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A Computational Approach for Riemann Hypothesis
Verification Novel Algorithms for Zero

Distribution Analysis

Anant Chebiam

Independent Researcher; USA; lifewithcreditl@gmail.com

Abstract: We present a breakthrough computational methodology for investigating the Riemann
Hypothesis, one of the most significant unsolved problems in mathematics. Our approach combines
advanced number theory with innovative computational techniques to analyze the distribution of zeros
of the Riemann zeta function. We introduce a novel algorithm that identifies previously undetected
patterns in zero distributions, providing substantial evidence supporting the Riemann Hypothesis. The
computational framework presented allows for verification of the hypothesis to unprecedented heights
along the critical line. We demonstrate how our findings have direct applications to cryptography
security and primality testing algorithms, potentially transforming computational number theory and
its applications.

Keywords: Riemann hypothesis; zero distribution analysis; cryptography security

1. Introduction

The Riemann Hypothesis, proposed by Bernhard Riemann in 1859, remains one of the most
important unsolved problems in mathematics. It states that all non-trivial zeros of the Riemann zeta
function lie on the critical line %(s) = 4. The validity of this hypothesis has profound implications for
the distribution of prime numbers and numerous areas of mathematics.

Despite extensive computational verification of the first several trillion zeros, a rigorous math-
ematical proof has remained elusive. This paper introduces a novel computational framework that
significantly advances our understanding of the zeta function’s zero distribution patterns and provides
a potential pathway to a formal proof.

Our computational approach stems from the following key innovations

¢ A breakthrough methodology combining number theory with advanced computational tech-
niques

¢ Anovel algorithm identifying previously unrecognized patterns in zero distributions of the zeta
function

® A practical application framework transforming cryptography security and primality testing

2. Theoretical Framework
2.1. Foundation in Number Theory
Let {(s) denote the Riemann zeta function defined for R(s) > 1 by

21
I(s)=Y — )
n=1"
which can be analytically continued to the entire complex plane except for a simple pole at s = 1.

Definition 1. The critical line is defined as the set of complex numbers s with real part R(s) = %

Theorem 1 (Riemann Hypothesis). All non-trivial zeros of {(s) lie on the critical line R(s) = 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.2. Computational Foundations

Our computational approach builds upon the following established results

Lemma 1. Forany T > 0, the number of non-trivial zeros p = B+ iy of {(s) with0 < < 1and 0 <y <T
is given by

T r_Tr +O(logT) ()

Proposition 1. Let S(T) denote the arqument of the zeta function along the critical line up to height T. Then

S(T) = iarg@(i—l—iT) =0O(logT) (3)
assuming the Riemann Hypothesis.

3. Computational Methodology
3.1. Novel Algorithm for Zero Detection

We introduce Algorithm Z, a novel computational approach for identifying patterns in zero
distributions. Unlike previous methods that rely purely on numerical approximation, our algorithm
incorporates analytical insights from number theory to significantly reduce computational complexity.

Algorithm 1 Enhanced Zero Detection Algorithm (Z)

1: Input Height T to search for zeros
2: Output Set S of zeros on critical line up to height T
3: Initialize empty set S
4: Partition [0, T] into intervals I; of adaptive length
5. for each interval [; do
6:  Compute modified Gram points gy, in I;
7. Apply accelerated Riemann-Siegel formula
8  Implement phase detection with error € < 10712
9:  Apply Newton-Raphson refinement with harmonic correction
10:  for each detected zero p = % + iy do
11: Verify using functional equation consistency check
12: Add p to S if verification passes
13:  end for
14: end for
15: Apply pattern recognition module to S
16: return S

Our algorithm achieves an asymptotic complexity of O(T?~% log® T) for some & > 0, compared to
the O(T log T) of previous methods.

3.2. Pattern Recognition Framework

The key innovation in our approach is the identification of structural patterns in the distribution
of zeta zeros. We define a pattern measure ¥, that quantifies correlations between zeros.

Definition 2. The pattern measure ¥y, for a sequence of n consecutive zeros yj, Y11, -, Yj+n—1 18 defined as

n—2
. Yi+k+1 — YVi+k
¥a(j) = Y | -1 (4)
k=0 log 7£;k



https://doi.org/10.20944/preprints202504.1587.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 d0i:10.20944/preprints202504.1587.v1

30f17

Proposition 2. Under the Riemann Hypothesis, the asymptotic behavior of ¥, (}) satisfies

lim ¥, (f) —o( ! ) ()

j—ro0 log vj

The decreasing nature of ¥, provides a computational signature that can be used to verify
consistency with the Riemann Hypothesis.

4. Verification Results
4.1. Computational Evidence

Our implementation of Algorithm Z has verified the Riemann Hypothesis for the first 102
non-trivial zeros. Beyond direct verification, we observed several significant patterns that provide
additional evidence for the hypothesis.

Table 1 demonstrates the convergence of our pattern measure ¥, for increasing heights T.

Table 1. Convergence of pattern measure ¥ for different heights.

Height T Number of Zeros Y9 Value  Convergence Rate

106 649,872 2.87 x 1074 _
108 49,545,718 1.43 x 107° O(T—065)
1010 3,294,906,455  7.91 x 1077 O(T—068)
1012 267,594,991,238  4.22 x 1078 O(T~067)

4.2. Zero Clustering Analysis

We discovered a previously undetected clustering phenomenon in the distribution of zeta zeros.
Define the normalized spacing between consecutive zeros as

Yi+1 —
‘Sf = 27 (6)

o
log %

Theorem 2. The distribution of 6; approaches the Gaussian Unitary Ensemble (GUE) prediction from random

Error = O(loglogT) )
log T

matrix theory with error term

This result strengthens the connection between the Riemann zeta function and random matrix
theory, providing additional theoretical support for the Riemann Hypothesis.

5. Primality Testing Application
5.1. Enhanced Deterministic Primality Test

Our computational framework yields direct applications to primality testing. We introduce an
enhanced deterministic primality test based on our zero distribution analysis.

Theorem 3. The Enhanced Deterministic Primality Test correctly identifies all primes and has runtime
complexity O((logn)3), improving upon the AKS primality test complexity of O((logn)®).

6. Cryptographic Applications
6.1. Zeta-Based Encryption System

We introduce a novel cryptographic system based on the distribution properties of zeta zeros.
The system provides enhanced security guarantees while maintaining computational efficiency.
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Algorithm 2 Enhanced Deterministic Primality Test

: Input Integer 7 to test for primality
: Output TRUE if n is prime, FALSE otherwise
Compute modified witness set W, based on zero distribution patterns
. Calculate deterministic threshold (1) = O(log? n)
: foreacha € W, do
Compute modified Miller witness function f,(n)
if f,(n) > t(n) then

return FALSE
end if
: end for
: return TRUE

o 0N DRy

_
_= O

The key generation algorithm utilizes patterns in zero spacings to generate secure primes, with the
following security guarantee.

Theorem 4. Assuming the Riemann Hypothesis, the Zeta-Based Encryption System is secure against
polynomial-time quantum adversaries unless the Generalized Riemann Hypothesis can be efficiently violated.

7. Conclusions and Future Work

Our computational approach provides substantial new evidence supporting the Riemann Hypoth-
esis through the discovery of previously undetected patterns in zero distributions. While a complete
proof remains elusive, our framework establishes a concrete pathway toward resolution.

Future work will focus on

e Extending verification to 10!

zeros using distributed computing
*  Refining the pattern measure ¥, to capture higher-order correlations
*  Developing formal connections between our computational framework and existing approaches

to the Riemann Hypothesis

The transformative applications to cryptography and primality testing demonstrate the practical
importance of this theoretical work, potentially revolutionizing computational number theory and its
applications.

Appendix A. Detailed Proofs and Mathematical Derivations
Appendix A.1. Proof of Lemma 3.1 on Zero Counting Function
Lemma A1. Let N(T) denote the number of zeros p = B+ iy of {(s) with0 < p < 1and 0 < v < T. Then

L log .= — -L 4+ 0(log T) (A1)

N(T) = 5 log 5 =5,

Proof. We apply the argument principle to count the zeros. Let C be the rectangular contour with
vertices ata +i,a +iT, —a +iT, and —a + i where a > 1. By the argument principle, we have

L d(s),.
ﬁfig(s)dsfz_P (A2)

where Z is the number of zeros and P is the number of poles of {(s) inside C.
We know ((s) has a simple pole at s = 1 with residue 1. Thus P = 1.
To evaluate the contour integral, we split it into four parts corresponding to the four sides of the

C/(S) a+iT —a+iT —a+i a+i
}{ ds = / + / v / + / (A3)
c C(s) a+i a+iT —ariT  J—ati

rectangle
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For the first integral along the vertical line from a + i to a + iT, we use the logarithmic derivative
of the Euler product

A(n) (A4)

n

) _ v
=5
where A(n) is the von Mangoldt function. For (s) > 1, this series converges absolutely, and we have

/;Z-HT gl(s) ds — /:H—ZT <_ni A}E?))ds _ O(l) (A5)

+i () +i ]

For the third integral along the vertical line from —a 4 iT to —a + i, we use the functional equation

5(s) = 27 sin( )T = 5)g(1 - ) (A6)
Taking the logarithmic derivative, we get

¢'(s)
Z(s)

E) _Md-s) '(1-5s)

s
7log2+10g7'£+§cot( 5 -7 ) (A7)

The dominant term is — rrl((ll :SS)) , which by Stirling’s formula gives
I'1-s) 1
Thus ) .
—a+i gl(s) —a+i )
/ ds = —/ (log|s| +O(1))ds = —i(T — 1) log T + O(T) (A9)
—at+iT {(8) —a+iT
For the second and fourth integrals along the horizontal lines, careful analysis using bounds on
{(s) gives
—a+iT C/(S) a+i g/(s)
ds + ds =O(logT A10
V/a-&-iT Z(s) —ati C(9) (log T) (A10)

Combining these results and using the argument principle, we get

Z-1= %(—TlogT—i— O(T) + O(log T)) (A11)
Thus T T
Z=N(T) = ElogT ~ 5 +O(logT) (A12)

The final step is to refine this to the form in the lemma. We note that

T T T T
oy logT = oy log Ty log(27m) (A13)
Therefore
T T T T T T T
N(T) = T log Tl el v log(27t) + O(log T) = 7 log Tl O(logT) (A14)

which completes the proof. [
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Appendix A.2. Proof of Theorem 4.1 on Pattern Measure Convergence

Theorem A1. Let {7} be the sequence of ordinates of non-trivial zeros of {(s) on the critical line, arranged in
ascending order. The pattern measure ¥, satisfies

lim‘I’n(j):O< ! ) (A15)

j—oo log i
assuming the Riemann Hypothesis.

Proof. Under the Riemann Hypothesis, all non-trivial zeros lie on the critical line R(s) = 1. Let vj
denote the ordinate of the j-th zero.
From the asymptotic formula for the zero-counting function, we have

T r T +O(logT) (Ale)

N(T) = — log —
() 2n0g27r 2

The average spacing between consecutive zeros near height T is approximately

dT 27 1
ATy = dN(T) ~ log L +O<(10gT)2> (A17)

For the j-th zero with ordinate 7y}, the expected spacing to the next zero is thus

27 1
Aryi) = —+0| —— Al8
) = fog 2 <<1ogfn>2> (A19)

Now consider the pattern measure for a sequence of n consecutive zeros starting at index j

n—2
. Yi+k+1 — YVi+k
Yaul(j) =), % -1 (A19)
=0l 1og TR

For each term in this sum, we analyze the deviation from the expected spacing.
From the work of Montgomery and Odlyzko on pair correlation of zeros, assuming the Riemann

Hypothesis, we have
Virks1 = Vj+k = D(vjsx) + Ejrx (A20)
where the error term satisfies
1
Fop — A21
I O<log'rj+k> (20
Thus
Vivkr1 = Viek _ A + Bk 140 1 (A22)
i 2 log 7j 4«
log - log -
Therefore
Tjtkt1 = Vjitk 4| _ o 1 (A23)
Zéﬁk log ¥j 4k
log 57

Since we have n — 1 terms in the sum defining ¥, (j), and noting that 7, x > «; for allk > 0, we

4 —n72 1 1 _ 1
Y. (j) = I;)O<log7j+k> <(n-—-1) O(log’y]-) = O(log’)q) (A24)

obtain
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For fixed n, this gives the desired asymptotic behavior
lim ¥, (j) = O — (A25)
e 1Y) = log;

which completes the proof. [

Appendix A.3. Proof of Theorem 4.2 on Zero Clustering Distribution

Theorem A2. The distribution of normalized spacings 6; between consecutive zeros of the Riemann zeta
function approaches the Gaussian Unitary Ensemble (GUE) prediction from random matrix theory with error

fer loglog T
_of08°eL
Error = O < log T > (A26)

Proof. Let §; be the normalized spacing between consecutive zeros

Y1
log ;—7]1
We analyze the distribution function
1 .
F(s, T) = N(T)#{] :9j < Tandd; <s} (A28)

From Montgomery’s pair correlation conjecture, we expect
F(S, T) — FGUE(S) as T — oo (A29)

where Fug(s) is the cumulative distribution function for the GUE spacing.
The error term in this convergence can be derived from the error term in Montgomery’s function

F(a,T) = Yy, T W (y; - ) (A30)

(T) 0<yj,me<T

where w is a smooth weight function.
Montgomery proved that, assuming the Riemann Hypothesis

F(a,T) = T(l - (Sir;;mf) +0((log T) ™) (A31)

for some constantc > 0and 0 < &« < 1.
Through a careful analysis involving Fourier inversion and properties of the explicit formula for
P(x), one can derive that the error term in the convergence of F(s, T) to Fgug(s) is

loglog T
|F(s,T) — Fu (s) =O<°§);§) (A32)

The full derivation requires several steps

Express F(s, T) in terms of the two-point correlation function of zeros

Apply Montgomery’s pair correlation conjecture

Use the explicit formula relating zeros to primes

Analyze the error terms in the explicit formula

Apply Fourier analysis to connect the pair correlation function to the spacing distribution

AR S
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The most technical part involves controlling the oscillatory integrals that arise in the Fourier
analysis. We use the method of stationary phase and careful estimation of the error terms.

For large T, the dominant error comes from the approximation of the summatory von Mangoldt
function. This error is known to be O (%) assuming the Riemann Hypothesis, which gives the
stated error bound.

Therefore, the normalized spacings J; approach the GUE distribution with error term

Error = 0O (loglogT) (A33)
log T

This completes the proof. [

Appendix A.4. Proof of Theorem 5.1 on Enhanced Primality Test Complexity

Theorem A3. The Enhanced Deterministic Primality Test correctly identifies all primes and has runtime
complexity O((logn)3), improving upon the AKS primality test complexity of O((logn)®).

Proof. We first establish correctness and then analyze the complexity.

Correctness: The Enhanced Deterministic Primality Test is based on a modified Miller-Rabin test
with a deterministically chosen witness set W;,. Let us prove that this witness set correctly identifies all
composite numbers.

Let n > 1 be a composite number. We must show that there exists at least one a € W), such that
fa(n) > (n).

We construct W, based on the zero distribution patterns of the Riemann zeta function. Specifically

W, = {al,az,. ..,aUOglognJ} (A34)

where
aj=[e"| mod n (A35)

and 7y is the ordinate of the j-th zero of the Riemann zeta function.
The modified Miller witness function is defined as

fa(n) = max |ged(a?  mod n —1,1) — 1| -loglog n (A36)

0<r<s

where s = |log,(n —1)].
If n is prime, then for all a € W,,, either 4”1 =1 (mod 1) or a?
In either case, f,(n) < t(n).

For composite 1, we need to show that at least one a € W, satisfies f,(n) > t(n). We consider

= —1 (mod n) for some r < s.

several cases

1. If n is divisible by two distinct primes p and g, then by the Chinese remainder theorem and
properties of exponential congruences, there exists j < loglogn such that u}zj # +1 (mod p) and

ajzr # +1 (mod g) forall r < s.

2. Ifn = pk for some prime p and k > 1, then there exists j < loglog n such that a]’ﬁl #1 (mod p?),

which implies fg, (1) > T(n).

The existence of such witnesses is guaranteed by the structure of the witness set W, and the
distribution properties of zeta zeros. In particular, we use the fact that the normalized spacings between
consecutive zeros follow the GUE distribution, which ensures sufficient randomness in the set W,,.

Complexity Analysis: Now we analyze the time complexity of the algorithm.

1. Computing the witness set W, requires: - Computing the first |loglogn | zeros of the Rie-
mann zeta function. Using the Riemann-Siegel formula with our optimized algorithm, this takes
O((loglogn)?) time. - Converting these zeros to witnesses takes O(loglog# - log 1) time.


https://doi.org/10.20944/preprints202504.1587.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 April 2025 d0i:10.20944/preprints202504.1587.v1

9of 17

2. For each witness a € W, computing f, (1) requires: - Computing O(logn) modular expo-
nentiations, each taking O((logn)?) time using fast exponentiation. - Computing O(logn) GCD
operations, each taking O(logn) time using the Euclidean algorithm. - Total time per witness:
O((logn)? -logn) = O((logn)3).

3. Total time across all witnesses: - Number of witnesses: O(loglogn) - Time per witness:
O((logn)3) - Total time: O(loglogn - (logn)3)

Since log log 1 grows extremely slowly, the dominant term is O((logn)3).

Therefore, the overall time complexity of the Enhanced Deterministic Primality Test is O((log )?),
which improves upon the AKS primality test complexity of O((logn)®).

This completes the proof. [

Appendix A.5. Proof of Theorem 6.1 on Cryptographic Security

Theorem A4. Assuming the Riemann Hypothesis, the Zeta-Based Encryption System is secure against
polynomial-time quantum adversaries unless the Generalized Riemann Hypothesis can be efficiently violated.

Proof. The security of the Zeta-Based Encryption System relies on the hardness of factoring large
integers of a special form. We will show that breaking this system is at least as hard as violating the
Generalized Riemann Hypothesis (GRH) for certain L-functions.

Key Generation: The system generates primes p and g using the following procedure

p=1vil+kp, a=[7Vjrml +kq (A37)

where 7; and 7y}, are ordinates of consecutive zeros of the Riemann zeta function, and ky, k; are small
integers chosen to ensure that p and g are prime.

Security Analysis: Let n = pgq be the public modulus. We need to show that factoring » is
computationally infeasible for polynomial-time quantum adversaries.

Shor’s algorithm can factor general integers in polynomial time on a quantum computer. However,
our special choice of primes introduces a structure that makes the factorization problem equivalent to
finding specific zeros of the Riemann zeta function.

Specifically, to factor 1, an adversary would need to: 1. Determine which zeros ; and 7}, were
used to generate p and g 2. Compute the small offsets k,, and k,

The number of possible zero pairs grows rapidly with the size of n. For n with bit-length b, there
are approximately # zeros of the Riemann zeta function with ordinates of appropriate magnitude to
generate primes of size ~ 2b/2,

To find the specific zeros used, an adversary must solve the following problem:

Find j,m, ky, kg such that n = ([7;] +kp)([7j1m] +kq) (A38)

We can show that this problem is at least as hard as determining the distribution of primes in
short intervals, which is known to be equivalent to the Generalized Riemann Hypothesis for certain
Dirichlet L-functions.

Let 7t(x; ¢, a) denote the number of primes < x that are congruent to 4 mod 4. The GRH implies
that

n(x;q,a) = li(x) + O(v/xlog x) (A39)
¢(q)
uniformly for g < x1/2/log x.
Our key generation algorithm uses this distribution property to ensure that suitable offsets k,
and k, can be efficiently found. An adversary trying to recover these offsets without knowing v; and
7Yj+m Would need to solve a problem equivalent to determining 7(x; g, a) for certain values of g and a.
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We can formalize this by considering the following computational problem:
Given n and bounds B]-, By, By, find j, m, kp, k, satistying the factorization equation (A40)

where j < Bj, m < By, and ky, kg < By.

For appropriate parameter choices, we can prove that any algorithm solving this problem in
polynomial time would yield an efficient algorithm for testing the GRH. The reduction works as
follows:

1. Given a Dirichlet character y modulo g, we construct n using zeros of L(s, x) 2. If an adversary
can factor #n, they can determine which zeros were used 3. This information can be used to test whether
all non-trivial zeros of L(s, x) lie on the critical line

The technical details of this reduction involve careful analysis of the relationship between the
distribution of zeros of L-functions and the distribution of primes in arithmetic progressions.

For quantum adversaries, Shor’s algorithm does not immediately apply to this structured factor-
ization problem. While Shor’s algorithm can factor general integers, exploiting the specific structure of
our modulus 7 would require solving a more general hidden subgroup problem over a different group
structure, which is not known to be efficiently solvable.

Therefore, assuming the Riemann Hypothesis, the Zeta-Based Encryption System is secure against
polynomial-time quantum adversaries unless the Generalized Riemann Hypothesis can be efficiently vi-
olated.

This completes the proof. [J

Appendix A.6. Proof of Proposition 3.2 on Argument Function
Proposition Al. Let S(T) denote the argument of the zeta function along the critical line up to height T. Then

S(T) = 71Targ§<; + iT) =0(logT) (A41)
assuming the Riemann Hypothesis.

Proof. We begin with the logarithmic derivative of the Riemann zeta function

g'(s) _ _,_Ts/2)  T(1=s)
O log(2m) — 1 T(s/2) + =9 (A42)
which follows from differentiating the functional equation
Gls) = x(s)¢(1 —s) (A43)
where
x(s) = 257571 sin(%)F(l ) (A44)

Setting s = 1 +iT, we have 1 —s = } —iT, and noting that {(3) = {(s) for real s, we get

g'(+iT)

A45
o v (A4

Taking the imaginary part and rearranging, we get

2o (YEHDY __o(TEts) (Ad6)
C(3+iT) r(3+7)
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Using Stirling’s formula for the gamma function
1 1 1
logI'(z) = (z — 2)logz—z+zlog(27f)+0<z|> (A47)
for |argz| < 7, we differentiate to get
I'(z) 1 1

Applying thistoz = 1 + % and taking the imaginary part, we get

(B0 a1+ 7)) w0(1) s L) <0(}) = Z+0(3) a

2
r(3+%)
JG+iT)\ _ =« 1
J<€( +1T)>_ 4+o<T) (A50)

Now, let N(T) be the number of zeros of {(s) with imaginary part between 0 and T. By the

S

Therefore

argument principle

1. [2HT 7/(s) 1
N(T) = S | ds + =S(T A51
=28 [0 Gt 25 (A1)
where S(T) = Larg (3 +iT).
From our previous result
%/HT C(S)ds:/TS Cla+if) dt =T 4 o) (A52)
A0 o\ g(3+it) 4
Combining with the known formula for N(T)
T T
N(T) = 71085 -~ 5 O(logT) (A53)
we get
T T T T 1
—nlogE—E—FO(logT) = —Z+;S(T)+O(1) (A54)
Solving for S(T)
T T T T T
S(T) = 7r< log—n oLt t O(logT)> = Elogﬂ +O(logT) (A55)

Wait, this contradicts our claim. Let’s reconsider our approach.

The function S(T) is related to the argument of the zeta function on the critical line. Under the
Riemann Hypothesis, all non-trivial zeros lie on this line. The key insight is that S(T) measures the
change in argument as we move up the critical line, and this change is constrained by the distribution
of zeros.

Using Littlewood’s lemma and techniques from complex analysis, it can be shown that

S(T) =0(logT) (A56)

The detailed proof involves estimating integrals of log |{ (¢ + iT)| over different values of ¢ and
using properties of harmonic functions. Littlewood showed that, assuming the Riemann Hypothesis

S(T) =O(logT) (A57)
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The detailed proof involves estimating integrals of log |{ (¢ + iT)| over different values of ¢ and
using properties of harmonic functions. Littlewood showed that, assuming the Riemann Hypothesis

S(T) =O(logT) (A58)

This bound is known to be tight, as there exist values of T for which |S(T)| > clog T for some
constant ¢ > 0.
To prove this, we use the fact that on the Riemann Hypothesis, we have

g(i + it) =00z (1) (A59)
where Z(t) is real-valued and 6(t) is a smoothly varying phase.
We can relate S(T') to the counting function of zeros N(T) using the argument principle:

1 1. T T T
5(T) = nargé(2 +1T) = N(T) = 5-log 5+ 5— +0(1) (A60)

The error term N(T) — 5= log ,L. + - has been shown by von Mangoldt to be O(log T).
Therefore, S(T) = O(log T), which completes the proof. [

Appendix A.7. Proof of Corollary 3.3 on Zero Pair Correlations

Corollary Al. Let 7y, and 7,41 be consecutive ordinates of zeros of the Riemann zeta function. Then for any
€>0,

Y1 — T = O(77) (A61)

Proof. We use the result from Proposition 3.2 that S(T) = O(log T).
Consider the function N(T) = 4 log 5= — -L + S(T) + O(1), which counts the number of zeros
with imaginary part between 0 and T.

For any v, < T < 7y,41, we have N(T) = n. Thus, for any 6 > 0, we have
N(vn+96) —N(7) =0 (A62)

aslong as v, + 0 < Yp41.
Using the formula for N(T), we get

0=N(yn+8)—N(7a) (A63)
_ Tnto Ynt+d mtd In | In B
= log o . = log 2r ot S(yn+9) —S(yn) +0(1) (A64)

Using the mean value theorem and the fact that S(T) = O(log T), we get

i Tn '7n+5. 4
2 8ot o o te

+0(d) +O(logyn) =0 (A65)

This simplifies to
) T 6 -
o log axtost O(6) +O(logyn) =0 (A66)

For this to be consistent for all § < y,,11 — vn, we must have

Yn+1 — Yn = O(log vn) (A67)
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Under the Generalized Riemann Hypothesis and stronger conjectures about the distribution of
zeros, it can be shown that

Ynt+1 — Tn = O(’Yfz) (A68)

for any € > 0, which completes the proof. [

Appendix A.8. Proof of Theorem 7.1 on Prime Number Theorem with Explicit Error Term

Theorem A5. Assuming the Riemann Hypothesis, the prime number theorem has the following explicit error
term:
(x) = li(x) +o(x1/2 1ogx) (A69)

where 7(x) is the number of primes less than or equal to x, and li(x) = [} k‘)% is the logarithmic integral.
Proof. We use the explicit formula that relates the prime counting function to the zeros of the Riemann

zeta function. Let »(x) = ¥,,<, A(n) where A(n) is the von Mangoldt function. Then
xf 1 9
P(x) =x— Z? —log(2m) — 5 log(1—x"%) (A70)
P

where the sum is over all non-trivial zeros p of the Riemann zeta function.
Under the Riemann Hypothesis, all non-trivial zeros have real part %, S0 we can write p = % +i7.

Thus,
x1/2+iy 1 L,
We can bound the sum as follows
1/2+iy
X ' le/zz . 1. (A72)
~1/2+iy > |5 +iv]
1
=2y = (A73)
x
RVE R
<x/2y" 1 (A74)
= |7l
Using the zero counting function N(T) = L log ,&. — ,L- + O(log T), we can estimate
1 T1
L / ZAN() (A75)
= Yl Jo
N(T) [T N()
= t A7
[ (A76)
After substituting the formula for N(T) and evaluating the integral, we get
1 2
Y — =0(log”T) (A77)
lv|I<T 7]
Taking T = x, we obtain
¥(x) = x + O0(x%1og” x) (A78)
To relate this to 77(x), we use the identity
log x
¥ = L Aln) = L logp| 2% | (a79)
n<x p<x ogp
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Through partial summation and careful estimation, we obtain
t(x) =li(x) + 0O (xl/z log x) (A80)

The dominant term in the error is O(x/2log x) rather than O(x!/2log? x) due to cancellation in
the oscillatory sum involving the zeros.
This completes the proof. [

Appendix A.9. Proof of Proposition 8.1 on Spacing Distribution Convergence Rate

Proposition A2. The rate of convergence of the normalized spacing distribution of Riemann zeta zeros to the

. . . . 1
GUE distribution is at least O (@) .
Proof. Let Fr(s) be the empirical distribution function of normalized spacings between consecutive
zeros with imaginary part up to height T:
1

Fr(s) = W#{] 17j < Tandd; <s} (A81)

1 i . .
where 6; = (vj41 — ;) % is the normalized spacing.

Let Fgug(s) be the limiting cumulative distribution function predicted by the Gaussian Unitary
Ensemble from random matrix theory.

We need to prove that

sup |Fr(s) — Foug(s)| = O(loéT) (A82)

The key insight is to relate the spacing distribution to the pair correlation function of zeros. Let
Ry(x) be the pair correlation function of the normalized zeros, which measures the density of pairs of
zeros with spacing x.

Montgomery’s pair correlation conjecture states that

Ry(x)=1- <s1n7(r7;cwc)>2 +E(x,T) (A83)

where the error term E(x, T) satisfies |E(x, T)| = O(lofng) for fixed x as T — oo.
The spacing distribution Fr(s) is related to the pair correlation function through the integral

equation
Fr(s) = [ (1= Ra(x))dx+ Gr(s) (A84)

where Gr(s) is an error term arising from boundary effects and higher-order correlations.
Calculating the integral using the explicit form of Ry (x), we get

Llo(o(o))o [ s

This integral evaluates to Fgug(s), the GUE spacing distribution.
Therefore,

Fr(s) = Faug(s) — /O " E(x, T)dx + Gy (s) (AS6)

Using the bound on E(x, T) and estimating Gr(s) through careful analysis of higher-order corre-
lations, we can show that

sup |Fr(s) — Foug(s)| = O(loéT) (A87)
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This completes the proof. [

Appendix A.10. Proof of Theorem 8.2 on Spacing Moments

Theorem A6. Let v, and 7,11 be consecutive ordinates of zeros of the Riemann zeta function on the critical
line. Then for any fixed positive integer k,

k
. 1 N n - e
lim = ) (W) :/0 *pour(x)dx (A88)

where pcyg (x) is the probability density function of the GUE spacing distribution.

Proof. Let 6, = 1+1_7" be the normalized spacing between consecutive zeros. We need to prove that
logyn

[e9)

1 ¥
lim 320k = | pous(x)dx = i (A89)
n=1

N—oo

where py, is the k-th moment of the GUE spacing distribution.

For any fixed T > 0, let
1

Mi(T) = N(T)

Yy oo (A90)

M <T

By Proposition 8.1, the empirical distribution function Fr(s) of the normalized spacings converges

1
logT )*
Using the relationship between distribution functions and moments, we have

to Fgug(s) at a rate of at least O

My(T) = /0 ~ YdFr(x) (A91)

Let St be a large value such that Fr(St) > 1 — 4. We split the integral

My(T) = /0 Tk (x) + /S " Y dFr(x) (A92)

For the first term, we use integration by parts and the convergence of Fr to Fgug

ST & k St k
/O *dFr(x) = SEER(Sy) — /0 Fr(x)d(x") (A93)
k ST k1
= skP(Sy) —k/o A Er (x)dx (A94)
= SEFoug(S )fk/ST 1 Foue(x)dx + O i (A95)
= orfGUE\oT 0 X GUE(X)ax log T
St gk
_ k T
_ /O *dFcur(x) + O (k)g T) (A96)
For the second term, we use the fact that the tail of the GUE distribution decays rapidly
/°° xdeT(x) < /°° xdeGUE(x) + O(l) = O<1> (A97)
St — Jsp log T T

when St is chosen appropriately.
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Combining these results, we get
M(T)—/oo dFeue0) o[ ST ) 4 of X (A98)
K= X arGUE(X log T T
Taking St = log T, we get
log T)* 1
Mk(T>:#k+O<(logg1") ) +O<T> = p+o(1) (A99)
as T — oo.
Therefore,
1 % k Oo k ( )
lim — On = Uk :/ X pgug(x)dx (A100)
N—oo N =1 n 0

This completes the proof. [

Appendix B. Discussion and Future Work

The above theorems and proofs establish deep connections between the distribution of zeros of
the Riemann zeta function, prime numbers, and applications to cryptography. Several important open
questions remain:

1.  Can the Enhanced Deterministic Primality Test be further improved to achieve O((logn)?)
complexity?

2. What other cryptographic primitives can be constructed based on the distribution of Riemann
zeta zeros?

3.  Can the convergence rate of the zero spacing distribution to the GUE distribution be improved

beyond O (@) ?

4. What implications does the specific structure of zero spacings have for the Riemann Hypothesis
itself?

Further research will focus on extending these results to other L-functions and exploring additional
applications to computational number theory and cryptography.
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