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Abstract: Background: Around 1 in 59 individuals is diagnosed with Autism Spectrum Disorder 
(ASD), according to CDS statistics. Conventionally, ASD has been diagnosed using functional brain 
regions, regions of interest, or multi-tissue-based training in artificial intelligence models. The 
objective of the exhibit study is to develop an efficient deep learning network for identifying ASD 
using structural magnetic resonance imaging (MRI) based brain scans. Methods: In this work, we 
developed a VGG-based deep learning network capable of diagnosing autism using whole brain gray 
matter (GM) tissues. We trained our deep network with 132 MRI T1 images from normal controls 
and 140 MRI T1 images from ASD patients sourced from the Autism Brain Imaging Data Exchange 
(ABIDE) dataset. Results: The number of participants in both ASD and normal control (CN) subject 
groups was not statistically different (p=0.23). The mean age of CN subject was 14.62 years( standard 
deviation : 4.34 ), and ASD group had mean age of 14.89 years (standard deviation : 4.29). Our deep 
learning model accomplished a training accuracy of 97% and a validation accuracy of 96% over 50 
epochs without overfitting. Conclusions: To the best of our knowledge, this is the first study to use 
GM tissue alone for diagnosing ASD. 

Keywords: Deep learning; VGG Net; Autism Identification; ABIDE dataset and Brain Imaging  
 

1. Introduction  

Autism spectrum disorder (ASD) is a progressive condition characterized by difficulties in social 
interaction, communication, stereotypic behaviors, and sensory abnormalities [1, 2]. In the field of 
medical imaging, deep learning models have made significant strides in ASD diagnosis, leveraging 
their unsupervised nature to identify complex patterns [3, 4].  

Magnetic resonance imaging (MRI) based studies have showed various biomarkers 
demonstrated altered patterns of gray matter in autism patients compared to the normal control 
population [5, 6]. For example, increased gray matter has been reported in angular gyrus in right 
hemisphere, prefrontal cortex, superior and middle frontal gyri in left hemisphere, precuneus and 
inferior occipital gyrus in left hemisphere and inferior temporal gyrus in right hemisphere regions as 
increased biomarkers in autism subjects. In addition to these increased gray matter tissues in brain 
also they reported diminished gray matter tissues in left hemisphere post central gyrus and cerebellar 
regions [7]. Another study compared three groups normal control (CN), participants with attention 
deficit hyperactivity disorder (ADHD), and ASD and found that gray matter volume (GMV) was 
significantly higher in the ASD group compared to the ADHD and CN groups (p = 0.004). Total brain 
volume (TBV) was also significantly higher in the ASD group (p = 0.015) [8]. Another longitudinal 
volumetric study with 156 participants also exhibited statistically significant increases in GMV and 
TBV in ASD subjects [9]. Even though the sample sizes in the previous study were relatively small 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2025 doi:10.20944/preprints202504.1399.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1399.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 10 

 

(33 CN, 44 ADHD, and 19 ASD), the observed group differences in GMV and TBV were statistically 
validated using Bonferroni correction [8]. These findings might be an indication that gray matter 
tissue alone could potentially serve as a useful biomarker for classifying ASD through deep learning 
approaches. 

Another longitudinal volumetric study with 156 subjects also reported a similar pattern of 
statistically significant increased gray matter and volume in ASD subjects [9]. Although, the sample 
sizes were small for CN, ADHD, and ASD subjects, such as 33, 44, and 19 respectively. Nonetheless, 
the results of the GMV and TBV group differences were based on Bonferroni statistical correction [8], 
suggesting that these results might indicate the probable for further classification of ASD brain 
patterns using gray matter tissues alone over a deep learning approach. Another study consisted of 
295 study cohorts studied MRI based brain changes associated with ASD, with respect to gender 
differences. The study noted that males with ASD displayed increased gray matter volumes in the 
insula and superior frontal gyrus, while diminished volumes were noted in the inferior frontal gyrus 
and thalamus. However, females with ASD exhibited increased gray matter volume in the right 
cuneus [10]. In addition to gray matter biomarkers, other works have reported on white matter 
changes, including white matter connectivity, which also provide a significant biomarker for ASD 
brain [11-15]. For example, a diffusion tensor imaging (DTI) based work reported a 99% classification 
accuracy for ASD using fivefold cross validation [16]. 

Previous studies have used various deep learning approaches to identify the ASD based on 
functional MRI (fMRI) and structural MRI (sMRI) data, showing a wide range of classification 
accuracies. A study using a 3D Residual Network (ResNet-18) and multilayer perceptron (MLP) 
achieved 74% accuracy using fMRI and region of interest (ROI) data [17]. Another study using a Deep 
Neural Network (DNN) approach to fMRI data reported a 70% classification accuracy, with ROIs 
selected based on co activation levels of brain regions [18]. Another hybrid model that combined 
fMRI and structural MRI data, including gray and white matter tissues, for a Deep Belief Network 
(DBN) approach accomplished 65% accuracy, with 116 ROIs used from both imaging modalities [19]. 
A connectivity based study using 7266 gray matter ROIs from the Blood Oxygen Level Dependent 
(BOLD) signal tested on 964 subjects from the Autism Brain Imaging Data Exchange (ABIDE) dataset 
achieved a 60% classification accuracy [20]. 

Another study reported improved accuracy with smaller sample sizes, such as a study with 80 
subjects using a leave-one-out classifier that achieved 79% accuracy, which boosted to 89% for 
subjects under 20 years of age [21]. A DNN classifier on fMRI data involving 866 subjects (402 ASD 
and 464 control subjects) showed a high classification accuracy of 88%, using ROIs based on several 
functional and structural atlases, including the Bootstrap Analysis of Stable Clusters (BASC) and the 
Craddock 200 (CC200) atlas [22]. A convolutional neural network (CNN) approach, using 126 subjects 
from the ABIDE database, achieved an impressive 99.39% accuracy over 50 epochs with 20% of the 
data reserved for validation [23]. Additionally, a multimodal fusion approach incorporating both 
fMRI and sMRI for 1383 male participants aged 5 to 40 years achieved an accuracy of 85%, with the 
structural model alone achieving 75% and the functional model achieving 83% [24]. These findings 
highlight the effectiveness of different deep learning models and imaging modalities in ASD 
classification, with multimodal approaches offering the highest accuracies. 

While fMRI provides valuable physiological information about brain regions, it has lower 
resolution and more attenuation of structural regions. In contrast, sMRI offers higher resolution and 
less attenuation of structural regions, making it a promising tool for studying brain anatomy. 
However, its application in ASD prediction using deep learning models has been relatively 
underexplored. In this work, we aim to use sMRI images alone to train and predict outcomes in a 
deep learning model. For this purpose, we used the VGG network, introduced by Simonyan and 
Zisserman in 2014 for the ImageNet Challenges. The VGG network has proven effective in large 
image data challenges, particularly in image recognition [25]. Previously , a study used VGG16 model 
to identify papillary thyroid carcinoma from benign thyroid nodules using cytological images, 
achieving 97.66 % accuracy in cancer detection [26].  
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In our study, we introduce a modified VGG model, leveraging the strengths of the base VGG 
model along with multiple weighted layers in a deep neural network, using TensorFlow and Keras, 
to improve ASD identification in large datasets. To the best of our knowledge, this is the first study 
to apply the VGG model for ASD identification based solely on sMRI. While various conventional 
deep learning models in the literature have used multimodal or multiple tissue types for ASD 
classification, our approach focuses on identifying ASD using GMD maps alone, minimizing 
computational complexity in terms of storage and learning. 

2. Materials and method 

2.1. Dataset 

The present study utilized MRI T1-weighted image data from the ABIDE database. ABIDE is a 
consortium that provides previously collected sMRI and rs-fMRI data from individuals with ASD 
and matched healthy controls for data sharing within the scientific community [27]. We included a 
total of 272 subjects in our analysis and the age difference between the ASD and CN groups was 
assessed using an independent t-test from the SciPy Python library, implemented within the 
PyCharm platform. 

2.2. Preprocessing of MRI- T1 images 

For data preprocessing, we employed the statistical parametric mapping package SPM12 
(Wellcome Department of Cognitive Neurology, UK) and MATLAB 2019.b (The MathWorks Inc., 
Natick, MA) with custom software to preprocess our MRI T1 images. The preprocessing steps 
followed those described earlier [28]. The Diffeomorphic Anatomical Registration Through 
Exponentiated Lie Algebra (DARTEL) toolbox was used to improve inter-subject image registration 
in our input images [29]. We segmented gray matter (GM) , white matter (WM), cerebrospinal fluid 
(CSF), skull, and other brain regions using the 'new segment' option in the DARTEL toolbox. The 
gray matter probability maps computed for each scan were spatially normalized to Montreal 
Neurological Institute (MNI) space (unmodulated, re-sliced to 1 × 1 × 1 mm) and smoothed with a 
Gaussian filter (9-mm full width at half maximum) [30-33].  

2.3. Proposed Deep learning VGG architecture.  

The proposed deep learning network is implemented using the TensorFlow and Keras 
platforms. Skull-stripped image data (segmented and normalized) provided a higher probability of 
achieving valid MNI coordinates for functional activations compared to skull-included input images 
[34]. The proposed deep learning VGG network architecture is shown in Fig. 1. In the conventional 
VGG-16 network, convolutional layers are followed by pooling layers in each hidden layer unit. The 
deep learning network starts with 64 filters in the first layer unit, then to 128 filters, then 256 filters, 
and finally gets 512 filters in the deeper hidden layers. Furthermore, each convolutional layer utilities 
a Rectified Linear Unit (ReLU) for activation. Finally, it incorporates three fully connected layers: the 
first two with 4,096 channels, and the third with 1,000 channels—one for every class. Nevertheless, 
we have significantly changed the filter layout and layer structure in our version of this deep neural 
network [35-38]. Our deep learning architecture starts with 32 filters, followed by 64 and 128 filters, 
and ends with two final units, each containing 256 filters. We have also encompassed further batch 
normalization units, as demonstrated below. 
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Figure 1. Proposed deep learning VGG network for ASD and HC classification. 

2.2.1. Input Layer Unit  

The input layer consists of preprocessed gray matter (GM) from MRI T1-weighted images. To 
reduce complexity, we selected the best 70 slices that contain the most brain regions (256 x 70 x 256). 
Our network was designed with five fully connected, sequential hidden layer units. Each hidden 
layer unit was designed with the following layers: convolution filters (3 x 3), activation unit (ReLU), 
maximum pooling layer (2 x 2), and 25 percentage of dropout layers. 

2.2.2. Hidden Layer Unit  

The first hidden layer consists of 32 convolution filters with a kernel size of 3x3. The output of 
the convolution layer in the first hidden layer has 32 feature maps. The maximum pooling layer of 
the first hidden layer reduces the dimensionality of the feature map by half, i.e., 128 x 70 x 128 x 32 
feature maps. The second hidden layer unit consists of 64 convolution filters with a kernel size of 3x3, 
and the output of the convolution layer in the second hidden layer unit has 64 feature maps. The 
maximum pooling layer of the second hidden layer reduces the dimensionality of the feature map by 
half, i.e., 64 x 70 x 64 x 64 feature maps. The third hidden layer unit is designed with 128 convolution 
filters with a kernel size of 3x3, and the output of the convolution layer in the third hidden layer unit 
has 128 feature maps. The maximum pooling layer of the third hidden layer reduces the 
dimensionality of the feature map by half, i.e., 32 x 70 x 32 x 128 feature maps. The fourth hidden 
layer unit is developed using 256 convolution filters with a kernel size of 3x3, and the output of the 
convolution layer in the fourth hidden layer unit has 256 feature maps. The maximum pooling layer 
of the fourth hidden layer reduces the dimensionality of the feature map by half, i.e., 16 x 70 x 16 x 
256 feature maps. The fifth (final) hidden layer unit is implemented with 256 convolution filters with 
a kernel size of 3x3. The maximum pooling layer of the fifth hidden layer reduces the dimensionality 
of the feature map by half, i.e., 8 x 70 x 8 x 256 feature maps. In our proposed deep learning network, 
each hidden layer unit is designed with a rectified linear unit (ReLU)-based activation, a dropout 
layer with 25%, and batch normalization functions.  

2.2.3. Fully Connected Layer Unit  

Our proposed fully connected (FC) layer unit is designed with a flatten layer, a fully connected 
layer, a batch normalization layer, a ReLU-based activation, a maximum pooling layer, and a 50% 
dropout layer. The FC layer connects the hidden layers to the output layer unit. 

2.2.4. Output Layer Unit  
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The output layer unit is designed with a dense layer and a sigmoid activation function. The 
output unit predicts our images into ASI and HC classes. 

3. Results  

3.1. Demographic data  

We included a total of 272 subjects, with 132 individuals diagnosed with ASD and 132 matched 
healthy controls. The mean age of the CN group was 14.62 years (SD = 4.34), and the mean age of the 
ASD group was 14.89 years (SD = 4.29). The CN group consisted of 68 male subjects and 72 female 
subjects, while the ASD group consisted of 67 males and 65 females. The mean age of males in the 
CN group was 14.97 years (SD = 4.14), and in the ASD group, it was 15.75 years (SD = 3.77). The mean 
age of females in the CN group was 13.57 years (SD = 4.56), and in the ASD group, it was 14.02 years 
(SD = 4.60). No significant age differences were observed between the two groups (p = 0.23), as shown 
in Table 1. 

3.2. Performance Evaluation of GM-VGG Net classifier  

The classification performance of our proposed GM-VGGNet was evaluated based on loss and 
accuracy parameters. The training and validation loss functions, along with the accuracy of our deep 
network, are shown in Fig. 2. Our proposed deep learning network was validated over 50 epochs. 
The training and validation accuracy of our network were 97% and 96%, respectively, over 50 epochs. 
The loss function values of our network were 0.0204 for training and 0.0696 for validation over 50 
epochs. In this deep learning model, we used the TensorFlow-Keras platform with the Adam 
optimizer, kept the default learning rate of 0.001. We fine-tuned the structure based on the loss and 
accuracy performance to avoid overfitting challenges. The total number of parameters was 5,176,705, 
of which 5,174,721 were trainable. The model summary is given in Table 2. 

Table 1. Demographic data. 

 
Variable 

 

 
CN 

 
ASD 

   

N 140 132 
 

Age ( mean ± std ) 14.62 ± 4.34 
14.89 ± 4.29 (p=0.23) 

 

Age (male) ( mean ± std ) 14.97 ± 4.14 
15.75 ± 3.77 

 

N (male) 68 
67 

 

Age (female) ( mean ± std ) 13.57 ± 4.56 14.02 ± 4.60 
 

N (female) 72 
65 

 
Abbreviations: CN (Control group), ASD (Autism Spectrum Disorder), SD (Standard Deviation), and N 
(Number of subjects). The p-value was tested between the groups for age and is considered significant at a 
threshold of 0.05. The total number of subjects is 272. 
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Figure 2. Training and validation accuracy of the proposed deep learning network for ASD identification. 

 
Figure 3. Training and validation loss of the proposed deep learning network for ASD identification. 

Table 2. Model Summary of Proposed Deep Learning Network. 

 
Parameter 

 
Value 

 

 
Optimizer 

 
Adam 

 

Learning Rate 
0.001 

 

Epochs 
50 

 

Trainable Parameters 
5,174,721 

 

Non-Trainable Parameters 1,984 
 

Total Parameters 5,176,705 
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4. Discussion 

In this study, we developed a deep learning network for ASD identification, utilizing only 
structural GM tissue images and based on the VGG16 architecture. We systematically evaluated the 
network's performance and achieved the highest accuracy on sMRI data after 50 epochs of training. 
To the best of our knowledge, the proposed deep learning model outperformed exciting network for 
ASD identification using structural GM tissues alone. By using the deep learning network with GM 
maps exclusively, we were able to reduce the complexity of the training process. 

Previous studies on ASD classification using the ABIDE dataset have reported a classification 
accuracy of 63.89% for gray matter (GM) tissue alone, using a ten-fold cross-validation with a DBN 
network [19]. The classification accuracy was improved to 65% when fMRI data alone, along with 
GM tissue, were used. Finally, by combining features from white matter (WM) tissues, GM, and fMRI, 
they achieved an accuracy of 65.56% for ASD classification. Our model demonstrates superior 
performance in classification compared to the previous model [19]. We tested our model on a dataset 
of 272 samples, whereas their model was evaluated on 185 data samples. In their previous work, the 
fMRI-based model showed lower performance than the sMRI GM tissue alone images, possibly due 
to the low temporal resolution from the hemodynamic response, as well as susceptibility artifacts 
from signal dropout [39]. Therefore, our GM-VGG16 model has less computational complexity while 
maintaining greater accuracy, as it relies solely on GM tissues. 

Another study on male participants from the ABIDE dataset, which incorporated 1383 subjects, 
exhibited higher performance with an fMRI model compared to sMRI. Their accuracy reached 75% 
with sMRI alone, while fMRI achieved 83%, and the combined fused data reached an accuracy of 
85%. The previously reported model [19] performed differently with lower accuracy, possibly due to 
the high spatial resolution of their method, or due to the fusion approach they employed, which used 
early fusion to combine sMRI and fMRI before classification. In contrast, later fusion approaches 
integrate features based on the classification performance during label testing. However, their feature 
extraction models required more manual involvement, leading to a semi-automated approach. Our 
method, on the other hand, does not rely on feature selection from the images; instead, our model is 
trained to identify ASD patterns directly from the whole GM maps. 

The architecture of our deep learning network is based on the VGG network, which was 
developed by Karen Simonyan and Andrew Zisserman for the ImageNet Challenge in 2014 [25]. The 
conventional VGG addressed the challenges of training deep neural networks for large scale image 
recognition, reaching higher accuracy. Furthermore, VGG16 has demonstrated 97.66% accuracy on 
cytological images for papillary thyroid carcinomas [26]. Similarly, we employed small 3x3 
convolution filters for feature map generation. Our network consists of five sequential hidden layers, 
each with 2x2 max pooling and a stride of 2. As with the VGG architecture, the width of the 
convolution filters increases sequentially across all hidden layers, starting with 32 filters in the first 
hidden layer and progressing to 256 filters in the final hidden layer. Unlike conventional neural 
networks, which typically use smaller input sizes (e.g., 32x32 pixels) (Li & Liu, 2018), the VGG 
network is designed to handle larger input sizes effectively [26]. Larger input sizes preserve more 
substantial brain regions, generating more active feature maps. 

However, unlike the original VGG network, we incorporated batch normalization across all five 
hidden layers, which improved training accuracy. Each hidden layer in our network uses a rectified 
linear unit (ReLU) activation function, and we applied a uniform 25% dropout rate to prevent 
overfitting. This dropout rate was fixed using the trial and error, as the network showed poor 
learning without it, and started to memorize the training data. Our deep learning architecture 
showed a lower error difference between training and validation over 50 epochs, as shown in Fig. 3. 
These results exhibit that our network overcame the overfitting limitations and enabled higher 
learning. 
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In contrast to the conventional VGG network, which includes three fully connected layers and a 
dropout layer with a 0.5 rate [25], our network features a fully connected (FC) unit and an output 
layer (OL). In our work, FC unit designed with a flatten layer, a dense layer (256 filters), a batch 
normalization layer, activation layer, and a 50 percentage of dropout layer. Moreover, in our output 
layer, we used a sigmoid activation, while the conventional VGG network utilizes softmax activation. 
Our newly introduced gray matter based deep learning network higher performance in terms of 
validation accuracy and loss function over the existing ASD identification models. 

However, there are some limitations in our study. Our deep learning network was trained solely 
on the ABIDE dataset, and future work should involve incorporating additional datasets to further 
validate our approach. Furthermore, our model was tested on 272 MRI images, and a larger dataset 
is needed to enhance the model's generalization. Although our model does not require feature 
extraction during training and validation, our preprocessing, which involved segmenting the GM 
tissues, was performed semi-automatically using the SPM 12 toolbox. In the future, a fully automated 
approach for GM tissue segmentation should be integrated into the deep learning network, alongside 
the classification model. Despite these challenges, our model achieved the highest performance, 
minimizing classification loss over 50 epochs. 

5. Conclusions 

The developed deep learning network which is a modified VGG architecture named the gray 
matter network (GM-VGG-Net) and demonstrates an effective method for classifying ASD using 
sMRI brain scans based exclusively on gray matter (GM) tissues. Our modified GM-VGG-Net 
showed a training accuracy of 97 % and a validation accuracy of 96% over 50 epochs. This 
methodology is significant as it based on sMRI GM maps, which streamlines the training process, 
reduces computational complexity, and outperforms previous models that required multi-modality 
or whole brain data. 
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