, using Redis and Kafka respectively
to achieve both performance and reliability.

The results of comprehensive performance tests—reaching 1 million messages per second while
maintaining sub-100ms end-to-end latency and 8900 msg/s per CPU core—demonstrate that the new
architecture provides true horizontal scalability without compromising QoS guarantees. The system
maintained high CPU efficiency, stable memory usage, and consistent delivery guarantees even under
sustained peak load.

The findings confirm that TBMQ can serve as a robust and scalable foundation for next-generation
IoT deployments, particularly those requiring reliable P2P communication between massive numbers
of connected devices. This work also contributes to the broader research on distributed messaging
systems by demonstrating a viable, cloud-native, multi-layered persistence model for MQTT brokers.

Future work will focus on further performance optimizations such as cross-session batching in
Redis and tighter integration with external systems. One promising direction involves enhancing
embedded integration support within TBMQ), enabling direct traffic routing from IoT devices to various
platforms without intermediate transformation. This capability opens the door to advanced features
like dynamic payload serialization (e.g., Protocol Buffers), which can be leveraged to reduce overhead
and improve interoperability. Preliminary considerations for such enhancements are aligned with
recent research on dynamic data serialization in IoT platforms [52].

Author Contributions: Conceptualization, A.S.; methodology, V.A.; software, D.S.; validation, A.S. and D.S.;
formal analysis, D.S.; investigation, D.S.; resources, A.S.; writing—original draft preparation, D.S.; writing—
review and editing, A.S. and V.A; visualization, D.S.; supervision, V.A.; project administration, A.S.; funding
acquisition, A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by ThingsBoard, Inc., which provided the cloud infrastructure necessary
for conducting the performance tests. The authors gratefully acknowledge their contribution to this research.

Data Availability Statement: The TBMQ source code is publicly available at https://github.com/thingsboard /
tbmg. The performance test tool used in this study is available at https://github.com/thingsboard /tb-mqtt-perf-
tests. All test configurations and datasets used for benchmarking can be reproduced using the provided scripts
and documentation.

Acknowledgments: The authors would like to thank the team at ThingsBoard, Inc. for their support in the
development and evaluation of the TBMQ platform. During the preparation of this manuscript, the authors used
ChatGPT-4 (OpenAl, 2024) and Grammarly for grammar and spelling checks, sentence refinement, and improving
overall clarity. The authors have reviewed and edited the output and take full responsibility for the content of this
publication.

Conflicts of Interest: The authors are employees of ThingsBoard, Inc., which supported this research by providing
access to infrastructure and computing resources. The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the
results.

https://github.com/thingsboard/tbmq
https://github.com/thingsboard/tbmq
https://github.com/thingsboard/tb-mqtt-perf-tests
https://github.com/thingsboard/tb-mqtt-perf-tests
https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

22 of 24

Abbreviations

The following abbreviations are used in this manuscript:

AWS
CPU
EKS
IoT
JMX

Amazon Web Services
Central Processing Unit
Elastic Kubernetes Service
Internet of Things

Java Management Extensions

MQTT Message Queuing Telemetry Transport

pP2p Point-to-Point

pub/sub Publish/Subscribe

QoS Quality of Service

RAM Random Access Memory

TCP Transmission Control Protocol

References

1. Zhang, W,; Liu,]. Advanced Quality of Service Approaches in Edge IoT Communication: A Review. IoT

10.

11.

12.

13.

14.

15.

16.

2023, 4, 123-138. https:/ /doi.org/10.3390/i0t4020009.

Fernandez, C.; Rahman, F. SDN-Based Dynamic Routing Architectures for Scalable IoT Communication. IoT
2022, 3, 55-70. https://doi.org/10.3390/i0t3010005.

Ali, S.; Wang, R. Blockchain-Based Trust Models for Secure IoT Communication. IoT 2023, 4, 250-267.
https:/ /doi.org/10.3390/i0t4030018.

Singh, A.; Becker, T. Distributed Learning and Optimization Strategies for Resource-Aware IoT Systems. IoT
2023, 4, 311-327. https:/ /doi.org/10.3390/i0t4040025.

Di Felice, P.; Paolone, G. Papers Mentioning Things Board: A Systematic Mapping Study. Journal of Computer
Science 2024, 20, 574-584. https:/ /doi.org/10.3844 /jcssp.2024.574.584.

ThingsBoard. ThingsBoard IoT Platform. https://thingsboard.io, 2016. Accessed: March 2024.

Aghenta, L.O.; Igbal, M.T. Design and implementation of a low-cost, open source IoT-based SCADA system
using ESP32 with OLED, ThingsBoard and MQTT protocol. AIMS Electronics and Electrical Engineering 2019,
4,57 - 86. https://doi.org/10.3934/ElectrEng.2020.1.57.

Bestari, D.N.; Wibowo, A. An IoT-Based Real-Time Weather Monitoring System Using Telegram Bot
and Thingsboard Platform. International Journal of Interactive Mobile Technologies 2023, 17, 4 — 19. https:
//doi.org/10.3991/ijim.v17i06.34129.

De Paolis, L.T.; De Luca, V.; Paiano, R. Sensor data collection and analytics with thingsboard and spark
streaming. Institute of Electrical and Electronics Engineers Inc., 2018, p. 1 - 6. https://doi.org/10.1109/
EESMS.2018.8405822.

Casillo, M.; Colace, F.; De Santo, M.; Lorusso, A.; Mosca, R.; Santaniello, D. VIOTLab: A Virtual Remote
Laboratory for Internet of Things Based on ThingsBoard Platform. Institute of Electrical and Electronics
Engineers Inc., 2021, Vol. 2021-October. https://doi.org/10.1109/FIE49875.2021.9637317.

Jang, S.I; Kim, J.Y.; Iskakov, A.; Fatih Demirci, M.; Wong, K.S.; Kim, Y.J.; Kim, M.H. Blockchain Based
Authentication Method for ThingsBoard. Lecture Notes in Electrical Engineering 2021, 715, 471 — 479. https:
//doi.org/10.1007 /978-981-15-9343-7_65.

Okhovat, E.; Bauer, M. Monitoring the Smart City Sensor Data Using Thingsboard and Node-Red. Institute of
Electrical and Electronics Engineers Inc., 2021, p. 425 - 432. https://doi.org/10.1109/SWC50871.2021.00064.
Team, A.I.C. MQTT Communication Patterns: One-to-Many (Broadcast). https://docs.aws.amazon.com/
whitepapers/latest/designing-mqtt-topics-aws-iot-core/mqtt-communication-patterns.html#broadcast,
2023. Accessed: May 2025.

Team, ALC. MQTT Communication Patterns: Many-to-One (Fan-In). https://docs.aws.amazon.com/
whitepapers/latest/designing-mqtt-topics-aws-iot-core /mqtt-communication-patterns. html#fan-in, 2023.
Accessed: May 2025.

ThingsBoard. TBMQ Release Notes v2.0.1 (December 31, 2024). https://thingsboard.io/docs/mqtt-broker/
releases/#v201-december-31-2024, 2022. Accessed: May 2025.

Spohn, M.A. On MQTT Scalability in the Internet of Things: Issues, Solutions, and Future Directions. Journal
of Electronics and Electrical Engineering 2022, 1, 1-11. https://doi.org/10.37256 /jeee.1120221687.

https://doi.org/10.3390/iot4020009
https://doi.org/10.3390/iot3010005
https://doi.org/10.3390/iot4030018
https://doi.org/10.3390/iot4040025
https://doi.org/10.3844/jcssp.2024.574.584
https://thingsboard.io
https://doi.org/10.3934/ElectrEng.2020.1.57
https://doi.org/10.3991/ijim.v17i06.34129
https://doi.org/10.3991/ijim.v17i06.34129
https://doi.org/10.1109/EESMS.2018.8405822
https://doi.org/10.1109/EESMS.2018.8405822
https://doi.org/10.1109/FIE49875.2021.9637317
https://doi.org/10.1007/978-981-15-9343-7_65
https://doi.org/10.1007/978-981-15-9343-7_65
https://doi.org/10.1109/SWC50871.2021.00064
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/mqtt-communication-patterns.html#broadcast
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/mqtt-communication-patterns.html#broadcast
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/mqtt-communication-patterns.html#fan-in
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/mqtt-communication-patterns.html#fan-in
https://thingsboard.io/docs/mqtt-broker/releases/#v201-december-31-2024
https://thingsboard.io/docs/mqtt-broker/releases/#v201-december-31-2024
https://doi.org/10.37256/jeee.1120221687
https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

23 of 24

Hmissi, F; Ouni, S. SDN-DMQTT: SDN-Based Platform for Re-configurable MQTT Distributed Brokers
Architecture. In Proceedings of the Mobile and Ubiquitous Systems: Computing, Networking and Services;
Zaslavsky, A.; Ning, Z.; Kalogeraki, V.; Georgakopoulos, D.; Chrysanthis, PX., Eds., Cham, 2024; pp. 393-411.
https://doi.org/10.1007 /978-3-031-63992-0_26.

Akour, M.; Rousan, I.A.; Hassanein, H. Multi-level Just-Enough Elasticity for MQTT Brokers of Internet of
Things Applications. Cluster Computing 2022, 25, 1025-1045. https://doi.org/10.1007/510586-022-03636-w.
Mishra, B., Performance Evaluation of MQTT Broker Servers; 2018; pp. 599-609. https://doi.org/10.1007/
978-3-319-95171-3_47.

Gupta, A. Processing Time-Series Data with Redis and Apache Kafka. https:/ /redis.io/blog/processing-
time-series-data-with-redis-and-apache-kafka/, 2021. Accessed: 2025-05-03.

Team, E. MQTT and Redis: Creating a Real-Time Data Statistics Application for IoT. https://www.emqx.
com/en/blog/mqtt-and-redis, 2023. Accessed: 2025-05-03.

Mishra, B.; Kertesz, A. The Use of MQTT in M2M and IoT Systems: A Survey. IEEE Access 2020, 8, 201071-
201086. https:/ /doi.org/10.1109/ ACCESS.2020.3035849.

Ma, Z.; Yan, M.; Wang, R.; Wang, S. Performance Analysis of P2P Network Content Delivery Based on
Queueing Model. Cluster Computing 2023, 27. https://doi.org/10.1007 /s10586-023-04111-w.

Shen, Y.; Ma, Z. The Analysis of P2P Networks with Malicious Peers and Repairable Breakdown Based on
Geo/Geo/1+1 Queue. Journal of Parallel and Distributed Computing 2025, 195, 104979. https:/ /doi.org/10.101
6/j.jpdc.2024.104979.

Dong, B.; Chen, J. An Adaptive Routing Strategy in P2P-Based Edge Cloud. Journal of Cloud Computing 2024,
13. https://doi.org/10.1186/s13677-023-00581-w.

Dinculeand, D.; Cheng, X. Vulnerabilities and Limitations of MQTT Protocol Used Between IoT Devices.
Applied Sciences 2019, 9. https:/ /doi.org/10.3390/app9050848.

Shvaika, D.I; Shvaika, A.IL,; Landiak, D.I,; Artemchuk, V.O. Scalable and reliable MQTT messaging:
Evaluating TBMQ for P2P scenarios. In Proceedings of the CEUR Workshop Proceedings. CEUR-WS.org,
2025, pp. 58-66. https:/ /ceur-ws.org/Vol-3943 /paper12.pdf, Accessed: 2025-05-03.

ThingsBoard. TBMQ 1.0: 100 Million Connections Performance Test. https://thingsboard.io/docs/mqtt-
broker/reference/100m-connections-performance-test/, 2022. Accessed: May 2025.

ThingsBoard. TBMQ 1.0: 3 Million Messages Per Second Throughput on a Single Node. https://thingsboard.
io/docs/mqtt-broker/reference/3m-throughput-single-node-performance-test/, 2022. Accessed: May
2025.

Apache Software Foundation. Apache Kafka Documentation. https://kafka.apache.org/documentation,
2025. Accessed: April 2025.

Vyas, S.; Tyagi, R K.; Jain, C.; Sahu, S. Performance Evaluation of Apache Kafka — A Modern Platform for
Real Time Data Streaming. In Proceedings of the 2022 2nd International Conference on Innovative Practices
in Technology and Management (ICIPTM), 2022, Vol. 2, pp. 465—470. https://doi.org/10.1109/ICIPTM549
33.2022.9754154.

Park, S.; Huh, J.H. A Study on Big Data Collecting and Utilizing Smart Factory Based Grid Networking Big
Data Using Apache Kafka. IEEE Access 2023, 11, 96131-96142. https://doi.org/10.1109/ ACCESS.2023.33055
86.

Elshoubary, E.E.; Radwan, T. Studying the Efficiency of the Apache Kafka System Using the Reduction
Method, and Its Effectiveness in Terms of Reliability Metrics Subject to a Copula Approach. Applied Sciences
2024, 14. https://doi.org/10.3390/app14156758.

ThingsBoard Inc.. TBMQ Performance Tests: P2P Messaging Benchmark Suite. https://github.com/
thingsboard /tb-mqtt-perf-tests/tree / p2p-perf-test, 2024. Accessed: 2025-05-03.

Timescale Team. PostgreSQL + TimescaleDB: 1000x Faster Queries, 90% Data Compression, and
Much More. https://www.timescale.com/blog/postgresql-timescaledb-1000x-faster-queries-90-data-
compression-and-much-more, 2018. Accessed: May 2025.

Salunke, S.; Ouda, A. A Performance Benchmark for the PostgreSQL and MySQL Databases. Future Internet
2024, 16, 382. https://doi.org/10.3390/fi16100382.

Unal, H.T.; Mendi, A.E; Mete, S.; Omer Ozkan.; C)zgﬁr Umut Vurgun.; Nacar, M.A. PostgreSQL Database
Management System: ODAK. In Proceedings of the 2023 Innovations in Intelligent Systems and Applications
Conference (ASYU). IEEE, 2023, pp. 1-6. https:/ /doi.org/10.1109/ASYUS58738.2023.10296600.

Redis. Redis Pub/Sub. https://redis.io/docs/latest/develop/interact/pubsub/, 2024. Accessed: April
2025.

https://doi.org/10.1007/978-3-031-63992-0_26
https://doi.org/10.1007/s10586-022-03636-w
https://doi.org/10.1007/978-3-319-95171-3_47
https://doi.org/10.1007/978-3-319-95171-3_47
https://redis.io/blog/processing-time-series-data-with-redis-and-apache-kafka/
https://redis.io/blog/processing-time-series-data-with-redis-and-apache-kafka/
https://www.emqx.com/en/blog/mqtt-and-redis
https://www.emqx.com/en/blog/mqtt-and-redis
https://doi.org/10.1109/ACCESS.2020.3035849
https://doi.org/10.1007/s10586-023-04111-w
https://doi.org/10.1016/j.jpdc.2024.104979
https://doi.org/10.1016/j.jpdc.2024.104979
https://doi.org/10.1186/s13677-023-00581-w
https://doi.org/10.3390/app9050848
https://ceur-ws.org/Vol-3943/paper12.pdf
https://thingsboard.io/docs/mqtt-broker/reference/100m-connections-performance-test/
https://thingsboard.io/docs/mqtt-broker/reference/100m-connections-performance-test/
https://thingsboard.io/docs/mqtt-broker/reference/3m-throughput-single-node-performance-test/
https://thingsboard.io/docs/mqtt-broker/reference/3m-throughput-single-node-performance-test/
https://kafka.apache.org/documentation
https://doi.org/10.1109/ICIPTM54933.2022.9754154
https://doi.org/10.1109/ICIPTM54933.2022.9754154
https://doi.org/10.1109/ACCESS.2023.3305586
https://doi.org/10.1109/ACCESS.2023.3305586
https://doi.org/10.3390/app14156758
https://github.com/thingsboard/tb-mqtt-perf-tests/tree/p2p-perf-test
https://github.com/thingsboard/tb-mqtt-perf-tests/tree/p2p-perf-test
https://www.timescale.com/blog/postgresql-timescaledb-1000x-faster-queries-90-data-compression-and-much-more
https://www.timescale.com/blog/postgresql-timescaledb-1000x-faster-queries-90-data-compression-and-much-more
https://doi.org/10.3390/fi16100382
https://doi.org/10.1109/ASYU58738.2023.10296600
https://redis.io/docs/latest/develop/interact/pubsub/
https://doi.org/10.20944/preprints202505.0445.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

24 of 24

Chen, L.G,; Li, Y.; Laohakangvalvit, T.; Sugaya, M. Asynchronous I/O Persistence for In-Memory Database
Servers: Leveraging io_uring to Optimize Redis Persistence. In Proceedings of the CLOUD Computing —
CLOUD 2024; Wang, Y.; Zhang, L.J., Eds., Cham, 2025; pp. 11-20.

Muradova, G.; Hematyar, M.; Jamalova, J]. Advantages of Redis in-memory database to efficiently search
for healthcare medical supplies using geospatial data. In Proceedings of the 2022 IEEE 16th International
Conference on Application of Information and Communication Technologies (AICT), 2022, pp. 1-5. https:
//doi.org/10.1109/ AICT55583.2022.10013544.

Redis Lua Scripting Documentation. https://redis.io/docs/latest/commands/eval/, 2024. Accessed: April
2025.

Lettuce Project Contributors. Lettuce - Scalable Redis Client. https://lettuce.io/, 2024. Accessed: April
2025.

Lee, T. Netty: Asynchronous Event-Driven Network Application Framework. Netty.io 2021. Accessed: April
2025.

Maurer, N.; Wolfthal, M.A. Netty in Action. 2015.

AWS. AWS. https://aws.amazon.com/, 2023. Accessed: April 2025.

Wittig, A.; Wittig, M. Amazon Web Services in Action: An in-depth guide to AWS; Simon and Schuster, 2023.
ThingsBoard Inc.. How to Repeat the 1M msg/sec Throughput Test. https://thingsboard.io/docs/mqtt-
broker /reference/1m-throughput-p2p-performance-test/#how-to-repeat-the-1m-msgsec-throughput-
test, 2024. Accessed: 2025-05-03.

Redpanda Data. Redpanda Console: A Developer-Friendly Ul for Kafka. https://www.redpanda.com/
redpanda-console-kafka-ui, 2024. Accessed: 2025-05-03.

Redis Ltd.. RedisInsight: Developer Tool for Managing Redis. https://redis.io/docs/latest/operate/
redisinsight/, 2024. Accessed: 2025-05-03.

Kubernetes. Kubernetes documentation. https://kubernetes.io/, 2023. Accessed: April 2025.
ThingsBoard. Scaling P2P Messaging to 1M Msg/sec with Persistent MQTT Clients.
https:/ /thingsboard.io/docs/mgqtt-broker/reference/1m-throughput-p2p-performance-test/, 2022.
Shvaika, D.I; Shvaika, A.L; Artemchuk, V.O. Advancing IoT interoperability: dynamic data serialization
using ThingsBoard. Journal of Edge Computing 2024, 3, 126-135.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

https://doi.org/10.1109/AICT55583.2022.10013544
https://doi.org/10.1109/AICT55583.2022.10013544
https://redis.io/docs/latest/commands/eval/
https://lettuce.io/
https://aws.amazon.com/
https://thingsboard.io/docs/mqtt-broker/reference/1m-throughput-p2p-performance-test/#how-to-repeat-the-1m-msgsec-throughput-test
https://thingsboard.io/docs/mqtt-broker/reference/1m-throughput-p2p-performance-test/#how-to-repeat-the-1m-msgsec-throughput-test
https://thingsboard.io/docs/mqtt-broker/reference/1m-throughput-p2p-performance-test/#how-to-repeat-the-1m-msgsec-throughput-test
https://www.redpanda.com/redpanda-console-kafka-ui
https://www.redpanda.com/redpanda-console-kafka-ui
https://redis.io/docs/latest/operate/redisinsight/
https://redis.io/docs/latest/operate/redisinsight/
https://kubernetes.io/
https://doi.org/10.20944/preprints202505.0445.v1

	Introduction
	Related Work

	Materials and Methods
	Architecture and Implementation Details
	PostgreSQL Usage and Limitations
	Redis as a Scalable Alternative
	Redis Cluster Constraints
	Atomic Operations with Lua Scripting
	Choosing the right Redis data structures
	Managing Sorted Set Size Dynamically
	Message Retrieval and Cleanup

	Migration from Jedis to Lettuce
	Experimental Setup
	Test Methodology
	Test Agent Setup
	Infrastructure Overview
	Performance tests

	Results
	Discussion
	Conclusions
	References

