

Review

Not peer-reviewed version

Three-Dimensional Printed Gastrointestinal Tract Models for Surgical Planning and Medical Education: A Systematic Review

Jing Lei , Lisa Tee , Krish Ragunath , Zhonghua Sun *

Posted Date: 6 May 2025

doi: 10.20944/preprints202505.0295.v1

Keywords: three-dimensional printing; gastrointestinal tract; medical education; surgical planning; additive manufacturing

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Three-Dimensional Printed Gastrointestinal Tract Models for Surgical Planning and Medical Education: A Systematic Review

Jing Lei 1, Lisa Tee 1, Krish Ragunath 1,2 and Zhonghua Sun 1,3,*

- ¹ Curtin Medical School, Curtin University, Perth 6845, Australia
- ² Royal Perth Hospital, Perth, Australia
- ³ Curtin Medical Research Institute (Curtin MRI), Curtin University, Perth 6845, Australia
- * Correspondence: z.sun@curtin.edu.au Tel.: +61 8 92667509

Abstract: Three-dimensional (3D)-printed models have been extensively applied in operative planning and medical education to visualize anatomical structures directly and gain a tactile experience. Although studies are available on the use of 3D printing technology in the gastrointestinal tract, there is a lack of detailed analysis of its current applications, particularly in the context of 3Dprinted gastrointestinal tract models for surgical planning and education. Therefore, this systematic review aimed to analyze the current application of 3D printing technology in gastrointestinal tract diseases, with a focus on the techniques, materials, anatomical structures, and the impact of its use. A systematic search was conducted across the PubMed/Medline, Scopus, and Embase databases, adhering to the PRISMA 2020 protocols. A total of 25 articles were identified as eligible for review. The findings revealed that 3D-printed gastrointestinal tract models can enhance technical skills, knowledge, and confidence in performing gastrointestinal surgery or other procedures in a risk-free environment. However, most studies were limited by their small sample size, with only 1-3 models printed (n = 19), and lacked comparative analysis. The influence of the procedure on actual patients was not followed up; hence, the impact of this simulator on clinical practice outcomes remains unknown. Most of the 3D-printed models were designed for a single procedure, which limits their widespread application. Future research should focus on developing more realistic printed materials to accurately simulate real organs, comparing them with other simulators and investigating their impact on actual gastrointestinal procedures.

Keywords: three-dimensional printing; gastrointestinal tract; medical education; surgical planning; additive manufacturing

1. Introduction

Owing to rapid technological advancements, three-dimensional (3D)-printed models have been extensively employed in surgical planning and medical education. 3D-printed models enable direct visualization of anatomical structures and provide a tactile experience for practice [1,2].

In surgical planning, 3D patient-specific printing technology can help surgeons understand complex anatomical relationships and determine which structures can be safely altered or removed. Compared with conventional two-dimensional imaging, a 3D-printed model can provide more complex information for surgical planning in a shorter timeframe [3].

3D-printed models have been utilized for preoperative assessment and surgical training in various conditions, including coronary artery disease, congenital heart disease, kidney and liver diseases, and hepatobiliary diseases [4–8]. These studies have demonstrated the clinical value of using patient-specific 3D-printed models in guiding surgical planning, particularly for complex or challenging conditions.

For the gastrointestinal tract, simulation-based training is becoming an inherent part of medical training. Simulation can improve trainees' professional skills in a risk-free environment, especially for surgical procedures. The existing simulators are physical/mechanical simulators, animal models (both in vivo and ex vivo), and computerized simulators. Conventional mechanical simulators provide natural tactile feedback [9,10]. However, this type of simulator lacks realism and complexity in simulating the human structure [11]. Animal models can provide actual haptic feedback, allowing trainees to experience authentic clinical interventions [9]. Nonetheless, these models are expensive and are difficult to collect and maintain. Computerized simulators can provide multiple endoscopic procedures, anatomies, and interventions for training but lack realistic force feedback and are not cost effective [9].

Recently, 3D-printed models have been utilized for gastrointestinal tract applications, including gastroscope biopsy training, gastric hemostasis training, and presurgical evaluation for gastrointestinal cancer [12–16]. Compared with conventional physical models, 3D-printed patient-specific models are durable, inexpensive, easy to produce, and achieve anatomical realism. Therefore, 3D-printed gastrointestinal models can be valuable and have the potential to serve as training models for presurgical planning and education.

This systematic review aims to summarize the current role of 3D-printed models in the gastrointestinal tract and to explore their application for future practice and research. The rationale for conducting this review is to analyze the current literature regarding the usefulness of 3D printing technology in gastrointestinal diseases. As most studies focus on the applications of 3D printing in maxillofacial and cardiovascular diseases, this review is expected to provide an update on the current status of 3D-printed models in the gastrointestinal arena.

2. Materials and Methods

2.1. Search Strategy

The literature search was conducted in accordance with the PRISMA (Preferred Reporting for Systematic Reviews and Meta-Analysis) guidelines [17]. The search databases for this review were PubMed/Medline, Scopus, and Embase (Table 1).

Table 1. Search strategy used to identify suitable studies for inclusion in the review.

Search Strategy 1		Search Strategy 2		Search Strategy 3
"3D print" or "3D-	AND	"gastrointestinal" or	AND	"medical education" or
printed" or "3D		"gastric" or "stomach"		"medical training" or
printing" or "3		or "colon" or		"presurgical" or "surgical
dimensional print"		"intestine"* or		plan" or "surgical
or "3 dimensional		"esophagus" or		planning" or "simulation"
printed" or "3		"bowel" or		
dimensional		"duodenum" or		
printing" or "three		"rectum"		
dimensional print"				
or "three				
dimensional printed"				
or "three				
dimensional				
printing" or				
"additive				
manufacturing"				

2.2. Inclusion and Exclusion Criteria

The articles were managed using the EndNote (v. 20.6) software. Endnote's automated processes removed duplicate records.

Reports were included if they were original, full-text, peer-reviewed articles written in English and published in the last 10 years exploring the use of 3D-printed models of the gastrointestinal tract. Articles discussing 3D-printed model production methods/materials were included. The limited original research present in the literature ultimately required the inclusion of case reports.

Articles were excluded if they exclusively discussed using 3D-printed models for medication or animal tests, including articles about 3D-printed gastrointestinal vascular models. 3D-printed models of the digestive glands, such as the liver, gallbladder, and pancreas, were also excluded. Gray literature, including conference papers, letters to the editor, books, practice guidelines, and preprints, was also excluded.

2.3. Article Quality Assessment

The quality of each study was assessed using the "Quality Assessment Tool for Studies with Diverse Designs" (QATSDD) developed by Sirriyeh et al [17].

2.4. Data Extraction and Synthesis

The data for this study were collected on the purpose and applications of 3D-printed gastrointestinal tract models, including the organs printed, sample size, imaging modalities, and software used for 3D printing, as well as the 3D printers, materials used, relevant findings, research limitations, and the country in which the studies were conducted. The data extraction was performed by one observer (JL) and double-checked by another observer (ZS).

3. Results

3.1. Study Selection

Nine duplicates were removed after searching three databases. The remaining articles were screened based on title and abstract, and 288 unrelated articles were removed. Following full-text screening, articles were excluded if they did not involve human gastrointestinal tract models. Eighteen eligible articles were identified via full-text screening [18,19,23–27,30–35,38–42]. An additional seven articles were selected from the reference lists [20–22,28,29,36,37]. The total number of articles included in the review was 25 (Figure 1).

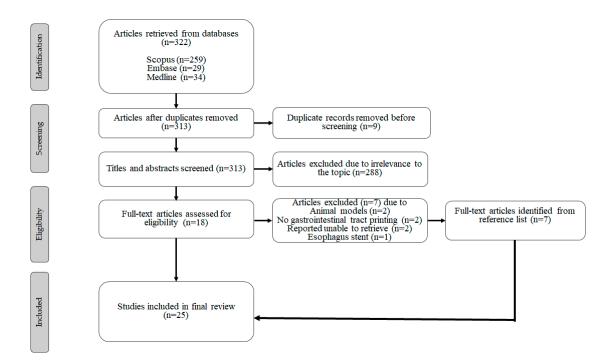


Figure 1. PRISMA flow chart showing use of search strategy to locate eligible studies.

3.2. Study Characteristics and Findings

Table 2 lists the design characteristics and key findings of these 25 studies. Of these, 16 were experimental studies [18,19,21–25,27,32–39], 4 were case reports [20,26,28,41], and 5 were descriptive surveys [29–31,40,42]. Thirteen studies equally represented the USA [18,20,23,38,41], Canada [25,30,34,35], Germany [19,37], Italy [28], and UK [36]. Ten studies were from Korea [21,24,27,29,32,40] and Japan [22,26,31,33]. The remaining two studies were from Slovakia [39] and China [42].

3.3. 3D Printing Details

Table 3 presents the 3D printing details of all 25 studies, including the imaging modalities used for 3D printing, the software used for image processing, the organs printed, the 3D printers employed, the 3D printer materials, the printing time, and the printing cost.

3.3.1. 3D Printing Processing and Materials

Of the 25 studies, 16 used CT imaging for 3D printing [19–22,24,26,28–33,36,39–41], 1 used both CT and magnetic resonance imaging [42], and the remaining 8 did not mention the data resource for printing. Eight studies mentioned the printing method. Six used fused deposition modeling (FDM) [24,30,33,39,40,42], and two used stereolithography printing modeling [28,32].

The 3D printing time varied from 6 h to 48 h. The highest printing cost was \$1175 [18], and the lowest was \$1033.

Silicone was the most commonly used material, accounting for 45% of the studies [18,19,22,24,25,27,29,32,34–36,39,40]. The second most commonly used material was polylactic acid (PLA) [23,25,33,35,39]. Other printing materials included resin, rubber-like material, PlatSil Gel-10, and plastic (Figure 2). In Yu et al.'s study, PVA/polyacrylamide (PAM) hydrogels were utilized as a novel material for gastrointestinal 3D printing. Six studies used two materials concertedly to print models [25,27,32,35,39,41].

3.3.2. Printed Gastrointestinal Organs

According to the 25 studies, 3D-printed gastrointestinal organs included the entire digestive tract. With 10 articles (42%), the stomach was the most frequently modeled organ [18,21,24,25,27–29,32,38,42] (Figure 3). 3D-printed rectum models were reported in only three studies [19,22,41]. Most studies (67%) used CT images for 3D printing.

3.4. Purposes of 3D-Printed Gastrointestinal Models

Nineteen studies focused on specific training and preoperative assessment for gastrointestinal tract surgery or other procedures [20,21,23–29,31,33–36,38–41], including two pediatric surgical planning [25,36]. Three studies developed abdominal, gastric, and laparoscopic phantoms [19,30,32]. Two studies were designed to create training models for colonoscopy [22,37]. One study utilized a novel material for gastrointestinal 3D printing [42].

3.5. Quality of the Studies

The articles included in this review were heterogeneous and comprised four case reports [20,26,28,41]. All 25 studies were evaluated using "QATSDD" developed by Sirriyeh et al [17]. The quality of the trials varied, ranging from 21.4% to 76.2%. Six studies were rated <50%, four of which were case reports. The results are presented in Table 4.

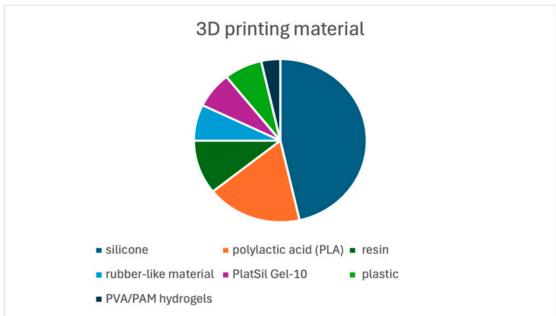


Figure 2. 3D printing materials used for printing the gastrointestinal tract models.

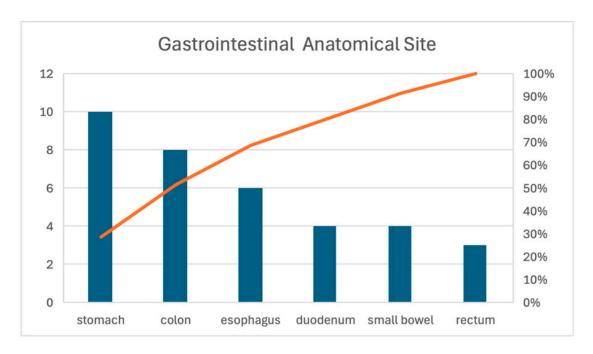


Figure 3. Frequency of the 3D printed models for printing the gastrointestinal anatomical sites.

Table 2. Key characteristics and findings of eligible studies in the review.

Article	Year	Purpose	Country of	Study Design	Sample	Key Findings	Limitations
Holt et al [18]	2015	Develop a training model that can be used to	Origin USA	Experimental study	Size Stomach	The training	Resistance
Hon et al [10]	2013	improve technical skills, knowledge, and	USA	Experimental study	and	increased the	
							was
					duodenum	confidence of 11	encountered
		ampullectomy			model n = 1;	participants in	when
					participants	using the model,	passing
					n = 16	with a mean	through the
						score of 2.2 to	stomach.
						2.9. Participants'	There was a
						ampullectomy	separation
						technique	potential
						improved	during
						(66.7%), which	endoscope
						continued to	maneuvers
						increase with	when using a
						additional	rigid base
						sessions	and ampoule
						involving the	holder
						use of the model	combination
						(73.3%). The	with a
						model had an	flexible
						overall visual	stomach-
						realism score of	duodenum.
						3.2.	

8 of 32

Kenngott et al [19]	2015	Design a phantom with realistic anatomy,	Germany	Experimental study	Torso model	Accurate	The overall
		haptics, modularity, and reproducibility			n=1; Rectum	reproduction	haptic
					models n =	from 3D digital	realism was
					10; surgical	model to	not
					residents n =	silicone organ	calculated.
					5; surgical	was achieved.	
					consultant n	Accuracy of the	
					= 1	silicone rectal	
						models showed	
						an average	
						mean square	
						error of 2.26 mm	
						when compared	
						to the original	
						CT images.	
Dickinson et al [20]	2015	Develop 3D-printed models for complex	USA	Case report	Esophagus	These 3D-	The sample
		esophageal cases			model n = 2	printed models	size was
						provided a good	small.
						understanding	
						of the anatomic	
						relationships of	
						complex	
						esophagus	
						cases.	
Kim et al [21]	2017	Develop a flexible anthropomorphic 3D- I	Korea	Experimental study	Gastroduodenal	The 3D-	The
		printed model of malignant gastroduodenal			model n = 1	printed GD	flexibility
		(GD) strictures for an in vitro experiment				phantom	of the 3D-
						model aided	printed

					T		
						in comparing	
						food passage	
						between the	sufficient to
						stent	mimic
						abutment and	actual GD
						non-stent	properties
						abutment.	and lacked
							gastric
							peristalsis.
Noda et al [22]	2017	Design a physical simulator using 3D	Japan	Experimental study	Colonoscopy	The new	This
		printing technology for a more realistic			model n=1.	simulator was	simulator
		colonoscope insertion			Very	determined to	was made
					experienced	be	from stiff
					colonoscopists	significantly	silicone and
					n = 5;	more realistic	did not
					experienced	than the	allow
					colonoscopists	CM15 model	•
					n = 9; less	in terms of	deflation
					experienced	anatomical	
					colonoscopists	structure,	
					n=2	visual	
						response,	
						haptic	
						response, and	
						looping.	
	1				1	l	1

LU	10	32	

-	T	1	1				ı			
Barber et al [23]	2018	Develop a reusable three-dimensional	USA	Experimental	study	Esophageal		All	10	It was a
		(3D)-printed tracheoesophageal prosthesis	3			lumen n =	1;	participan	ts	small-
		(TEP) simulator to facilitate				junior reside	ents	agreed	that	sample-size
		comprehension and rehearsal before actual	1			n = 5; ser	nior	the simu	lator	study and
		procedures				residents n =	= 5	exercise		lacked
								provided	a	longitudinal
								beneficial		data. There
								experienc	e,	was no
								anatomic		follow-up
								visualizat	ion,	to validate
								and	safe	the survey
								practice	for	responses
								actual	TEP	from junior
								procedure	s.	and senior
										residents.
Lee et al [24]	2018	Create a stomach model for biopsy	Korea	Experimental	Stoma	ch model n	The	time take	n G	astric
		training and investigate its efficacy and		study	= 1; re	esidents n =	to co	omplete th	e p	eristalsis and
		realism			10;	first-year	traini	ing	th	e movement
					fellows	s n = 6;	proce	edure wit	h o	f the stomach
					second	l-year	the	3D biops	y o	wing to
					fellows	s n = 5;	simu	lator	h	eartbeat and
					faculty	members n	decre	eased	re	espiration
					= 5		signi	ficantly	W	rere not
							with	repeate	d re	produced.
							trials	th (th	e T	he elasticity
							comp	pletion	C	ould not reach
							times	s wer	e th	e same level

	1		1	1	ı		1
						significantly	as that of a real
						shorter than that	stomach. There
						in the first trial	was a possible
						in all of these	bias in
						groups: 169. 6	evaluating the
						versus 347	simulator using
						seconds in the	questionnaires.
						resident group;	
						85.7 versus	
						143.8 seconds	
						in the first year	
						fellow group;	
						96 versus 127.2	
						seconds in the	
						second year	
						fellow group	
						and 91.2 versus	
						114.2 seconds	
						in the faculty	
						group, with p all	
						<0.05).	
Williams et al	2018	Evaluate the use of a 3D model of infant	Canada	Experimental	Hypertrophic	For	The sample
[25]		hypertrophic pyloric stenosis as a		study	pyloric stenosis	inexperienced	size was small.
		teaching tool for surgical residents			model n=1;	participants, the	The adult
					medical students n	time to	version of the
					= 4; general	complete the	box trainer
					surgery residents n	procedure was	caused some
					= 8; adult general	significantly	problems with

					surgeons $n = 3$;		pediatric
					pediatric surgeons	70% of the	instruments.
					n = 2	participants	Some
						agreed that the	participants'
						3D-printed	self-
						model	assessment of
						accurately	their
						simulated	laparoscopic
						certain	skills was
						components of	above or below
						the	their actual
						pyloromyotomy	level. Whether
						and would be a	^
						good training	model
						tool for	translated into
						beginners	improved
						(73.9%) and	performance in
						experts	the operating
						(71.4%).	room was not
			_				evaluated.
Hojo et al [26]	2019	Develop a 3D-printed colon model to	Japan	Case report	Colon model $n = 1$	The 3D-printed	There was one
		aid in laparoscopic surgery for				simulation	case that lacked
		descending colon cancer with				helped	3D printing
		concomitant abdominal aortic				determine the	details.
		aneurysm				port site and	
						visualize the	
						vascular	
						structures before	

			T		T	_	T
						laparoscopic	
						surgery under	
						challenging	
						conditions.	
Lee et al [27]	2019	Develop a novel 3D-printed simulator	Korea	Experimental	Stomach	The endoscopic	The gastric
		to overcome the limitations of the		study	hemostasis model	handling in the	movement was
		previous endoscopic hemostasis			n = 1;	3D-printed	not reproduced.
		simulators			endoscopists n =	simulator was	The evaluation
					21 (first-year	realistic and	using
					fellows $n = 11;$	reasonable for	questionnaires
					experts $n = 10$)	endoscopic	could have
						training and	been biased.
						could reduce	The model's
						patients' risks.	elasticity
						The procedure	differed from
						time of the	that of the
						beginner group	actual stomach.
						decreased	The model was
						sharply after	not compared
						each trial	with other
						(procedure	simulators.
						completing	
						times for	
						hemoclipping	
						and injection	
						was 116.1 and	
						161.3 seconds	
						for 1st trial, and	

						reduced to 30.5	
						and 43 seconds	
						for 5th trial).	
Marano et al	2019	Develop a life-size 3D-printed	Italy	Case report	Esophagus model	This model	There is no
[28]		esophagus model that included the			including the	helped surgeons	information
		proximal stomach, the thoracic aorta,			proximal stomach	verify the critical	provided about
		and the diaphragmatic crus for			n = 1	structures and	the number of
		presurgical planning				plan all possible	surgeons
						maneuvers.	participating in
							the study, and
							how useful it is
							to assist with
							surgical
							planning.
Kwon et al [29]	2020	Develop a 3D-printed optimized	South	Descriptive	Lower stomach	The 3D model,	The model did
		endoscopic retrograde	Korea	survey	and duodenum	which was	not reflect the
		cholangiopancreatography (ERCP)			models $n = 8$	durable,	same order as
		training mode				relatively cheap,	humans. Its
						and easy to	surface tension
						make, allowed	was higher than
						trainees to	that of the
						practice various	biological
						specialized	tissue.
						ERCP	
						procedures.	

	1		T	T	T	т	_
Anwari et al	2020	Design and construct a low-cost 3D-	Canada	Descriptive	Small and large	Outline the	The model
[30]		printed abdominal model with		survey	bowel model n =	specific steps in	was not
		radiologically tissue-realistic and			1	creating a 3D-	validated.
		modular anthropomorphism				printed	
						anthropomorphic	
						abdominal model	
						using CT-based	
						scans with	
						radiologically	
						accurate tissue	
						characteristics.	
Hojo et al [31]	2020	Use 3D-printed models and 3D virtual	Japan	Descriptive	Colon models n =	The 3D-printed	The sample
		images to help resect intraabdominal		survey	2	model provided	size was
		recurrence of colorectal cancer				patient-specific	small. The
						anatomy and	study design
						accurately	was
						identified the	retrospective
						location of the	and lacked
						recurrent lesion	statistical
						for surgeons.	analyses.
Kwon et al [32]	2020	Develop 3D-printed gastric models	South	Experimental	Stomach model n	3D printed	Small sample
		with patient-specific,	Korea	study	= 3	models were	size with no
		anthropomorphic, and mechanical				printed with	analysis of
		characteristics similar to those of the				materials	these 3D
		human stomach for the intragastric				comprising	printed
		balloon technique				Agilus, Elastic	models in
						and Flexa to test	clinical

3D-printed

and

young

models simulated

the surgical site

effectively

colorectal

surgery

helped

model n = 5

limitations

technical

required

difficulties

and the time

create the 3D

the

were

					their mechanical properties. The	training or
					properties. The	practical
					1 1	praetrear
		1			mean elongation	value.
					and tensile	
					strengths of	
					Agilus, Elastic	
					and Flexa were	
					264%, 145% and	
					146%, and 1.14,	
					1.59 and 21.6	
					MPa,	
					respectively.	
					Agilus was the	
					most flexible	
					material with	
					elongation	
					showing most	
					similar ranges	
					compared to	
					human stomach.	
Hojo et al [33] 2021 Establish	a 3D-printed model	Japan E	Experimental	Duodenum	The application	The

study

comprising the superior mesenteric

artery and superior mesenteric vein to

laparoscopic

right

optimize

hemicolectomy

practice HSBA.

						surgeons	models. This
						understand the	retrospective
						anatomical	study lacked
						relationship in	effectiveness
						the variable	in clinical
						intraoperative	application.
						views.	
Oxford et al [34]	2021	Test the face and content validity of a	Canada	Experimental	Large intestine n =	The simulator	The layers and
		3D-printed bowel anastomosis		study	1; small intestine	was regarded as	the wall of the
		simulator			n = 1; senior	highly realistic	simulator need
					residents $n = 3$;	and helpful for	to be
					general surgeons n	training. An	improved. The
					= 6	overall score of	study lacked
						3.98 was ranked	control group
						for training and	comparisons
						4.11 for	with the
						simulation-	human bowel
						based medical	and other
						education.	available
							simulators.
Habti et al [35]	2021	Develop a 3D-printed, low-cost, and	Canada	Experimental	Small intestine	The simulators	The residents'
		realistic bowel model for hand-sewn		study	simulator $n = 18$;		experience
		bowel anastomosis (HSBA) training			surgical residents		was limited.
					n = 16	useful tools to	The silicone
						learn and	tore off

							quickly during suturing.
Neville et al [36]	2022	Create and validate a novel, affo 3D-printed simulation model for esophageal atresia tracheoesophageal fistula repair		Experimental study	Esophagus n = 1; experienced group (consultants n = 11; senior registrar n = 1) inexperienced group (senior house officers n = 3; registrars n = 20; consultants n = 5)	model was cost effective, reusable, and visually and functionally comparable to the actual procedure. The anatomical realism of the model was	The availability of evaluation training resources can differ significantly between countries. Self-reported levels of experience are
						scored 4.2 out of 5.0, surgical realism 3.9. All participants strongly agreed that the model was useful for paediatric surgery training (mean score 4.9).	likely to be inaccurate. The impact of this model-based training on patient outcomes remains unknown.
Steger et al 2 [37]	2023	Develop and validate a Germany novel model using 3D printing technology for	Experimental study	Colon training model n = 1; medical student n	The simulator was more realistic in anatomical rep		impact of this ator on actual al practice

	1	1		T			
		adhesion forces			= 1; assistant	including visual and tactile	
		between the colon and			doctors $n = 3$;	feedback and colon shape, and	unknown.
		the abdominal wall			surgeons $n = 5$;	it permitted a more realistic	
					gastrointestinal	distinction between different	
					endoscopy	skill levels.	
					experts $n = 2$		
Mowry et al	2023	Develop a 3D-printed	USA	Experimental	Esophagus and	The participants' knowledge	This was a single-
[38]		balloon tamponade		study	stomach model n	and confidence in placing a BT	center, small-sample-
		tube (BT) model and			= 1;	tube improved significantly	size study. No data
		evaluate the			gastroenterology	after 3D-printed simulator	were available on the
		performance of			fellows $n = 15$;	training. Sefl-confidence was	time to competence
		gastroenterology			gastroenterology	significantly increased in both	or the sustainability
		fellows and faculty in			faculty n = 14	the fellow group (from 3.7 to	of the training
		BT tube placement				6.5, p<0.001) and faculty group	beyond 3 months.
		after training with the				(from 4.8 to 8.0, p<0.001). A	Moreover, the impact
		model				high degree of satisfaction was	of the training on
						from both groups after training.	clinical outcomes
							was not assessed.
Zahradniková	2023	Develop an	Slovakia	Experimental	Esophagus model	Most participants observed that	This was a single-
et al [39]		inexpensive and		study	n = 1; medical	the 3D model was an	center, with a small
		reusable 3D-printed			students $n = 7$;	appropriate training tool. The	sample size study.
		model for			pediatric surgery	highest ratings in the physical	
		thoracoscopic			trainees $n = 4$;	attribute area were for the	
		esophageal atresia and			experienced	overall impression and the	
		tracheoesophageal			surgeons $n = 7$	tool's usefulness as a simulator	
		fistula repair training				with a mean score of 4.66 and	
						4.75. Participants ranked the	
						model's realism and working	

						environment with a mean score of 4.25 and 4.5, respectively.	
Gu et al [40]	2024	Develop a large intestine model using 3D-printed technology to provide training in colonoscope insertion, cecum intubation, loop reduction, and stenting within stenotic areas	Korea	Retrospective descriptive study	Large intestine model n = 1	The model allowed the repeated practice of basic colonoscope insertion and stent placement for colonic stenosis and achieved a life-like representation of colonic malignant tumor-induced stenosis.	The surface tension of silicone is greater than that of human colonic mucosa. Hence, the increased friction between the model surface and the endoscope resulted in strong resistance when the endoscope was inserted. This model did not create a stenosis module at the exact angulation location.
Keller- Biehl et al [41]	2024	Create a 3D rectal model, including the tumor and surrounding structures, to help in preoperative and intraoperative planning	USA	Case report	Gastrointestinal stromal tumour model n = 1	The 3D model added value to patient care and helped the patient understand the surgery.	The model did not provide any new information or alter the surgical plan. The more expensive model did not offer additional or better information than the cheaper one.

1	of	32

Yu et al	2024	Create a 3D-printed	China	Experimental	Novel elastic	The new-material 3D-printed	The content validity
[42]		gastrointestinal model		study	hydrogel model	model exhibited high	of the model needs to
		using the PVA/PAM			for surgical	appearance levels, overall	be improved,
		tridimensional			training $n = 1$	difficulty, stomach wall	particularly in terms
		hydrogel				structure, tissue elasticity, and	of enhancing surgical
					tactile feedback.		skills and shortening
							the learning curve.

Table 3. 3D printing details as reported in these studies reviewed.

Article	Organs Printed	Imaging Modalities Used for 3D Printing	Software for Image Processing and Segmentation	3D Printer	3D Printer Materials	3D Printing Methods	Printing Time	Printing Cost
Holt et al.	Stomach and	N/A	Solidworks Corp,	Connex 260 v;	Silicone rubber	N/A	N/A	\$1,175
[18]	duodenum		Waltham, Mass	Stratasys Inc, Eden				
				Prairie, Minn				
Kenngott	Rectum	CT image	MITK (German	Z 450, Z Corporation,	Soft silicone	N/A	N/A	\$200
et al. [19]			Cancer Research	Burlington, USA)	(Ecoflex 0010,			
			Center Heidelberg);		Ecoflex 0030,			
			VTK (Kitware Inc.,		and Dragon			
			New York, USA);		SkinFX/Pro)			
			ITK (Kitware Inc.,		Silicone additive			
			New York, USA)		slacker (Smooth-			
					On Inc., Easton,			
					USA)			

	22 of 32

Dickinson et	Esophagus	CT	Proprietary soft	ware	PolyJet 3D	print	ter	N/A	N/A	N/A	N/A
al. [20]			(Materialise, Leu	iven,	(Stratasys)						
			Belgium); Mimics soft	ware							
			(Objet350 Connex m	ıulti-							
			material, Stratasys,	Eden							
			Prairie, MN)								
Kim, et al.	Stomach	CT	Inhouse advanced soft	ware	Objet500 C	Connex	x3,	Rubber-like	N/A	N/A	N/A
[21]	and		(AVIEW, Asan Me	dical	Stratasys			material			
	duodenum		Center, Seoul, Korea)		Corporation,			(Tango TM			
					Rehovot, Isra	ıel		Family)			
Noda et al.	Sigmoid	CT	VINCENT Ver3.3, FUJIF	ILM	Fortus 36	0Lmc-	-L,	Silicone	N/A	N/A	N/A
[22]	colon and		Med. Sys. Corp. Japan, To	kyo,	Stratasys, US	SA					
	rectum		Japan)								
Barber et al.	Esophagus	N/A	Fusion 360 CAD soft	ware	Ultimaker 2	2 + 3	3D	Polylactic	N/A	N/A	\$35–\$50
[23]			(Autodesk, San Rafael, CA	A)	printer (U	ltimak	er,	acid (PLA)			
					The Netherlan	nds)					
Lee et al.	Stomach	CT	3D slicer version 4.5.0	(FD	M) 3D prin	ter P	latSi	1 Gel-10	Fused deposition	N/A	\$230
[24]			MeshMixer 3.0	(clo	ne S270 a	ınd (F	Polyt	tech,	modeling (FDM)		
			(Autodesk, San Rafael,	clon	ie K300,	K. E	asto	n, PA,			
			CA, USA)	Clo	ne, Daejed	on, U	JSA)	silicone			
				Kor	ea; Replicator	2,					
				Mak	kerBot,						
				Bro	oklyn, NY, US	A)					

Williams et al. [25]	Stomach	N/A	CAD software	Lulzbot TAZ4 3D printer (Aleph Objects Inc., Colorado, USA)	PLA silicone rubber (Smooth-On Inc., Pennsylvania, USA)	N/A	N/A	\$30/stomach
Hojo et al. [26]	Colon	CT	N/A	N/A	N/A	N/A	N/A	N/A
Lee et al. [27]	Stomach	N/A	Netfabb professional version 5 (Netfabb GmbH, Lupburg, Germany)	Form 2 (Formlabs Inc, Somerville, MA, USA)	Soft silicone, Platsil Gel-10 (Polytek, Easton, PA, USA)	N/A	N/A	\$200
Marano et al. [28]	Esophagus, proximal stomach	СТ	N/A	N/A	Curing resin	Stereolithography	48 working hours	\$230
Kwon et al. [29]	Lower stomach and duodenum	СТ	MeshLab MeshMixer	3DM DW-0 3DMaterials, Zero 2500, Zeron, Korea			N/A	N/A

24	10	32	

Anwari et al. [30]	Small and large bowel	СТ	Vitrea®, v.6.9, Vital Images, Minnetonka, MN Slicer software (Boston, MA); CAD software (Blender, v.2.78 Amsterdam, NL)	Rostock Max V2 printer	Acrylonitrile butadiene styrene plastic	FDM	N/A	\$900 (including the liver, colon, kidneys, and spleen)
Hojo et al. [31]	Colon	CT	N/A	N/A	N/A	N/A	N/A	N/A
Kwon et al. [32]	Stomach	CT	Mimics Research 17.0 software (Materialise, Leuven, Belgium)	Elastic/Form 2, Formlabs Inc., MA, USA; Flexa 693/XFAB, DWS Inc., Meccanica, Italy; Agilus Translucent, Vero Magenta/Objet500, Stratasys, Ltd., MN, USA)	Rubber-like material (Agilus Transparent; Stratasys Ltd.) silicone (MED6- 6606; NuSil, CA, USA)	Laser stereolithography PolyJet printing	N/A	N/A
Hojo et al. [33]	Duodenum	СТ	OsiriX MD (Pixmeo Sarl, Bernex, Switzerland); Meshmixer version 3.5 (Autodesk Inc., Venice, CA, USA)	Airwolf 3D, Fountain Valley, CA, USA)	PLA	FDM	10 h	\$10

Oxford et al.	Small and	N/A	Fusion 360 CAD software	Ultimaker S5 3D	Smooth-On	N/A	N/A	\$2.67-
[34]	large bowel			printer	silicone			\$131
Habti et al. [35]	Small bowel	N/A	Fusion360 TM (Autodesk Inc., San Rafael, CA)	Ultimaker S5 3D printer (Ultimaker B.V., Utrecht, The Netherlands)	3D-Fuel TM Pro PLA filament material (Fargo, ND) silicone	N/A	N/A	\$35
Neville et al. [36]	Esophagus	СТ	ITK-SNAP version 3.8.0; Meshmixer and Fusion 360 (Autodesk Inc., CA, United States)	Prusa i3 MK3S 3D printer (Prusa Research, Prague, Czech Republic)	Platinum- catalyzed silicone (Smooth-On Inc., Pennsylvania, United States)	N/A	N/A	£20
Steger et al [37]	Colon	N/A	Autodesk ReCap; Meshmixer (Autodesk, Inc., San Rafael, CA, USA); Fusion 360 (Autodesk Inc., San Rafael, CA, USA)	SLA printer Formlabs2 (Formlabs GmbH, Berlin, Germany)	Durable resin	N/A	N/A	£260
Mowry et al [38]	Esophagus and a portion of the stomach	N/A	N/A	N/A	Plastic (NinjaFLEX)	N/A	N/A	N/A
Zahradniková et al [39]	Esophagus	CT	3D Slicer Blender3D	Prusa i3 MK3S	Prusament PLA plastic silicone	FDM	slightly <24 h	N/A

Gu et al [40]	Large	CT	MEDIP	PRO	v2.0.0	FDM-type 3D printer	silicone	FDM	N/A	N/A
	intestine		(Medical IP	Co., Ltd.))					
Keller-Biehl	Rectum	CT	Mimics	Mate	rialise	Dynamism xRize 3D	Colorful resin, a	N/A	6–8 h	\$30–\$300
et al [41]			(Belgium),	m	edical	printer (Denver,	translucent and			
			segmentatio	on softwar	e	USA); Stratasys J750	flexible material			
						Digital Anatomy				
						Printer (Minnesota,				
						USA)				
Yu et al [42]	Stomach	CT and MR	Mimics Ma	aterialise]	Magic	FDM printer	PVA/PAM	FDM	N/A	N/A
	and small		24 software	;			hydrogels			
	and large									
	bowel									

Score Holt, et al. [18] Kenngott, et al. [19]. 29 69.0% Kim,et al. [21] 29 69.0% Noda, et al. [22] 31 23 Barber, et al. [23] 54.8% Lee, et al. [24] 71.4% Williams,et al. [25] 81.0% Hojo, et al. [26] 21.4% Lee, et al. [27] Marano, et al. [28] Kwon, et al. [29] nwari,et al. [30] Hojo, et al. [31] 33.3% 14 28 22 29 32 30 Kwon, et al. [32] Hojo,et al. [33] 52.4% Habti, et al. [35] 76.2% Neville, et al. [36 31 Steger, et al. [37] 73.8% vrv. et al. [38 69.0% Zahradniková, et al. [39] Gu, et al. [40] 0 0 2 2 0 19 45.2% 0 15 35.7%

Table 4. Quality assessment of articles using the scoring method developed by Sirriyeh et al [17].

4. Discussion

Analysis of the 25 studies included in this review revealed several key findings. First, 3D-printed gastrointestinal tract models can enhance technical skills, knowledge, and confidence in performing gastrointestinal surgery or other procedures in a risk-free environment. Second, the 3D patient-specific printing method enables the creation of realistic anatomy, haptics, modularity, and reproducibility for presurgical planning and training. Nonetheless, most were small-sample studies and lacked comparison analysis. The influence of the models on actual patient procedures was not followed up. In addition, most of the 3D-printed models in these studies were designed for a single procedure, which limits their widespread application.

4.1. 3D Printing Methods and Materials for the Gastrointestinal Tract

According to current studies, FDM is the primary method for 3D printing of the gastrointestinal tract. FDM is a popular 3D printing technology with rapid production, cost-efficiency, accessibility, broad material adaptability, and the ability to produce complex components [43,44]. Stereolithography printing has also been utilized for producing 3D models of the gastrointestinal tract, but its cost is higher than that of FDM. Furthermore, research on the technical differences among various 3D printing technologies for the gastrointestinal tract is limited, and data on printing time are scarce. Only four studies have reported printing times ranging from 6 h to 48 h [28,33,39,42]. This lack of details affects the overall assessment of the current gastrointestinal 3D printing technology.

Silicone is the most commonly used printing material for gastrointestinal models that can provide tactile feedback to users. Several types of silicone suitable for 3D printing of the gastrointestinal tract have been investigated. Kenngott et al. compared three types of silicone for 3D printing: Ecoflex 0010, Ecoflex 0030, and Dragon Skin FX-Pro [19]. In this study, 10 silicone rectum models were produced using mixtures of different silicone types. The rectum model created with three parts of Ecoflex 0030 and one part of Slacker showed the best results in terms of haptic realism. In Kwon's research, the tensile strengths and elongations of three materials were compared according to the number of silicone coatings [32]. Habti's research produced six silicone 3D-printed models of the small bowel, each with a different Shore hardness. The model with a Shore hardness of 0–30 was considered the most representative of small bowel anastomosis tissue [35].

PLA is often used in combination with silicone. Studies have documented the use of PLA to print molds and then silicone to prepare the final intestinal model [25,35,39]. Resin-printed models have been used in some case reports for presurgical planning [28,41].

Apart from the above-mentioned printing materials, one study explored the application of PVA/PAM hydrogels in 3D-printed models. This research noted that PVA/PAM hydrogels were an elastic and flexible material that closely simulated the physical characteristics of soft tissues, such as the brain, liver, and gastrointestinal tract [42]. This research has provided potential innovative material for future 3D gastrointestinal printing.

There is a dearth of studies comparing various printing materials. Examining more realistic printed materials is a potential research area.

4.2. 3D Printing of Gastrointestinal Organs and Their Applications

The common 3D-printed gastrointestinal organs are the stomach, colon, and esophagus. Most studies have focused on specific training and preoperative evaluation for surgeries and other procedures related to the gastrointestinal tract.

The endoscopic procedure is the primary treatment for gastric diseases. Therefore, 3D-printed stomach models have predominantly been applied for endoscopic procedure training, including endoscopic ampullectomy, biopsy, endoscopic hemostasis, intragastric balloon, and stent placement training [18,21,24,27,29,38].

Unlike the gastric model, the 3D-printed colon model focuses on preoperative planning in addition to endoscopic training, which is associated with a high incidence of colon tumors. 3D-printed models have provided patient-specific anatomy and more accurate identification of tumor locations for surgeons under challenging conditions [26,31]. Moreover, studies have analyzed the colon morphology and designed models based on three common morphological patterns to improve their realism [22].

The use of the 3D esophageal model has increased in recent years. Dickinson et al. reported the first application of 3D-printed esophageal models to complex esophageal cases [20]. The studies of Neville et al. and Zahradniková et al. explored the use of 3D esophageal models in pediatric surgery. The researchers developed 3D-printed esophageal models for esophageal atresia with tracheoesophageal fistula repair [36,39]. Most participants opined that the 3D model was a suitable training tool. The 3D-printed model can potentially be used as a training tool by pediatric surgeons for esophageal procedures.

Participants' assessment of the 3D-printed models was evaluated using a 5-point Likert scale questionnaire survey tool. These studies showed that 3D-printed models can provide a better appreciation of anatomic relationships, more realistic tactile feedback and visualization, and augment the participants' confidence and skill in gastrointestinal tract surgery and other procedures.

Current research has also mentioned the disadvantages of 3D-printed gastrointestinal models. Gastrointestinal tract peristalsis and movement cannot be reproduced in 3D-printed models, and the elasticity cannot reach the same level as that of a real organ.

4.3. Limitations

Some limitations need to be acknowledged. First, the results of the studies in this review are based on participants' subjective evaluation and lack comparison with conventional clinical training and other models. Only two studies compared the 3D-printed model with previous simulators [22,37]. There could be a possible bias in evaluating the simulator using questionnaires²⁴. The impact of this simulator on actual clinical practice outcomes remains unknown [37]. Second, some studies did not provide the details of 3D printing, which makes it difficult to compare the methods.

5. Conclusions

This study has analyzed the development and application of 3D-printed gastrointestinal tract models in presurgical planning and medical education in the last decade. The literature review has established that 3D-printed gastrointestinal models provide realistic anatomical structures and enhance the trainees' skills and confidence by using real patient images. However, the model's elasticity must be improved to simulate the real organ. Future research should focus on comparing the models with other simulators and examining their impact on actual gastrointestinal procedures.

Author Contributions: Conceptualization, J.L. and Z.S.; methodology, J.L.; formal analysis, J.L.; data curation, J.L.; writing—original draft preparation, J.L.; writing—review and editing, J.L, L.T, K.R, and Z.S; visualization, J.L. and Z.S.; supervision, Z.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable as this is a review article.

Informed Consent Statement: Not applicable as this is a review article.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

3D Three-dimensional
BT Balloon tamponade tube
CT Computed tomography

ERCP Endoscopic retrograde cholangiopancreatography

GD Gastroduodenal

HSBA Hand-sewn bowel anastomosis

MR Magnetic resonance
PVA Polyvinyl alcohol
PAM Polyacrylamide
NA Not applicable

QATSDD Quality assessment tool for studies with diverse designs

TEP Transeosophadeal prosthesis

References

- R. Javan; D. Herrin; A. Tangestanipoor. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis. Acad. Radiol. 2016,23(9), 1183-1189.
- Matsumoto, J. S.; Morris, J. M.; Foley, T. A.; Williamson, E. E.; Leng, S.; McGee, K. P.; Kuhlmann, J. L.; Nesberg, L. E.; Vrtiska, T. J. Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic. Radiographics, 2015, 35(7), 1989-2006.
- 3. Marconi, S.; Pugliese, L.; Botti, M.; Peri, A.; Cavazzi, E.; Latteri, S.; Auricchio, F.; Pietrabissa, A Value of 3D printing for the comprehension of surgical anatomy. Surg. Endosc 2017,31(10):4102–4110.
- 4. Lau, I.; Gupta, A.; Sun, Z. Clinical Value of Virtual Reality versus 3D Printing in Congenital Heart Disease. Biomolecules (Basel, Switzerland), 2021,11(6), 884.
- 5. Lupulescu C; Sun. Z. 3D printing of patient-specific kidney models to facilitate pre-surgical planning of renal cell carcinoma using CT datasets. AMJ, 2021,14(7), 211–222.
- 6. Rossi, T.; Williams, A.; Sun, Z. Three-Dimensional Printed Liver Models for Surgical Planning and Intraoperative Guidance of Liver Cancer Resection: A Systematic Review. Appl. Sci, 2023, 13(19), 10757.
- Sun, Z.; Ng, C. K. C.; Wong, Y. H.; Yeong, C. H. 3D-Printed Coronary Plaques to Simulate High Calcification in the Coronary Arteries for Investigation of Blooming Artifacts. Biomolecules (Basel, Switzerland), 2021,11(9), 1307.

- Ballard, D. H.; Wake, N.; Witowski, J.; Rybicki, F. J.; Sheikh, A. Radiological Society of North America (RSNA) 3D Printing Special Interest Group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: abdominal, hepatobiliary, and gastrointestinal conditions. 3D. Print. Med, 2020,6(1), 13-13.
- Finocchiaro, M.; Cortegoso Valdivia, P.; Hernansanz, A.; Marino, N.; Amram, D.; Casals, A.; Menciassi, A.; Marlicz, W.; Ciuti, G.; Koulaouzidis, A. Training Simulators for Gastrointestinal Endoscopy: Current and Future Perspectives. Cancers (Basel), 2021,13(6), 1427.
- Buscaglia, J. M.; Fakhoury, J.; Loyal, J.; Denoya, P. I.; Kazi, E.; Stein, S. A.; Scriven, R.; Bergamaschi, R. Simulated colonoscopy training using a low-cost physical model improves responsiveness of surgery interns. Colorectal. Dis, 2015,17(6), 530-535.
- 11. Phillips, M. S.; Marks, J. M. Overview of methods for flexible endoscopic training and description of a simple explant model. Asian. J. Endosc. Surg. 2011,4(2), 45-52.
- 12. Haghdel, M.; Alizadeh, A. A.; Ghasemi, Y.; Hosseinpour, H.; Foroutan, H.; Shahriarirad, S.; Imanieh, M. H. Utilization of 3D-Printed Polymer Stents for Benign Esophageal Strictures in Patients with Caustic Ingestion. J. 3D. Print. Med, 2021,5(1), 11–21.
- 13. Povey, M.; Powell, S.; Howes, N.; Vimalachandran, D.; Sutton, P. Evaluating the potential utility of three-dimensional printed models in preoperative planning and patient consent in gastrointestinal cancer surgery. Ann. R. Coll. Surg. Engl. 2021,103(8), 615-620.
- 14. Kontovounisios, C.; Tekkis, P.; Bello, F. 3D imaging and printing in pelvic colorectal cancer: 'The New Kid on the Block'. Tech. Coloproctol, 2019,23(2), 171-173.
- 15. Ye, L.; Yang, D.; Huang, Y.; Liao, K.; Yuan, X.; Hu, B. 3D-printed model in the guidance of tumor resection: a novel concept for resecting a large submucosal tumor in the mid-esophagus. Endoscopy, 2020,52(8), E273-E274.
- Page, M. J.; McKenzie, J. E.; Bossuyt, P. M.; Boutron, I.; Hoffmann, T. C; Mulrow, C. D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J, 2021, 372, n71n71.
- 17. Sirriyeh, R.; Lawton, R.; Gardner, P.; Armitage, G. Reviewing studies with diverse designs: the development and evaluation of a new tool. J. Eval. Clin. Pract, 2012,18(4), 746-752.
- 18. Holt, B. A.; Hearn, G.; Hawes, R.; Tharian, B.; Varadarajulu, S. Development and evaluation of a 3D printed endoscopic ampullectomy training model (with video). Gastrointest. Endosc, 2015,81(6), 1470-1475.
- 19. Kenngott, H. G.; Wünscher, J. J.; Wagner, M.; Preukschas, A.; Wekerle, A. L.; Neher, P.; Suwelack, S.; Speidel, S.; Nickel, F.; Oladokun, D.; Maier-Hein, L.; Dillmann, R.; Meinzer, H. P.; Müller-Stich, B. P. OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg. Endosc, 2015,29(11), 3338-3347.
- Dickinson, K. J. M. B. S.; Matsumoto, J. M. D.; Cassivi, S. D. M. D. M. S.; Reinersman, J. M. M. D.; Fletcher, J. G. M. D.; Morris, J. M. D.; Wong Kee Song, L. M. M. D.; Blackmon, S. H. M. D. M. P. H. Individualizing Management of Complex Esophageal Pathology Using Three-Dimensional Printed Models. Ann. Thorac. Surg, 2015,100(2), 692-697.
- Kim, G. B.; Park, J.-H.; Song, H.-Y.; Kim, N.; Song, H. K.; Kim, M. T.; Kim, K. Y.; Tsauo, J.; Jun, E. J.; Kim, D. H.; Lee, G. H. 3D-printed phantom study for investigating stent abutment during gastroduodenal stent placement for gastric outlet obstruction. 3D. Print. Med. 2017, 3, 10.
- 22. Noda, K.; Kitada, T.; Suzuki, Y.; Colvin, H. S.; Hata, T.; Mizushima, T. A novel physical colonoscopy simulator based on analysis of data from computed tomography colonography. Surg. Today, 2017,47(9), 1153-1162.
- 23. Barber, S. R.; Kozin, E. D.; Naunheim, M. R.; Sethi, R.; Remenschneider, A. K.; Deschler, D. G. 3D-printed tracheoesophageal puncture and prosthesis placement simulator. Am. J. Otolaryngol, 2018,39(1), 37-40.
- 24. Lee, S.; Ahn, J. Y.; Han, M.; Lee, G. H.; Na, H. K.; Jung, K. W.; Lee, J. H.; Kim, D. H.; Choi, K. D.; Song, H. J.; Jung, H.-Y. Efficacy of a Three-Dimensional-Printed Training Simulator for Endoscopic Biopsy in the Stomach. Gut. Liver, 2018,12(2), 149-157.
- 25. Williams, A.; McWilliam, M.; Ahlin, J.; Davidson, J.; Quantz, M. A.; Bütter, A. A simulated training model for laparoscopic pyloromyotomy: Is 3D printing the way of the future? J. Pediatr. Surg. 2018,53(5), 937-941.

- Hojo, D.; Nishikawa, T.; Takayama, T.; Hiyoshi, M.; Emoto, S.; Nozawa, H.; Kawai, K.; Hata, K.; Tanaka, T.; Shuno, Y.; Kaneko, M.; Sasaki, K.; Murono, K.; Ishii, H.; Sonoda, H.; Hoshina, K.; Ishihara, S. 3D printed model-based simulation of laparoscopic surgery for descending colon cancer with a concomitant abdominal aortic aneurysm. Tech. Coloproctol, 2019, 23(8), 793-797.
- 27. Lee, D. S.; Ahn, J. Y.; Lee, G. H. A Newly Designed 3-Dimensional Printer-Based Gastric Hemostasis Simulator with Two Modules for Endoscopic Trainees (with Video). Gut. Liver, 2019,13(4), 415-420.
- 28. Marano, L.; Ricci, A.; Savelli, V.; Verre, L.; Di Renzo, L.; Biccari, E.; Costantini, G.; Marrelli, D.; Roviello, F. From digital world to real life: A robotic approach to the esophagogastric junction with a 3D printed model. BMC Surg, 2019,19(1), 153-153.
- Kwon, C.-I.; Shin, Y.; Hong, J.; Im, M.; Kim, G. B.; Koh, D. H.; Song, T. J.; Park, W. S.; Hyun, J. J.; Jeong, S. Production of ERCP training model using a 3D printing technique (with video). BMC. Gastroenterol, 2020, 20(1), 145-145.
- 30. Anwari, V.; Lai, A.; Ursani, A.; Rego, K.; Karasfi, B.; Sajja, S.; Paul, N. 3D printed CT-based abdominal structure mannequin for enabling research. 3D printing in medicine, 2020,6(1), 3-3.
- 31. Hojo, D.; Emoto, S.; Kawai, K.; Nozawa, H.; Hata, K.; Tanaka, T.; Ishihara, S. Potential Usefulness of Three-dimensional Navigation Tools for the Resection of Intra-abdominal Recurrence of Colorectal Cancer. J. Gastrointest. Surg, 2020,24(7), 1682-1685.
- 32. Kwon, J.; Choi, J.; Lee, S.; Kim, M.; Park, Y. K.; Park, D. H.; Kim, N. Modelling and manufacturing of 3D-printed, patient-specific, and anthropomorphic gastric phantoms: a pilot study. Sci. Rep. 2020,10(1), 18976-18976.
- 33. Hojo, D.; Kawai, K.; Murono, K.; Nozawa, H.; Hata, K.; Tanaka, T.; Nishikawa, T.; Shuno, Y.; Kaneko, M.; Sasaki, K.; Emoto, S.; Ishii, H.; Sonoda, H.; Ishihara, S. Establishment of deformable three-dimensional printed models for laparoscopic right hemicolectomy in transverse colon cancer. ANZ J. Surg, 2021, 91(7-8), E493-E499.
- 34. Oxford, K.; Walsh, G.; Bungay, J.; Quigley, S.; Dubrowski, A. Development, manufacture and initial assessment of validity of a 3-dimensional-printed bowel anastomosis simulation training model. Can. J. Surg, 2021,64(5), E484-E490.
- Habti, M.; Bénard, F.; Arutiunian, A.; Bérubé, S.; Cadoret, D.; Meloche-Dumas, L.; Torres, A.; Kapralos, B.; Mercier, F.; Dubrowski, A.; Patocskai, E. Development and Learner-Based Assessment of a Novel, Customized, 3D Printed Small Bowel Simulator for Hand-Sewn Anastomosis Training. Curēus (Palo Alto, CA), 2021,13(12), e20536-e20536.
- 36. Neville, J. J.; Chacon, C. S.; Haghighi-Osgouei, R.; Houghton, N.; Bello, F.; Clarke, S. A. Development and validation of a novel 3D-printed simulation model for open oesophageal atresia and tracheo-oesophageal fistula repair. Pediatr. Surg. Int, 2022,38(1), 133-141.
- Steger, J.; Kwade, C.; Berlet, M.; Krumpholz, R.; Ficht, S.; Wilhelm, D.; Mela, P. The colonoscopic vacuum model–simulating biomechanical restrictions to provide a realistic colonoscopy training environment. Int. J. Comput. Assist. Radiol. Surg, 2023, 18(1), 105-116.
- 38. Mowry, C.; Kohli, R.; Bhat, C.; Truesdale, A.; Menard-Katcher, P.; Scallon, A.; Kriss, M. Gastroesophageal Balloon Tamponade Simulation Training with 3D Printed Model Improves Knowledge, Skill, and Confidence. Dig. Dis. Sci, 2023, 68(4), 1187-1194.
- Zahradniková, P.; Babala, J.; Pechanová, R.; Smrek, M.; Vitovič, P.; Laurovičová, M.; Bernát, T.; Nedomová,
 B. Inanimate 3D printed model for thoracoscopic repair of esophageal atresia with tracheoesophageal fistula. Front. Pediatr, 2023,11, 1286946-1286946.
- 40. Gu, H.; Lee, S.; Kim, S.; Jang, H.-L.; Choi, D.-W.; Kim, K. S.; Shin, Y. R.; Cheung, D. Y.; Lee, B. I.; Kim, J. I.; Lee, H. H. Development of colonic stent simulator using three-dimensional printing technique: a simulator development study in Korea. Clin. Endsc, 2024, 57(6),790-797
- 41. Keller-Biehl, L.; Otoya, D.; Khader, A.; Timmerman, W.; Fernandez, L.; Amendola, M. Just the gastrointestinal stromal tumor: A case report of medical modeling of a rectal gastrointestinal stromal tumor. SAGE. Open. Med. Case. Rep, 2024, 12, 2050313X231211124.

- 42. Yu, S.; Xu, X.; Ma, L.; Zhao, F.; Mao, J.; Zhang, J.; Wang, Z. Versatile and Tunable Performance of PVA/PAM Tridimensional Hydrogel Models for Tissues and Organs: Augmenting Realism in Advanced Surgical Training. ACS. Appl. Bio. Mater, 2024,7(9), 6261-6275.
- 43. Masood SH; Song WQ. Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater. Design, 2004, 25(7):587–594.
 - 44. Marwah OM; Shukri MS; Mohamad EJ; Johar MA; Haq RH; Khirotdin RK. Direct investment casting for pattern developed by desktop 3D printer. Matec Web of Conferences, 2017,135, 8.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.