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Abstract: Background: Classification trees (CTs) are widely used machine learning algorithms with 

growing applications in clinical research, especially for risk stratification. Their ability to generate 

interpretable decision rules makes them attractive to healthcare professionals.  This review 

provides an accessible yet rigorous overview of CT methodology for clinicians, highlighting their 

utility through a case study addressing the "obesity paradox" in critically ill patients. Methods: We 

describe key methodological aspects of CTs, including model development, pruning, validation, 

and classification types (simple, ensemble, and hybrid). Using data from the ENPIC study, which 

assessed artificial nutrition in ICU patients, we applied various CT approaches—CART, CHAID, 

and XGBoost—and compared them with logistic regression. SHAP values were used to interpret 

ensemble models. Results: CTs allowed for identification of optimal cut-off points in continuous 

variables and revealed complex, non-linear interactions among predictors. Although the obesity 

paradox was not confirmed in the full cohort, CTs uncovered a specific subgroup in which obesity 

was associated with reduced mortality. The ensemble model (XGBoost) achieved the best predictive 

performance (highest AUC), though at the expense of interpretability. Conclusions: CTs are 

valuable tools in clinical epidemiology, complementing traditional models by uncovering hidden 

patterns and enhancing risk stratification. While ensemble models offer superior predictive 

accuracy, their complexity necessitates interpretability techniques such as SHAP. CT-based 

approaches can guide personalized medicine but require cautious interpretation and external 

validation. 

Keywords: classification trees; machine learning; prediction modelling; intensive care unit; obesity 

paradox 
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1. Introduction 

This work aims to provide an overview of the methodology of classification trees (CT), offering 

a perspective directed at clinical professionals interested in risk models. A technical yet accessible 

language has been used so that the content can be understood without requiring extensive 

methodological knowledge. For readers interested in a deeper understanding of the topic, we provide 

bibliographic references that we consider most suitable for further exploration, including examples 

related to nutrition-related problems. 

Our focus is limited to classification trees that generate decision rules essential for establishing 

relationships between variables and identifying groups of patients with specific characteristics. CTs 

belong to a family of machine learning algorithms that use tree-like structures to support decision-

making. This review is accompanied by a real-data application example to illustrate the utility and 

features of CTs. 

1.1. Concept of a Classification Tree 

A CT is the graphical representation of a series of decision rules. Starting from a root node, which 

includes all cases, the tree branches into different “child” nodes containing subgroups of cases. The 

splitting criterion, also known as branching criterion, is optimally determined after examining the 

values of all included predictor variables [1]. CTs are a form of supervised machine learning in which 

the algorithm is provided with records that include predictor variables and the outcome variable. 

These algorithms function by reducing classification error until the optimal CT is found [2]. 

CT methodology has been in use for quite some time. The earliest references to CTs are attributed 

to Quinlan in 1986 [3]. Regression trees, which use continuous outcome variables, had already been 

in use for over 50 years by then [2]. 

1.2. Phases in the Construction of a Classification Tree 

To illustrate the process of constructing a CT, we use the CART (Classification and Regression 

Tree) model as a reference. This process can be divided into several phases [4]: 

Phase 1 – Tree Development: From the root node, the most appropriate variable is identified to 

split the node into two child nodes by establishing an optimal cut-off point if the variable is 

continuous. Each child node is subsequently split following the same methodology. A supervised 

machine learning model is used, with all records including predictor variables and the outcome 

variable submitted to the algorithm. 

Phase 2 – Tree Growth Stopping Criteria: Tree development can continue until terminal nodes 

contain only a single case, or when the value of the dependent variable is the same for all cases within 

a node. Additional criteria, such as a minimum number of cases per node, can be defined to prevent 

excessive branching. 

Phase 3 – Tree Pruning: A CT developed using the aforementioned method tends to be overly 

complex and branched, which may lead to overfitting the training dataset. Removing superfluous 

branches results in a simpler tree with better generalizability. The pruning process uses predefined 

cost-complexity criteria to eliminate branches that add more complexity than effectiveness. 

Supervised learning aims to reduce classification error. 

Phase 4 – Selection of the Optimal CT: Selecting the optimal CT requires an internal validation 

system. This can be achieved by randomly splitting the sample into a training set and a validation 

set, or by applying cross-validation techniques. Cross-validation divides the dataset into subsets—

e.g., 10 partitions using 9 for training and 1 for validation in a recursive process. 

A final CT includes the decision rules that generate a probability for the event of interest, such 

as mortality or disease diagnosis. 

1.3. Use of Classification Trees in Medicine 

CTs have been used in medicine since their inception. The main tasks assigned to them include: 

generating decision rules for diagnosis, selecting variables based on their importance, determining 
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cut-off points for continuous variables, and identifying clinical relationships among variables [5]. CT 

algorithms select the most relevant variables, their order of appearance in tree branching, and the 

optimal cut-off points [2]. The interpretability of decision rules makes CTs attractive for use in clinical 

settings [6]. 

A review of bibliographic databases reveals an exponential increase in publications using CT 

methodology, supporting their ongoing relevance in medical problems [6]. In the past two decades, 

the widespread adoption of machine learning techniques, including CTs, has further promoted their 

use [7]. 

We reference several studies that develop risk models using CTs and provide clear explanations 

of their methodological construction, such as a model for serious fall injury in older adults [8], or risk 

stratification in critically ill patients [9]. CTs have also been applied in nutrition, such as malnutrition 

detection [10], identifying the relationship between frailty and diet quality indicators [11], or 

predicting dropout from psychological treatment in bariatric surgery candidates [12]. 

1.4. Types of Classification Trees 

There are many types of CTs [1,2]. Broadly, they can be divided into three main types (see Table 

1): simple models that generate a single CT, ensemble models that use multiple CTs to improve 

accuracy, and hybrid models that combine CTs with other machine learning techniques, such as 

fuzzy logic or artificial neural networks [13]. 

Table 1. Types of classification trees. 

1- SIMPLE CLASSIFICATION TREES 
 CART CHAID C4.5 ctree 

Description 

Classification 

and Regression 

Tree 

Chi-Square 

Automatic 

Interaction 

Detection 

Concept 

Learning 

Systems 

Version 4.5 

 

Conditional 

inference trees 

Developer Breiman (1984) Kass (1980) Quinlan (1993) Hothorm (2006) 

Primary 

Use 

Many disciplines 

with little data 

Applied 

statisticians 
Data miners 

Applied 

statisticians 

Splitting 

Method 

Entropy 

Gini index 

Chi-square tests 

F test  
Gain Ratio 

Asymptotic 

approximations 

Branch 

Limitations 
Best binary split 

Number of 

values of the 

input 

Best binary split 

Bonferroni-

adjusted p-

values 

Pruning Cross-validation 
Best binary split 

p-value 

Misclassificatio

n rates 
No pruning 

Software * 

Answer-Tree  

WEKA 

R - Python 

Answer-Tree  

R- Python 

WEKA 

R-Python 

 

R - Python 

     

2- ENSEMBLED CLASSIFICATION TREES 

 Random Forest AdaBoost XG-Boost  

Description 
Uncorrelated 

forest  

Adaptive 

Boosting 

Extreme 

gradient 

boosting 

 

Developer 
Breiman and 

Cutler (2001)  

Freund and 

Schapire (1995) 

Chen y 

Guestrin (2016) 
 

Ensembled 

Method 

Bagging 

Parallel 

Adaptive  

Boosting 

Boosting 

Gradient 

Descent 
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Software * R- Python-Java 
R – Python - 

Java 
R-Python - Java  

     

3- HYBRID MODELS 

 
Fuzzy Random 

Forest 

Random Forest 

Neural 

Network 

  

Other 

method 
Fuzzy logic Neural Network   

Developer Olaru (2003) 
Khozeimeh 

(2022) 
  

Software * C language Python   

Modified from [1,2,4,6]. * References of available software [19–22]. 

Different types of simple CTs vary based on their stopping criteria, pruning methods, and 

procedures for selecting the optimal tree [9]. The most commonly used simple models include CART, 

CHAID, C4.5, and ctree [14–18]. Table 1 shows their specifications and the available software for 

implementation [19–22]. Notably, CART-type trees perform well with small datasets, which explains 

their continued use in limited data scenarios [9].  

Other types of simple CTs, such as FACT (Fast and Accurate Classification Tree), QUEST (Quick 

Unbiased and Efficient Statistical Tree), CRUISE (Classification Rule with Unbiased Interaction 

Selection and Estimation), GUIDE (Generalized Unbiased Interaction Detection and Estimation), and 

Bayesian trees, have shown specific advantages in particular patient groups [2]. 

In general, model fitting parameters—called hyperparameters—include the tree's maximum 

depth (branching levels), the minimum number of cases per terminal node, and the internal 

validation method used (e.g., training-validation split or cross-validation). Each simple CT model 

may require specific additional hyperparameters for proper functioning [1,2,9]. 

Ensemble models will be discussed in a separate section. Hybrid models, such as those 

combining CTs with artificial neural networks or fuzzy logic, require more advanced methodological 

development [13]. 

1.5. Advantages and Disadvantages of Classification Trees 

Although we have already mentioned several advantages and disadvantages of CTs, they can 

be summarized as follows [1–5]: 

Advantages: 

Non-parametric models 

- Can handle all variable types (continuous, ordinal, categorical) 

- Easy to interpret, with clinically meaningful decision rules 

- No additional calculations required to determine individual patient risk 

- Perform variable selection and establish variable hierarchy 

- Identify optimal cut-off points for continuous variables 

- Detect relationships among variables without assuming independence 

- Less affected by outliers or missing values 

Disadvantages: 

- Risk of overfitting and limited generalizability 

- High sensitivity to data, leading to model instability 

- Complex trees may lose interpretability 

- Require specific software and development methodology 
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- Many CT types exist, and the most suitable one for a specific problem may not be obvious in 

advance 

In summary, it is necessary to strike a balance between the advantage of interpretability through 

decision rules and the methodological rigor required for their use. 

2. ENPIC Study and the Obesity Paradox 

We next describe the dataset used in this study, conducting a post hoc analysis of the ENPIC 

study (Evaluation of Practical Nutrition Practices in the Critical Care Patient), applying classification 

tree (CT) methodology to explore the obesity paradox [23]. 

2.1. The ENPIC Study 

When providing artificial nutrition to critically ill patients, the goal is to optimize caloric and 

protein intake. Studies like ENPIC aim to address questions about how to improve this process [24–

26]. 

The objective of the ENPIC study was to evaluate compliance with recommendations for 

specialized nutritional-metabolic treatment of critically ill patients and to assess the influence of 

nutritional therapy on mortality in this population [25]. It was a multicentre study including ICU 

patients requiring artificial nutrition, whether enteral or parenteral. The study sample included 525 

patients. 

One of the study's conclusions was that we are far from achieving caloric and protein goals in 

critically ill patients, particularly in those with obesity, which negatively impacts outcomes, including 

increased mortality [24–26]. 

2.2. The Obesity Paradox 

The concept of the “obesity paradox” was first described in patients undergoing percutaneous 

coronary interventions, where improved survival was observed among overweight and obese 

individuals [27]. 

The obesity paradox suggests that obesity may exert a protective effect in certain diseases, 

leading to better survival outcomes [27]. 

Its presence in critically ill patients remains controversial [28]. Some authors argue that the 

phenomenon can be explained by selection bias and confounding, due to inadequate adjustment for 

variables involved in the obesity–mortality relationship [29–31]. 

A study published in this journal using the ENPIC dataset—Nutrition Therapy in Critically Ill 

Patients with Obesity—reported differences among BMI groups in some of the analysed 

characteristics, as shown in Table 2 [23]. 

Table 2. General characteristics, nutritional therapy, and outcomes of patients admitted to the ICU 

based on body mass index subgroup. Results of the ENPIC study [23]. 

 
All patients 

n = 525 

Normal 

n = 165 

Overweight 

n = 210 

Obese 

n = 150 
p-Value 

Baseline characteristics & comorbidities 

Age, years, mean ± SD 61.5 ± 15 58.8 ± 16.5 62.8 ± 14.7 62.7 ± 13.5 0.05 

Sex, male patients, n (%) 67.2% (353) 64.8% (107) 74.8% (157) 59.3% (89) 0.003B 

Hypertension, n (%) 43.6% (229) 33.9% (56) 41.9% (88) 56.7% (85) 0.01A, B 

Diabetes mellitus, n (%) 25% (131) 21.2% (35) 20% (42) 36% (54) 0.001A, B 

AMI, n (%) 14.1% (74) 8.5% (14) 16.7% (35) 16.7% (25) 0.04 B 

Neoplasia, n (%) 20.6% (108) 24.2% (40) 19.5% (41) 18% (27) 0.11 

Type 

of 

patient 

Medical, n (%) 63.8% (335) 65.5% (108) 62.9% (132) 63.3% (95) 0.81 

Trauma, n (%) 12.6% (66) 10.9% (18) 15.2% (32) 10.7% (16) 0.75 

Surgery, n (%) 23.6% (124) 23.6% (39) 21.9% (46) 26% (39) 0.67 
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Prognosis ICU scores & nutrition status on ICU admission 

APACHE II, mean ± SD 20.3 ± 7.9 19.7 ± 7.6 20.1 ± 7.5 21.2 ± 8.5 0.18 

Malnutrition (based on SGA), n 

(%) 
41% (215) 52.7% (87) 37.1% (78) 33.3% (50) 0.01 B 

Characteristics of Medical Nutrition Therapy 

Early nutrition, < 48 h, n (%) 74.9% (393) 77.6% (128) 75.2% (158) 71.3% (107) 0.43 

Kcal/kg/day, mean ± SD 19 ± 5.6 23.1 ± 6 18.6 ± 3.7 15.27 ± 4.24 0.001 A 

Protein, g/kg/day, mean ± SD 1 ± 0.4 1.2 ± 0.4 1 ± 0.3 0.8 ± 0.2 0.01 A, B 

EN 63.2% (332) 59.4% (98) 64.3% (135) 66% (99) 0.34 

PN 15.4% (81) 13.3% (22) 16.2% (34) 16.7% (25) 0.85 

EN-PN 7.8% (41) 8.5% (14) 7.6% (16) 7.3% (11) 0.92 

PN-EN 13.5% (71) 18.8% (31) 11.9% (25) 10% (15) 0.27 

Outcomes 

Mechanical ventilation, n (%) 92.8% (487) 89.1% (147) 93.8% (197) 95.3% (143) 0.08 

Vasoactive drug support, n (%) 77% (404) 73.9% (122) 79.5% (167) 76.7% (115) 0.44 

Renal replacement therapy, n 

(%) 
16.6% (87) 16.4% (27) 12.9% (27) 22% (33) 0.07 

ICU stay, days, mean ± SD 20.3 ± 18 18.2 ± 13.8 21.1 ± 17.1 21.6 ± 22.5 0.08 

28-day mortality, n (%) 26.7% (140) 29.1% (48) 27.1% (57) 23.3% (35) 0.51 

AMI: Acute myocardial infarction; PN: Parenteral Nutrition; EN: Enteral Nutrition; SD: standard deviation; 

APACHE II: Acute Physiology and Chronic Health Disease Classification System II; SGA: Subjective Global 

Assessment; ICU: Intensive Care Unit. Statistically significant p-values are written in bold. Statistical results 

correspond to ANOVA p values. Bonferroni post hoc testing with statistically significant differences: A between 

Normal weight and obese subgroup; B between overweight and obese subgroup. 

This table presents the general characteristics, nutritional therapy, and outcomes of ICU patients 

stratified by body mass index (BMI) categories. It reveals demographic differences across BMI groups 

(normal weight, overweight, and obese). There is a non-significant trend toward lower 28-day 

mortality in obese patients, raising the question of whether the paradox might be present in this 

cohort. 

The findings suggest that building a mortality risk model requires adjustment for patient-related 

factors (age, sex, BMI group), nutritional status based on Subjective Global Assessment (SGA), 

disease severity according to the APACHE II score (Acute Physiology and Chronic Health disease 

Classification System II) [32], and daily caloric (Kcal/kg/day) and protein (g/kg/day) intake. If the 

paradox is present, obesity would emerge as a protective factor. 

We performed a multiple logistic regression (LR) model using the selected variables and 

calculated odds ratios (95% CI). Table 3 shows the model, which indicates that factors independently 

associated with 28-day mortality are older age, higher APACHE II score, malnutrition, and lower 

protein intake. 

Table 3. Multiple logistic regression model (LR) with 28-day mortality as the outcome variable. 

Variable OR (95%CI) p-value 

Age (years)   

< 50 1  

50-75 3.3 (1.7-6.5)    0.001 

> 75   7.0 (3.3-14.9) < 0.001 

   

SEX (MALE) 1.0 (0.6-1.6) 0.998 

APACHE II score   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2025 doi:10.20944/preprints202505.0316.v1

https://doi.org/10.20944/preprints202505.0316.v1


 7 

 

≤ 25 1  

> 25 2.2 (1.4-3.5) < 0.001 

BMI groups   

Normal 1  

Overweight 0.9 (0.5-1.5) 0.623 

Obese 0.7 (0.4-1.4) 0.651 

SGA   

Non malnutrition 1  

Malnutrition  2.6 (1.74.0) < 0.001 

   

Median Kcal/Kg/day 1.1 (0.9-1.1) 0.315 

Median g protein/Kg/day 0.3 (0.1-0.9) 0.022 

OR: Odds Ratio; CI: Confidence interval; APACHE II: Acute Physiology and Chronic Health Disease 

Classification System II; BMI: Body mass index; SGA: Subjective Global Assessment. 

The obesity paradox was not detected in this model, as the odds ratio for obesity was not 

statistically significant. Given the limited sample size and the LR model used, we cannot confirm the 

presence of the paradox. Classification trees may uncover interactions or relationships not easily 

detected through traditional regression methods. 

In the following sections, we apply CTs to the ENPIC dataset to illustrate methodological aspects 

and explore the potential presence of the obesity paradox. 

3. Use of Classification Trees to Determine Cut-off Points 

Continuous variables cannot be arbitrarily categorized. Typically, literature-based criteria or 

statistical methods are used to justify selected cut-off points. 

Classification trees can be used to identify cut-off points in continuous variables and convert 

them into categorical ones—for example, to define score thresholds for diagnosing heart failure in 

patients with pleural effusion [33]. 

Other examples in nutrition-related contexts include determining a TNF-α cut-off related to 

HbA1c levels using a CHAID tree [34] or defining walking speed thresholds indicative of severe 

mobility limitations in sarcopenic patients using a CART tree [35]. 

In our paradox example, we employed a CHAID tree to determine cut-off points for Age and 

APACHE II score. Figure 1 shows that the selected age and APACHE II groups for categorization can 

be justified using classification trees. 
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Figure 1. Using CHAID-type AC trees to establish cutoff points for continuous variables. (A) Cutoff 

points for age. (B) Cutoff points for the APACHE II severity score variable. R software (CHAID 

library) was used [22]. 

4. Use of Classification Trees to Identify Relationships Between Variables 

As mentioned earlier, one advantage of classification trees is their ability to detect relationships 

between variables. These relationships are often non-linear. Identifying such associations without 

assuming independence—and grouping patients based on these patterns—is essential for 

understanding how risk factors operate differently across subgroups [28]. 

In our example, previous research has suggested that exploring the obesity paradox requires 

stratifying patients by nutritional status [28]. In Figure 2, using a CART model, we observe that the 

risk of mortality is influenced by malnutrition. Among patients without malnutrition, the obese 

subgroup shows lower mortality, which may suggest that the paradoxical effect is detectable only in 

non-malnourished patients. 

 

Figure 2. CART-type AC model to establish the relationship between two variables. Values in bold 

indicate 28-day mortality. SGA: Subjective Global Assessment; BMI: Body mass index group. It is 

observed that the non-malnutrition group of obese patients has a lower mortality rate. R software 

(rpart library) was used [22]. 

5. Multivariable Risk Models Using Classification Trees 

A multivariable classification tree (CT) model can select only the most informative variables, 

establish a hierarchy, determine optimal cut-off points to categorize continuous variables, and 

indicate relationships between variables, resulting in a set of decision rules [6,9]. 

In the obesity paradox example, we included in the CT the same variables used in the logistic 

regression (LR) model (see Table 2). The CART-type classification tree model discarded caloric intake 

and sex. Figure 3 shows the classification tree with its decision rules. The first variable selected by the 

algorithm is age; the subsequent branches include malnutrition status, disease severity, protein 

intake, and BMI groups. Although not directly related to the paradox, it is interesting to note that in 

the subgroup of older patients with malnutrition, higher protein intake is associated with lower 

mortality. 
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Figure 3. Multivariate model based on CART-type. AGER: Age groups; SGA: Subjective Global 

Assessment; APA25: APACHE II score greater than 25; BMIG: Body mass index group; PROTEIN: 

Protein intake (g/kg/day). The hierarchy of variables is shown, and a special group in which obese 

patients have a lower mortality rate than those with overweight or a normal BMI is indicated in the 

red circle. Answer-Tree software used [19]. 

Also highlighted in a red circle is a subgroup of patients in which a paradoxical effect appears 

to be present. An analysis of this specific group of 62 patients—23 obese and 39 non-obese—found 

statistically significant differences only in mortality (21.7% vs. 48.7%, p = 0.035) and the prevalence 

of hypertension (78.3% vs. 51.3%, p = 0.035). No significant differences were observed in age, sex, 

patient type, time to initiation of artificial nutrition, severity level, type of nutritional support (enteral 

or parenteral), or caloric and protein intake. This subgroup shows a significant reduction in mortality 

among obese patients compared to non-obese, suggesting the obesity paradox may exist in specific 

contexts. The conclusion of this CT model is that the obesity paradox does not exist in general but 

may be observed in specific patient groups, which can be identified using CT-based methodologies. 

6. Ensemble Classification Tree Models 

As previously noted, one disadvantage of simple CT models is their tendency to overfit, which 

limits their generalizability. To mitigate this issue, the idea arose of using not just one CT, but rather 

an ensemble of trees, to improve both the precision and generalizability of risk models [2]. 

Ensembles of CTs can be built in various ways (see Table 1), with the two most common being 

bagging and boosting [2,36]. 

Bagging (bootstrap aggregating) uses parallel ensemble learning to reduce model variance, 

averaging the results of individual CTs to produce a final prediction [37]. Each individual tree 
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operates independently, allowing for fast performance. A representative of this method is the 

Random Forest algorithm [18,38]. 

In contrast, boosting involves sequential ensemble learning, where each CT is dependent on the 

previous ones. Boosting reduces bias and is considered "slow learning" compared to bagging. By 

adding one CT after another, the algorithm progressively improves classification. Popular boosting-

based ensemble models include AdaBoost and gradient-based methods like XGBoost [39,40]. 

Boosting’s flexibility and strong performance have made it one of the most widely used techniques 

in recent years [40]. 

Although ensemble models outperform single-tree models in prediction accuracy, they come at 

the cost of reduced interpretability. This “black-box” nature has led to the development of methods 

to explain how these models work, providing clinicians with insights into variable importance and 

relationships [40]. 

One of the most used explanatory techniques is SHAP (SHapley Additive exPlanations) values. 

Based on cooperative game theory, SHAP values determine the contribution of each "player" 

(variable) to the final model outcome. A SHAP value reflects each variable’s contribution to the 

prediction, and results are visualized using importance plots. SHAP also generates partial 

dependence plots showing the relationship between each variable and the model outcome [41]. 

In the obesity paradox example, we use an XGBoost and SHAP model for explanation. Using 

ensemble methods like XGBoost involves tuning many hyperparameters, which increases complexity 

[42]. Some of the hyperparameters used in our XGBoost model included: learning rate (eta) set at 0.3, 

number of trees (n_estimators) set at 20, gamma (loss reduction threshold) at 0, and maximum tree 

depth (max_depth) at 6. 

The same variables used in the LR and CART models were included. Figure 4 shows the SHAP 

values. The XGBoost model identified age as the most important variable, followed by caloric intake 

(higher intake = worse outcome), protein intake (higher intake = better outcome), and BMI group. 

Within the BMI analysis, the obese group showed an association with improved survival. Figure 5 

shows the partial dependence plots. Both figures indicate that being obese is associated with a 

protective effect on mortality. 
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Figure 4. Graph showing SHAP scores generated by the XGBoost model. AGER: Age groups; KCAL: 

Calorie intake (Kcal/kg/day); PROTEIN: Protein intake (g/kg/day); SGA: Subjective Global 

Assessment; APA25: APACHE II score greater than 25; BMIG: Body mass index group. The 

importance of each variable can be observed, with age being the greatest. It is also observed that the 

obese patient group has a negative impact on mortality, suggesting a paradoxical effect of obesity. R 

software (xgboost and SHAPforxgboost libraries) was used [22]. 

 

Figure 5. Partial dependency graphs between each variable and mortality. AGER: Age groups; KCAL: 

Calorie intake (kcal/kg/day); PROTEIN: Protein intake (g/kg/day); SGA: Subjective Global 

Assessment; APA25: APACHE II score greater than 25; BMIG: Body mass index groups. We observed 

different behaviours between calorie and protein intake. Within the BMI groups, mortality was lower 

in the obese group. R software (SHAPforxgboost library) was used [22]. 

7. Model Evaluation 

The methodology for evaluating a risk model is also very extensive and could, by itself, 

constitute an independent review. However, it is important to note that the development, validation, 

and assessment of the predictive accuracy of a risk model should follow standardized procedures, 

such as the TRIPOD guidelines (Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis), which provide guidance on all the necessary steps from model 

construction to evaluation [43]. 

Our LR models, the CART-type decision tree, and the XGBoost ensemble model generate a 

probability of death for each patient. We can assess model accuracy using global performance metrics 

(Brier score, Accuracy, Recall, F-measure), discrimination (AUC ROC), and calibration (calibration 

curve with slope and intercept values) [9,38,44]. 

For example, Figure 6 illustrates the discriminatory ability of the models through the ROC curve 

and the corresponding area under the curve (AUC). We observe that the XGBoost ensemble model 

achieves the highest AUC, while the LR and CART models yield similar values. 
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Figure 6. ROC analysis of the developed models. The area under the ROC curve values are shown. 

LR: Logistic regression model; CART: CART-type classification tree; XGBoost: XGBoost-type 

ensemble classification tree model; Prob: Probability of death at 28 days. The LR and CART-type AC 

models had similar AUCs. The XGBoost model achieved better discrimination (Long's test with p < 

0.001). 

8. Discussion 

In this article, we have described how classification trees (CT) can be used in clinical research as 

a complementary tool to traditional statistical techniques. 

Our work is not without limitations. The depth of the methodological review could have been 

greater, although we believe that the references provided may help interested readers to achieve that 

objective. The example used to illustrate the methodological review involved a simple selection of 

variables to facilitate the generation, interpretation, and explanation of the classification tree (CT) 

models. In model construction, the inclusion of more variables or the use of alternative 

methodologies—both simple and ensemble-based—could have led to different results and 

conclusions. 

We can state that classification tree–based methodologies remain an important area of 

experimentation and are constantly evolving technologically [44,45]. Nutrition professionals working 

with risk models should consider the use of CTs. Simple trees remain appealing due to their 

interpretability, while more sophisticated models must continue to evolve to become more user-

friendly [46]. We also offer our collaboration, sharing our experience with other research groups 

interested in developing CT-based models. 

9. Conclusions 

The application of CT methodology in our example, based on the ENPIC study database, has 

allowed us to illustrate several important aspects: 

- How CTs can be used to establish cut-off points for continuous variables. 

- How they can identify interactions between variables that might go unnoticed in traditional 

regression models. 

- How multivariable CT models generate decision rules and stratify patient risk based on the most 

influential predictors. 

- How ensemble methods such as Random Forest and XGBoost improve predictive accuracy. 

- And finally, how explanatory tools like SHAP values can provide insight into the structure and 

predictions of complex models. 
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Although we did not find strong evidence to confirm the existence of the obesity paradox in 

critically ill patients in a general sense, CT-based analysis helped us identify a specific subgroup of 

patients in which obesity appeared to be associated with reduced mortality. 

This suggests that CTs are especially useful in uncovering clinically relevant patterns that could 

guide personalized medicine approaches. Nevertheless, caution should be taken when interpreting 

these findings, as tree-based models are sensitive to data characteristics and may require validation 

in independent cohorts to confirm their generalizability. 

In conclusion, CTs—especially when combined with ensemble methods and model explanation 

techniques—are valuable tools in clinical epidemiology. They can support both predictive modelling 

and the exploration of complex relationships among clinical variables, offering new perspectives to 

improve patient care. 
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Abbreviations:  

The following abbreviations are used in this manuscript: 

AdaBoost  Adaptive Boosting 

APACHE II 
Acute Physiology and Chronic Health disease Classification System 

II 

AUC ROC  The area under the ROC curve 

BMI Body mass index 

C4.5 Concept learning systems version 4.5 

CART Classification and regression tree 

CHAID Chi-square automatic interaction detection tree 

CRUISE 
Classification Rule with Unbiased Interaction Selection and 

Estimation 

CT Classification Tree 

ctree Conditional inference trees 

ENPIC  
Evaluation of Practical Nutrition Practices in the Critical Care 

Patient 

FACT Fast and Accurate Classification Tree 

GUIDE Generalized Unbiased Interaction Detection and Estimation 

ICU Intensive Care Unit 

LR Logistic Regression 

Python Python software 

QUEST Quick Unbiased and Efficient Statistical Tree 

R The R Project for Statistical Computing 

SHAP SHapley Additive exPlanations 
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