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Abstract: Background: Classification trees (CTs) are widely used machine learning algorithms with
growing applications in clinical research, especially for risk stratification. Their ability to generate
interpretable decision rules makes them attractive to healthcare professionals. This review
provides an accessible yet rigorous overview of CT methodology for clinicians, highlighting their
utility through a case study addressing the "obesity paradox" in critically ill patients. Methods: We
describe key methodological aspects of CTs, including model development, pruning, validation,
and classification types (simple, ensemble, and hybrid). Using data from the ENPIC study, which
assessed artificial nutrition in ICU patients, we applied various CT approaches—CART, CHAID,
and XGBoost—and compared them with logistic regression. SHAP values were used to interpret
ensemble models. Results: CTs allowed for identification of optimal cut-off points in continuous
variables and revealed complex, non-linear interactions among predictors. Although the obesity
paradox was not confirmed in the full cohort, CTs uncovered a specific subgroup in which obesity
was associated with reduced mortality. The ensemble model (XGBoost) achieved the best predictive
performance (highest AUC), though at the expense of interpretability. Conclusions: CTs are
valuable tools in clinical epidemiology, complementing traditional models by uncovering hidden
patterns and enhancing risk stratification. While ensemble models offer superior predictive
accuracy, their complexity necessitates interpretability techniques such as SHAP. CT-based
approaches can guide personalized medicine but require cautious interpretation and external
validation.

Keywords: classification trees; machine learning; prediction modelling; intensive care unit; obesity
paradox
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1. Introduction

This work aims to provide an overview of the methodology of classification trees (CT), offering
a perspective directed at clinical professionals interested in risk models. A technical yet accessible
language has been used so that the content can be understood without requiring extensive
methodological knowledge. For readers interested in a deeper understanding of the topic, we provide
bibliographic references that we consider most suitable for further exploration, including examples
related to nutrition-related problems.

Our focus is limited to classification trees that generate decision rules essential for establishing
relationships between variables and identifying groups of patients with specific characteristics. CTs
belong to a family of machine learning algorithms that use tree-like structures to support decision-
making. This review is accompanied by a real-data application example to illustrate the utility and
features of CTs.

1.1. Concept of a Classification Tree

A CT is the graphical representation of a series of decision rules. Starting from a root node, which
includes all cases, the tree branches into different “child” nodes containing subgroups of cases. The
splitting criterion, also known as branching criterion, is optimally determined after examining the
values of all included predictor variables [1]. CTs are a form of supervised machine learning in which
the algorithm is provided with records that include predictor variables and the outcome variable.
These algorithms function by reducing classification error until the optimal CT is found [2].

CT methodology has been in use for quite some time. The earliest references to CTs are attributed
to Quinlan in 1986 [3]. Regression trees, which use continuous outcome variables, had already been
in use for over 50 years by then [2].

1.2. Phases in the Construction of a Classification Tree

To illustrate the process of constructing a CT, we use the CART (Classification and Regression
Tree) model as a reference. This process can be divided into several phases [4]:

Phase 1 - Tree Development: From the root node, the most appropriate variable is identified to
split the node into two child nodes by establishing an optimal cut-off point if the variable is
continuous. Each child node is subsequently split following the same methodology. A supervised
machine learning model is used, with all records including predictor variables and the outcome
variable submitted to the algorithm.

Phase 2 — Tree Growth Stopping Criteria: Tree development can continue until terminal nodes
contain only a single case, or when the value of the dependent variable is the same for all cases within
anode. Additional criteria, such as a minimum number of cases per node, can be defined to prevent
excessive branching.

Phase 3 — Tree Pruning: A CT developed using the aforementioned method tends to be overly
complex and branched, which may lead to overfitting the training dataset. Removing superfluous
branches results in a simpler tree with better generalizability. The pruning process uses predefined
cost-complexity criteria to eliminate branches that add more complexity than effectiveness.
Supervised learning aims to reduce classification error.

Phase 4 — Selection of the Optimal CT: Selecting the optimal CT requires an internal validation
system. This can be achieved by randomly splitting the sample into a training set and a validation
set, or by applying cross-validation techniques. Cross-validation divides the dataset into subsets—
e.g., 10 partitions using 9 for training and 1 for validation in a recursive process.

A final CT includes the decision rules that generate a probability for the event of interest, such
as mortality or disease diagnosis.

1.3. Use of Classification Trees in Medicine

CTs have been used in medicine since their inception. The main tasks assigned to them include:
generating decision rules for diagnosis, selecting variables based on their importance, determining
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cut-off points for continuous variables, and identifying clinical relationships among variables [5]. CT
algorithms select the most relevant variables, their order of appearance in tree branching, and the
optimal cut-off points [2]. The interpretability of decision rules makes CTs attractive for use in clinical
settings [6].

A review of bibliographic databases reveals an exponential increase in publications using CT
methodology, supporting their ongoing relevance in medical problems [6]. In the past two decades,
the widespread adoption of machine learning techniques, including CTs, has further promoted their
use [7].

We reference several studies that develop risk models using CTs and provide clear explanations
of their methodological construction, such as a model for serious fall injury in older adults [8], or risk
stratification in critically ill patients [9]. CTs have also been applied in nutrition, such as malnutrition
detection [10], identifying the relationship between frailty and diet quality indicators [11], or
predicting dropout from psychological treatment in bariatric surgery candidates [12].

1.4. Types of Classification Trees

There are many types of CTs [1,2]. Broadly, they can be divided into three main types (see Table
1): simple models that generate a single CT, ensemble models that use multiple CTs to improve
accuracy, and hybrid models that combine CTs with other machine learning techniques, such as
fuzzy logic or artificial neural networks [13].

Table 1. Types of classification trees.

1-  SIMPLE CLASSIFICATION TREES

CART CHAID C4.5 ctree
Classification Chl-Squa?e Conce.zpt
.. . Automatic Learning .\
Description  and Regression . Conditional
T Interaction Systems nf ;
ree Detection Version 4.5 fierence trees
Developer Breiman (1984) Kass (1980) Quinlan (1993) Hothorm (2006)
Primary Ma.ny 41sc1p11nes Al'sp.h«.ed Data miners APp.h(.ed
Use with little data statisticians statisticians
Splitting l?njcl:opy Chi-square tests Gain Ratio Asyrr'1pt0t'1(:
Method Gini index F test approximations
Number of Bonferroni-
Branch bt binary split lues of the  Best bi lit  adjusted
Limitations e ary spli va l%es of the est binary spli adjusted p
input values
Best bi lit  Misclassificati
Pruning Cross-validation est bihaty spi 1ciassTHeatio ™ No pruning
p-value n rates
Answer-Tree
Answer-Tree WEKA
Software * WEKA R- Python R-Python R - Python
R - Python Y Y Y
2- ENSEMBLED CLASSIFICATION TREES
Random Forest AdaBoost XG-Boost
E
. Uncorrelated Adaptive xtretme
Description . gradient
forest Boosting _
boosting
Developer Breiman and Freund and Cheny
P Cutler (2001) Schapire (1995)  Guestrin (2016)
Boosti
Ensembled Bagging Adaptive Gigcsitilerli
Method Parallel Boosting

Descent
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R - Python -

Software *  R- Python-Java
Java

R-Python - Java

3- HYBRID MODELS
Random Forest

Fuzzy Random

Forest Neural
Network
Other .
method Fuzzy logic Neural Network
Khozeimeh
Developer Olaru (2003) 2022)
Software * C language Python

Modified from [1,2,4,6]. * References of available software [19-22].

Different types of simple CTs vary based on their stopping criteria, pruning methods, and
procedures for selecting the optimal tree [9]. The most commonly used simple models include CART,
CHAID, C4.5, and ctree [14-18]. Table 1 shows their specifications and the available software for
implementation [19-22]. Notably, CART-type trees perform well with small datasets, which explains
their continued use in limited data scenarios [9].

Other types of simple CTs, such as FACT (Fast and Accurate Classification Tree), QUEST (Quick
Unbiased and Efficient Statistical Tree), CRUISE (Classification Rule with Unbiased Interaction
Selection and Estimation), GUIDE (Generalized Unbiased Interaction Detection and Estimation), and
Bayesian trees, have shown specific advantages in particular patient groups [2].

In general, model fitting parameters—called hyperparameters—include the tree's maximum
depth (branching levels), the minimum number of cases per terminal node, and the internal
validation method used (e.g., training-validation split or cross-validation). Each simple CT model
may require specific additional hyperparameters for proper functioning [1,2,9].

Ensemble models will be discussed in a separate section. Hybrid models, such as those
combining CTs with artificial neural networks or fuzzy logic, require more advanced methodological
development [13].

1.5. Advantages and Disadvantages of Classification Trees

Although we have already mentioned several advantages and disadvantages of CTs, they can
be summarized as follows [1-5]:

Advantages:

Non-parametric models

- Can handle all variable types (continuous, ordinal, categorical)
- Easy to interpret, with clinically meaningful decision rules
- No additional calculations required to determine individual patient risk
- Perform variable selection and establish variable hierarchy
- Identify optimal cut-off points for continuous variables
- Detect relationships among variables without assuming independence
- Less affected by outliers or missing values
Disadvantages:
- Risk of overfitting and limited generalizability
- High sensitivity to data, leading to model instability
- Complex trees may lose interpretability

- Require specific software and development methodology
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- Many CT types exist, and the most suitable one for a specific problem may not be obvious in
advance

In summary, it is necessary to strike a balance between the advantage of interpretability through
decision rules and the methodological rigor required for their use.

2. ENPIC Study and the Obesity Paradox

We next describe the dataset used in this study, conducting a post hoc analysis of the ENPIC
study (Evaluation of Practical Nutrition Practices in the Critical Care Patient), applying classification
tree (CT) methodology to explore the obesity paradox [23].

2.1. The ENPIC Study

When providing artificial nutrition to critically ill patients, the goal is to optimize caloric and
protein intake. Studies like ENPIC aim to address questions about how to improve this process [24—
26].

The objective of the ENPIC study was to evaluate compliance with recommendations for
specialized nutritional-metabolic treatment of critically ill patients and to assess the influence of
nutritional therapy on mortality in this population [25]. It was a multicentre study including ICU
patients requiring artificial nutrition, whether enteral or parenteral. The study sample included 525
patients.

One of the study's conclusions was that we are far from achieving caloric and protein goals in
critically ill patients, particularly in those with obesity, which negatively impacts outcomes, including
increased mortality [24-26].

2.2. The Obesity Paradox

The concept of the “obesity paradox” was first described in patients undergoing percutaneous
coronary interventions, where improved survival was observed among overweight and obese
individuals [27].

The obesity paradox suggests that obesity may exert a protective effect in certain diseases,
leading to better survival outcomes [27].

Its presence in critically ill patients remains controversial [28]. Some authors argue that the
phenomenon can be explained by selection bias and confounding, due to inadequate adjustment for
variables involved in the obesity—mortality relationship [29-31].

A study published in this journal using the ENPIC dataset—Nutrition Therapy in Critically Il
Patients with Obesity —reported differences among BMI groups in some of the analysed
characteristics, as shown in Table 2 [23].

Table 2. General characteristics, nutritional therapy, and outcomes of patients admitted to the ICU
based on body mass index subgroup. Results of the ENPIC study [23].

All patients Normal Overweight Obese

n =525 n=165 n =210 n-15 Pvale
Baseline characteristics & comorbidities

Age, years, mean + SD 61.5+15 b588+16.5 62.8+14.7 62.7+13.5 0.05
Sex, male patients, n (%) 67.2% (353) 64.8% (107) 74.8% (157) 59.3% (89) 0.003B
Hypertension, n (%) 43.6% (229) 33.9% (56) 41.9% (88) 56.7% (85) 0.01A.B
Diabetes mellitus, n (%) 25% (131) 21.2% (35) 20% (42)  36% (54) 0.001A B

AMI, n (%) 14.1% (74)  8.5% (14)  16.7% (35) 16.7% (25)  0.04®

Neoplasia, n (%) 20.6% (108) 24.2% (40) 19.5% (41) 18% (27)  0.11

Type Medical, n (%) 63.8% (335) 65.5% (108) 62.9% (132) 63.3% (95)  0.81

of Trauma, n (%) 12.6% (66) 10.9% (18) 15.2% (32) 10.7% (16)  0.75

patient  Surgery, n (%) 23.6% (124) 23.6% (39) 21.9% (46) 26% (39)  0.67
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6
Prognosis ICU scores & nutrition status on ICU admission

APACHE II, mean + SD 203+79 197+x76 20.1+x75 21.2+8.5 0.18

Malnutrition (E,jjed onSCAY N 410y (215)  527% (87) 37.1% (78) 33.3% (50)  0.01%
Characteristics of Medical Nutrition Therapy

Early nutrition, <48 h, n (%) 74.9% (393) 77.6% (128) 75.2% (158) 71.3% (107) 0.43
Kcal/kg/day, mean + SD 19+ 5.6 23.1+6 18.6 +3.7 1527+4.24 0.001A
Protein, g/kg/day, mean + SD 1+04 1.2+04 1+0.3 0.8+0.2 0.0128B

EN 63.2% (332) 59.4% (98) 64.3% (135) 66% (99)  0.34

PN 15.4% (81) 13.3% (22) 16.2% (34) 16.7% (25)  0.85

EN-PN 7.8% (41)  85% (14)  7.6% (16)  7.3% (11)  0.92

PN-EN 13.5% (71) 18.8% (31) 11.9% (25) 10% (15)  0.27

Outcomes

Mechanical ventilation, n (%) 92.8% (487) 89.1% (147) 93.8% (197) 95.3% (143)  0.08
Vasoactive drug support, n (%) 77% (404) 73.9% (122) 79.5% (167) 76.7% (115)  0.44
Renal replacement therapy, n
(%)

ICU stay, days, mean + SD 203+18 182+13.8 21.1+17.1 21.6+22.5 0.08

28-day mortality, n (%) 26.7% (140) 29.1% (48) 27.1% (57) 23.3% (35) 0.51
AMI: Acute myocardial infarction; PN: Parenteral Nutrition; EN: Enteral Nutrition; SD: standard deviation;
APACHE II: Acute Physiology and Chronic Health Disease Classification System II; SGA: Subjective Global
Assessment; ICU: Intensive Care Unit. Statistically significant p-values are written in bold. Statistical results
correspond to ANOVA p values. Bonferroni post hoc testing with statistically significant differences: 4 between

Normal weight and obese subgroup; ?between overweight and obese subgroup.

16.6% (87) 16.4% (27) 12.9% (27) 22% (33)  0.07

This table presents the general characteristics, nutritional therapy, and outcomes of ICU patients
stratified by body mass index (BMI) categories. It reveals demographic differences across BMI groups
(normal weight, overweight, and obese). There is a non-significant trend toward lower 28-day
mortality in obese patients, raising the question of whether the paradox might be present in this
cohort.

The findings suggest that building a mortality risk model requires adjustment for patient-related
factors (age, sex, BMI group), nutritional status based on Subjective Global Assessment (SGA),
disease severity according to the APACHE II score (Acute Physiology and Chronic Health disease
Classification System II) [32], and daily caloric (Kcal/kg/day) and protein (g/kg/day) intake. If the
paradox is present, obesity would emerge as a protective factor.

We performed a multiple logistic regression (LR) model using the selected variables and
calculated odds ratios (95% CI). Table 3 shows the model, which indicates that factors independently
associated with 28-day mortality are older age, higher APACHE II score, malnutrition, and lower
protein intake.

Table 3. Multiple logistic regression model (LR) with 28-day mortality as the outcome variable.

Variable OR (95%CI) p-value
Age (years)
<50 1
50-75 3.3 (1.7-6.5) 0.001
>75 7.0 (3.3-14.9) <0.001
SEX (MALE) 1.0 (0.6-1.6) 0.998

APACHE II score
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7
<25 1
>25 2.2(14-3.5) <0.001
BMI groups
Normal 1
Overweight 0.9 (0.5-1.5) 0.623
Obese 0.7 (0.4-1.4) 0.651
SGA
Non malnutrition 1
Malnutrition 2.6 (1.74.0) <0.001
Median Kcal/Kg/day 1.1 (0.9-1.1) 0.315
Median g protein/Kg/day 0.3 (0.1-0.9) 0.022

OR: Odds Ratio; CI: Confidence interval; APACHE II: Acute Physiology and Chronic Health Disease
Classification System II; BMI: Body mass index; SGA: Subjective Global Assessment.

The obesity paradox was not detected in this model, as the odds ratio for obesity was not
statistically significant. Given the limited sample size and the LR model used, we cannot confirm the
presence of the paradox. Classification trees may uncover interactions or relationships not easily
detected through traditional regression methods.

In the following sections, we apply CTs to the ENPIC dataset to illustrate methodological aspects
and explore the potential presence of the obesity paradox.

3. Use of Classification Trees to Determine Cut-off Points

Continuous variables cannot be arbitrarily categorized. Typically, literature-based criteria or
statistical methods are used to justify selected cut-off points.

Classification trees can be used to identify cut-off points in continuous variables and convert
them into categorical ones—for example, to define score thresholds for diagnosing heart failure in
patients with pleural effusion [33].

Other examples in nutrition-related contexts include determining a TNF-a cut-off related to
HbA1c levels using a CHAID tree [34] or defining walking speed thresholds indicative of severe
mobility limitations in sarcopenic patients using a CART tree [35].

In our paradox example, we employed a CHAID tree to determine cut-off points for Age and
APACHE II score. Figure 1 shows that the selected age and APACHE II groups for categorization can
be justified using classification trees.

B &

p-value < 0.001

p-value < 0.001

- <=230 >230
=530 (53.0,75.0] >750 = N

)

- 08 o8 08 08 08
[~ 06 06 06 06 06

04 04 04 04 04

40.6 %
28.3% 02

o ) - -

Node 2 (n = 126) Node 3 (n = 300) Node 4 (n = 99) Node 2 (n = 355) Node 3 (n = 170)
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Figure 1. Using CHAID-type AC trees to establish cutoff points for continuous variables. (A) Cutoff
points for age. (B) Cutoff points for the APACHE II severity score variable. R software (CHAID
library) was used [22].

4. Use of Classification Trees to Identify Relationships Between Variables

As mentioned earlier, one advantage of classification trees is their ability to detect relationships
between variables. These relationships are often non-linear. Identifying such associations without
assuming independence—and grouping patients based on these patterns—is essential for
understanding how risk factors operate differently across subgroups [28].

In our example, previous research has suggested that exploring the obesity paradox requires
stratifying patients by nutritional status [28]. In Figure 2, using a CART model, we observe that the
risk of mortality is influenced by malnutrition. Among patients without malnutrition, the obese
subgroup shows lower mortality, which may suggest that the paradoxical effect is detectable only in
non-malnourished patients.

NON :
MALNUTRITION MALNUTRITION

NORMAL : OVERWEIGHT
OVERWEIGHT NORMAL OBESE

Figure 2. CART-type AC model to establish the relationship between two variables. Values in bold
indicate 28-day mortality. SGA: Subjective Global Assessment; BMI: Body mass index group. It is
observed that the non-malnutrition group of obese patients has a lower mortality rate. R software
(rpart library) was used [22].

5. Multivariable Risk Models Using Classification Trees

A multivariable classification tree (CT) model can select only the most informative variables,
establish a hierarchy, determine optimal cut-off points to categorize continuous variables, and
indicate relationships between variables, resulting in a set of decision rules [6,9].

In the obesity paradox example, we included in the CT the same variables used in the logistic
regression (LR) model (see Table 2). The CART-type classification tree model discarded caloric intake
and sex. Figure 3 shows the classification tree with its decision rules. The first variable selected by the
algorithm is age; the subsequent branches include malnutrition status, disease severity, protein
intake, and BMI groups. Although not directly related to the paradox, it is interesting to note that in
the subgroup of older patients with malnutrition, higher protein intake is associated with lower
mortality.
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Noded Node 10 Node 12
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Total 48 5 Total 90 n Tetal @“ n Total TA ¥

Figure 3. Multivariate model based on CART-type. AGER: Age groups; SGA: Subjective Global
Assessment; APA25: APACHE II score greater than 25; BMIG: Body mass index group; PROTEIN:
Protein intake (g/kg/day). The hierarchy of variables is shown, and a special group in which obese
patients have a lower mortality rate than those with overweight or a normal BMI is indicated in the
red circle. Answer-Tree software used [19].

Also highlighted in a red circle is a subgroup of patients in which a paradoxical effect appears
to be present. An analysis of this specific group of 62 patients—23 obese and 39 non-obese —found
statistically significant differences only in mortality (21.7% vs. 48.7%, p = 0.035) and the prevalence
of hypertension (78.3% vs. 51.3%, p = 0.035). No significant differences were observed in age, sex,
patient type, time to initiation of artificial nutrition, severity level, type of nutritional support (enteral
or parenteral), or caloric and protein intake. This subgroup shows a significant reduction in mortality
among obese patients compared to non-obese, suggesting the obesity paradox may exist in specific
contexts. The conclusion of this CT model is that the obesity paradox does not exist in general but
may be observed in specific patient groups, which can be identified using CT-based methodologies.

6. Ensemble Classification Tree Models

As previously noted, one disadvantage of simple CT models is their tendency to overfit, which
limits their generalizability. To mitigate this issue, the idea arose of using not just one CT, but rather
an ensemble of trees, to improve both the precision and generalizability of risk models [2].

Ensembles of CTs can be built in various ways (see Table 1), with the two most common being
bagging and boosting [2,36].

Bagging (bootstrap aggregating) uses parallel ensemble learning to reduce model variance,
averaging the results of individual CTs to produce a final prediction [37]. Each individual tree
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operates independently, allowing for fast performance. A representative of this method is the
Random Forest algorithm [18,38].

In contrast, boosting involves sequential ensemble learning, where each CT is dependent on the
previous ones. Boosting reduces bias and is considered "slow learning" compared to bagging. By
adding one CT after another, the algorithm progressively improves classification. Popular boosting-
based ensemble models include AdaBoost and gradient-based methods like XGBoost [39,40].
Boosting'’s flexibility and strong performance have made it one of the most widely used techniques
in recent years [40].

Although ensemble models outperform single-tree models in prediction accuracy, they come at
the cost of reduced interpretability. This “black-box” nature has led to the development of methods
to explain how these models work, providing clinicians with insights into variable importance and
relationships [40].

One of the most used explanatory techniques is SHAP (SHapley Additive exPlanations) values.
Based on cooperative game theory, SHAP values determine the contribution of each "player"
(variable) to the final model outcome. A SHAP value reflects each variable’s contribution to the
prediction, and results are visualized using importance plots. SHAP also generates partial
dependence plots showing the relationship between each variable and the model outcome [41].

In the obesity paradox example, we use an XGBoost and SHAP model for explanation. Using
ensemble methods like XGBoost involves tuning many hyperparameters, which increases complexity
[42]. Some of the hyperparameters used in our XGBoost model included: learning rate (eta) set at 0.3,
number of trees (n_estimators) set at 20, gamma (loss reduction threshold) at 0, and maximum tree
depth (max_depth) at 6.

The same variables used in the LR and CART models were included. Figure 4 shows the SHAP
values. The XGBoost model identified age as the most important variable, followed by caloric intake
(higher intake = worse outcome), protein intake (higher intake = better outcome), and BMI group.
Within the BMI analysis, the obese group showed an association with improved survival. Figure 5
shows the partial dependence plots. Both figures indicate that being obese is associated with a
protective effect on mortality.
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Figure 4. Graph showing SHAP scores generated by the XGBoost model. AGER: Age groups; KCAL:
Calorie intake (Kcal/kg/day); PROTEIN: Protein intake (g/kg/day); SGA: Subjective Global
Assessment; APA25: APACHE II score greater than 25, BMIG: Body mass index group. The
importance of each variable can be observed, with age being the greatest. It is also observed that the
obese patient group has a negative impact on mortality, suggesting a paradoxical effect of obesity. R
software (xgboost and SHAPforxgboost libraries) was used [22].
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Figure 5. Partial dependency graphs between each variable and mortality. AGER: Age groups; KCAL:
Calorie intake (kcal/kg/day); PROTEIN: Protein intake (g/kg/day); SGA: Subjective Global
Assessment; APA25: APACHE Il score greater than 25; BMIG: Body mass index groups. We observed
different behaviours between calorie and protein intake. Within the BMI groups, mortality was lower
in the obese group. R software (SHAPforxgboost library) was used [22].

7. Model Evaluation

The methodology for evaluating a risk model is also very extensive and could, by itself,
constitute an independent review. However, it is important to note that the development, validation,
and assessment of the predictive accuracy of a risk model should follow standardized procedures,
such as the TRIPOD guidelines (Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis), which provide guidance on all the necessary steps from model
construction to evaluation [43].

Our LR models, the CART-type decision tree, and the XGBoost ensemble model generate a
probability of death for each patient. We can assess model accuracy using global performance metrics
(Brier score, Accuracy, Recall, F-measure), discrimination (AUC ROC), and calibration (calibration
curve with slope and intercept values) [9,38,44].

For example, Figure 6 illustrates the discriminatory ability of the models through the ROC curve
and the corresponding area under the curve (AUC). We observe that the XGBoost ensemble model
achieves the highest AUC, while the LR and CART models yield similar values.
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Figure 6. ROC analysis of the developed models. The area under the ROC curve values are shown.
LR: Logistic regression model; CART: CART-type classification tree; XGBoost: XGBoost-type
ensemble classification tree model; Prob: Probability of death at 28 days. The LR and CART-type AC
models had similar AUCs. The XGBoost model achieved better discrimination (Long's test with p <
0.001).

8. Discussion

In this article, we have described how classification trees (CT) can be used in clinical research as
a complementary tool to traditional statistical techniques.

Our work is not without limitations. The depth of the methodological review could have been
greater, although we believe that the references provided may help interested readers to achieve that
objective. The example used to illustrate the methodological review involved a simple selection of
variables to facilitate the generation, interpretation, and explanation of the classification tree (CT)
models. In model construction, the inclusion of more variables or the use of alternative
methodologies—both simple and ensemble-based—could have led to different results and
conclusions.

We can state that classification tree-based methodologies remain an important area of
experimentation and are constantly evolving technologically [44,45]. Nutrition professionals working
with risk models should consider the use of CTs. Simple trees remain appealing due to their
interpretability, while more sophisticated models must continue to evolve to become more user-
friendly [46]. We also offer our collaboration, sharing our experience with other research groups
interested in developing CT-based models.

9. Conclusions

The application of CT methodology in our example, based on the ENPIC study database, has

allowed us to illustrate several important aspects:

- How CTs can be used to establish cut-off points for continuous variables.

- How they can identify interactions between variables that might go unnoticed in traditional
regression models.

- How multivariable CT models generate decision rules and stratify patient risk based on the most
influential predictors.

- How ensemble methods such as Random Forest and XGBoost improve predictive accuracy.

- And finally, how explanatory tools like SHAP values can provide insight into the structure and
predictions of complex models.
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Although we did not find strong evidence to confirm the existence of the obesity paradox in
critically ill patients in a general sense, CT-based analysis helped us identify a specific subgroup of
patients in which obesity appeared to be associated with reduced mortality.

This suggests that CTs are especially useful in uncovering clinically relevant patterns that could
guide personalized medicine approaches. Nevertheless, caution should be taken when interpreting
these findings, as tree-based models are sensitive to data characteristics and may require validation
in independent cohorts to confirm their generalizability.

In conclusion, CTs—especially when combined with ensemble methods and model explanation
techniques—are valuable tools in clinical epidemiology. They can support both predictive modelling
and the exploration of complex relationships among clinical variables, offering new perspectives to
improve patient care.
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Abbreviations:

The following abbreviations are used in this manuscript:

AdaBoost Adaptive Boosting
Acute Physiology and Chronic Health disease Classification System
APACHEII
II
AUC ROC The area under the ROC curve
BMI Body mass index
Cc4.5 Concept learning systems version 4.5
CART Classification and regression tree
CHAID Chi-square automatic interaction detection tree
Classification Rule with Unbiased Interaction Selection and
CRUISE
Estimation
CT Classification Tree
ctree Conditional inference trees
Evaluation of Practical Nutrition Practices in the Critical Care
ENPIC
Patient
FACT Fast and Accurate Classification Tree
GUIDE Generalized Unbiased Interaction Detection and Estimation
ICU Intensive Care Unit
LR Logistic Regression
Python Python software
QUEST Quick Unbiased and Efficient Statistical Tree
R The R Project for Statistical Computing

SHAP SHapley Additive exPlanations
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Individual Prognosis or Diagnosis
WEKA Waikato Environment for Knowledge Analysis

XGBoost Extreme Gradient Boosting
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