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Abstract: Current fine-tuning of large language models typically relies on manually curated datasets
to enhance model performance in specialized domains. However, with the rise of prompt
engineering, is it possible for models to utilize constrained prompts like “You are an expert in
semiconductor materials” or “You are an expert in fluid mechanics” to trigger domain-specific self-
training? Could these prompts enable the model to autonomously retrieve and analyze information
from open databases, thereby achieving a refined level of self-tuning without human intervention?
This Perspective explores the feasibility of this idea and its potential to transform the conventional
fine-tuning paradigm. We present conceptual models and experimental comparisons that illustrate
the differences in model responses with and without constrained prompts. Finally, we discuss how
enabling self-training in large models could greatly enhance their utility in solving targeted domain-
specific challenges.

Keywords: Large language models; fine-tuning; prompt engineering; constrained prompt; self-
training

Fine-tuning and prompt engineering

As large language models (LLMs) have grown increasingly sophisticated [1,2], they show
significant applications across diverse fields, materials preparation [3-5], drug design [6,7],
fundamental physics research [8-15], and engineering [16,17]. The unique capability of LLMs to
generate detailed, contextually rich responses has made them valuable assets for domain-specific
tasks [18]. However, these benefits often depend on the fine-tuning of models to adapt them to
particular fields, ensuring they deliver accurate and relevant responses [19]. Fine-tuning is a process
that tailors the model’s responses to specific requirements or terminologies within a domain,
enhancing the model's contextual understanding and response specificity [20]. For example, a model
fine-tuned in the medical field is better equipped to handle questions regarding diagnostic
procedures[21], whereas a model trained for financial applications might offer more accurate
responses related to market trends and economic analysis [22].

Despite the critical importance of fine-tuning, current fine-tuning practices face significant
challenges, particularly regarding data acquisition and manual training [23]. Fine-tuning typically
requires large, domain-specific datasets, which are often costly and time-intensive to gather and
annotate [24]. These datasets must be meticulously curated to ensure data quality, consistency, and
relevance [25]. Additionally, manually training a model with these datasets is resource-intensive and
demands substantial computational power and time investment [26]. These requirements create a
bottleneck, slowing down the deployment of specialized LLMs and limiting the frequency with
which they can be updated or adapted to emerging domain knowledge [27].

Prompt engineering has emerged as a promising alternative to traditional fine-tuning [28].
Rather than modifying the model’s internal parameters with new datasets, prompt engineering
involves crafting specific input phrases or "prompts" that guide the model’s responses within the
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desired context [29]. Through prompts such as “You are an expert in biochemistry” or “Explain as a
quantum mechanics researcher,” models can be steered toward generating responses that align more
closely with domain-specific knowledge [30]. This approach circumvents the need for extensive
dataset training, offering a more flexible and cost-effective way to refine the model’s behavior on
demand [31]. Recent advances in prompt engineering indicate that well-crafted prompts can
significantly enhance model output quality by leveraging the vast amount of knowledge embedded
in LLMs [32]. However, while prompt engineering can guide model responses, it does not replace
the need for fine-tuning when deep, domain-specific knowledge is required [33]. The challenge lies
in whether prompt engineering could enable constrained, domain-specific prompts that
autonomously guide the model through a self-training process [34]. This approach could
revolutionize the current paradigm by allowing models to develop expertise dynamically without
extensive human intervention, unlocking a future where fine-tuning and prompt engineering
coalesce into a seamless, self-training framework [35].

Concept: Constrained Prompt-Driven Self-Training

Potential of Constrained Prompts to Improve Response Specificity and Relevance

Constrained prompts, or specific instructions that direct a model to respond within a defined
domain, hold significant promise in enhancing the specificity and relevance of large language
models’ (LLMs) outputs [36]. A constrained prompt, such as “You are an expert in semiconductor
materials,” provides the model with explicit domain context, guiding it to prioritize certain types of
information while filtering out irrelevant data. This approach is particularly advantageous in
specialized fields where accurate responses require a focused application of relevant knowledge. By
narrowing the scope, constrained prompts can increase the likelihood of the model generating
responses that meet the high standards expected in technical and scientific disciplines. The impact of
constrained prompts extends beyond merely producing better-targeted responses; they can also
facilitate a deeper interaction between the model and the prompt's domain. When an LLM operates
under a constrained prompt, it becomes more likely to utilize specialized terminology, reflect on
specific methodologies, or draw upon more nuanced insights within the requested domain. For
example, a constrained prompt in the field of neuroscience could lead the model to incorporate
relevant neuroscientific theories, terminology, or experimental frameworks, which would otherwise
be less accessible without the explicit direction. As LLMs continue to expand their knowledge bases
through training on extensive datasets, the potential of constrained prompts to leverage this latent
domain knowledge becomes even more impactful. Constrained prompts can effectively unlock this
potential by targeting responses more precisely, leading to outputs that align better with professional
standards and expectations. Despite this promise, constrained prompts do not fully substitute the
need for fine-tuning. While they enhance response relevance, they do not modify the underlying
model parameters. As such, the model’s inherent limitations, particularly regarding depth and
complexity of understanding within a specialized field, remain unchanged. However, with further
advancements, constrained prompts could serve as the foundation for a dynamic self-training
framework, where the model not only generates contextually relevant responses but also learns and
improves autonomously within the constrained domain.

Theoretical Workflow for Achieving Self-Training through Constrained
Prompts

In the envisioned framework of constrained prompt-driven self-training, large models would
move beyond static responses to become dynamically adaptive, capable of learning autonomously in
response to specified domain prompts. This process would begin with a user-input constrained
prompt, such as “You are an expert in biomedical engineering,” which would then trigger a sequence
of internal model operations aimed at locating, retrieving, and analyzing relevant data. Initially, the
model would parse the prompt to identify the primary domain (e.g., biomedical engineering) and
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secondary topics within that domain that are relevant to the user’s query. This identification process
would draw on the model’s internal knowledge base to set the context and scope for its subsequent
operations. Following the initial context-setting phase, the model would autonomously connect to
open-access databases or repositories containing domain-specific knowledge. For example, given a
constrained prompt in biomedical engineering, the model might access resources like PubMed for
research articles or engineering databases for technical data. The goal of this data retrieval stage
would be to obtain high-quality, authoritative information that aligns with the user-specified
constraints. Using these resources, the model would proceed to a self-training phase in which it could
refine its internal parameters based on the newly acquired data. This process could involve machine
learning techniques, such as embedding updates or incremental learning, to integrate relevant
insights from the domain into the model’s neural network [1]. Upon completing the data retrieval
and self-training phase, the model would be equipped to generate responses that more closely align
with the constrained prompt’s intent. This entire workflow would function in real-time, enabling the
model to respond dynamically to a wide range of domain-specific questions.

Current Limitations: Inability of Existing Models to Self-Train Autonomously

While the concept of constrained prompt-driven self-training is theoretically sound, existing
LLMs are currently unable to execute this process due to several technical limitations [37]. First,
today’s models lack the capability to autonomously retrieve data or access external databases in
response to prompts [38]. Most LLMs are designed to operate on pre-trained data without the ability
to fetch or incorporate new information from online or offline databases dynamically [1].
Consequently, they cannot update their parameters in real-time based on new domain-specific data,
which is a fundamental requirement for self-training [19]. Another significant limitation lies in the
model architecture itself [18]. Current LLMs are designed as static structures; they are unable to
modify their internal parameters or neural weights outside of formal retraining cycles [39]. This
design is incompatible with the concept of real-time self-training, where the model would ideally
update its understanding incrementally in response to constrained prompts [25]. Although some
research has been directed toward creating adaptive and modular neural networks, the technology
is still in its early stages and not yet suitable for large-scale application within LLMs. Moreover, the
computational demands of autonomous self-training are considerable [40]. Achieving self-training
would require real-time access to large volumes of domain-specific data and substantial processing
power to integrate and update this information [41]. This would significantly increase operational
costs and potentially limit the accessibility of self-training models to well-funded institutions and
enterprises. Additionally, without rigorous quality control, allowing a model to autonomously ingest
data from external sources could lead to inaccuracies or biases in the model’s outputs, further
complicating the development of reliable self-training frameworks.

Conceptual Framework and Illustrations

Flowchart of Self-Training Driven by Constrained Prompts

The flowchart for constrained prompt-driven self-training outlines a multi-step process that
enables a large language model (LLM) to produce precise, contextually relevant responses within
specified domains, driven by user-defined prompts. Here is a detailed breakdown of each step in the
workflow:

1. Start

The process begins with the initiation of a session where a user can input specific instructions,
setting the stage for domain-specific guidance. This phase marks the start of a targeted interaction
tailored to the user's needs.

2. User Input

The user provides a constrained prompt, such as “You are an expert in semiconductor
materials.” This prompt defines the scope and expected expertise of the model’s response. By framing
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the model as a specialist in a specific area, the prompt sets a focused direction for subsequent steps,
ensuring the response aligns with the domain’s standards and terminologies.

3. Constrained Prompt Interpretation

The model interprets the constrained prompt, understanding the specific area of expertise
required. This step involves processing the prompt to identify keywords that define the domain and
subtopics, allowing the model to narrow its focus accordingly. For instance, with a prompt in
semiconductor materials, the model would focus on technical aspects relevant to that field rather than
general scientific information.

4. Domain Identification

Once the constrained prompt is processed, the model categorizes the main topic and subtopics
relevant to the user’s specified domain. This categorization refines the model’s understanding,
enabling it to limit its attention to specific areas like materials science, semiconductor fabrication, or
relevant advancements within the semiconductor industry. By isolating relevant themes, the model
prepares itself to retrieve accurate, contextually appropriate data.

5. Data Retrieval

In this phase, the model connects to open-access databases or knowledge repositories to gather
authoritative information within the identified domain. For example, if the prompt pertains to
medical sciences, the model might access PubMed, while an engineering prompt might lead it to IEEE
Xplore. This automated data retrieval allows the model to gather up-to-date, high-quality
information, forming the foundation for its self-training.

6. Self-Training

After retrieving relevant data, the model enters the self-training phase, where it integrates the
new information and refines its internal parameters. Through processes like embedding updates or
incremental adjustments, the model adapts its neural weights to better reflect domain-specific
knowledge. This phase is crucial, as it allows the model to learn autonomously from the newly
gathered data, enhancing its ability to respond accurately and with specialized insight within the
given field.

7. Specialized Response Generation

With its parameters updated and domain knowledge enhanced, the model is now ready to
generate responses that closely align with the constrained prompt. The response generation phase
produces detailed, contextually accurate answers that use appropriate terminology, reference recent
developments, and meet the professional standards expected in the domain. This step marks the
culmination of the self-training process, where the model delivers output that is both specific and
relevant.

8. End

The process concludes after the model has generated its domain-specific response. At this point,
the model is prepared to repeat the cycle if further input is provided, allowing for continuous,
prompt-driven adaptation within the specified field.

This structured approach, starting from user input and progressing through data retrieval and
self-training to specialized response generation, highlights the potential of combining constrained
prompts with self-training to achieve adaptive, domain-focused responses. Each stage is designed to
maximize the model's accuracy and relevance within the chosen area of expertise, offering a flexible
and powerful alternative to traditional fine-tuning.
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Figure 1. Conceptual Framework of Self-Training Driven by Constrained Prompts in Large Language
Models. This flowchart illustrates a theoretical framework for enabling self-training in large language models
(LLMs) through the use of constrained prompts, which guide the model to respond within a specified domain.
The process begins with "User Input,” where a constrained prompt such as "You are an expert in semiconductor
materials” sets a clear context and domain for the model. This leads to the "Constrained Prompt Interpretation”
stage, where the model processes and interprets the prompt to identify key topics and subtopics relevant to the
specified field. Following this, the "Domain Identification" phase further refines the model's focus, categorizing
the main topic and associated subtopics to ensure targeted responses. The next step, "Data Retrieval," involves
the model autonomously accessing open-access databases, gathering relevant and high-quality information to
enrich its knowledge base. In the "Self-Training" phase, the model integrates this newly acquired data, updating
its parameters to enhance accuracy and specificity within the chosen domain. Finally, the model reaches the
"Specialized Response Generation" stage, where it produces refined, domain-specific responses aligned with
professional standards. This framework exemplifies the potential of combining constrained prompts and self-

training to create adaptive, highly specialized LLMs.

Comparative Illustration: Response Differences with and without Constrained
Prompts

The following illustrates the comparison between responses generated with and without
constrained prompts across multiple models, including Kimi, ERNIE Bot, Qwen and ChatGPT 4o.
Three questions representing different fields, i.e., physics, biology and materials, are included. The
three questions are: "How does the contact angle affect the spreading of droplets?” in Fig. 2, 'How to
synthesize qRBG1/OsBZR5?" in Fig. 3 and ‘How to synthesize 6, 5 chiral single-walled carbon
nanotubes?” in Fig. 4.

(1) Response without Constrained Prompt

When presented with a general question, a model without a constrained prompt can provide a
detailed response. Sometimes, the detailed steps for biology and materials also could be given.
However, the response is somewhat broad, sometimes overly generalized response. For example,
when asked about “How to synthesize 6, 5 chiral single-walled carbon nanotubes?” the model may
produce a general step and possible methods, without providing specific information such as
materials, experimental conditions, etc. This is not very useful for using these models to directly
guide experiments.

(2) Response with Constrained Prompt


https://doi.org/10.20944/preprints202504.1301.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1301.v1

6 of 11

Using a constrained prompt like “You are an expert in the field of carbon nanotube synthesis.”
the model may narrow its focus to advancements in carbon nanotube synthesis, discussing recent
methods synthesizing carbon nanotube. Although restrictive prompts were added, the response of
the general models did not show significant optimization. The responses are still vague and do not
provide detailed steps. As compared to the cases when there are no restrictive prompts, there is a
slight improvement in the answer. However, compared to the fine tuned models, the response
obtained is still unsatisfactory.
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Figure 2. The comparison of the question ‘How does the contact angle affect the spreading of droplets?” with
and without constrained prompt.
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Figure 3. The comparison of the question ‘How to synthesize qRBG1/OsBZR5?" with and without constrained
prompt.
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Figure 4. The comparison of the question ‘How to synthesize 6, 5 chiral single-walled carbon nanotubes?” with

and without constrained prompt.


https://doi.org/10.20944/preprints202504.1301.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2025 d0i:10.20944/preprints202504.1301.v1

8 of 11

Discussion and Reflections on Fine-Tuning Approaches

Pros and Cons of Current Fine-Tuning Methods

Current fine-tuning methods for large language models (LLMs) involve retraining the model on
domain-specific datasets to improve accuracy and relevance within particular fields. One of the
primary advantages of this approach is the high level of precision it can offer in generating responses.
By training on curated, domain-specific data, fine-tuned models can develop a detailed
understanding of specialized terminology, context, and industry standards, making them well-suited
for technical or academic applications. Additionally, fine-tuning allows for continuous
improvements in the model’s performance by updating it with recent data, ensuring the model
remains relevant and aligned with current advancements. However, traditional fine-tuning also has
notable drawbacks. It is often a time-intensive and costly process, requiring large, high-quality
datasets that are expensive to collect and annotate. The computational resources needed for fine-
tuning are substantial, especially for large models, making it difficult for many organizations to
undertake frequent updates. Furthermore, fine-tuning is generally a static process, meaning that any
new training requires starting over from the last iteration, which limits flexibility. These factors
collectively hinder the adaptability of models and increase the overall cost, posing a challenge for
applications that require rapid updates or domain-specific customization.

Feasibility and Potential Impacts of Constrained Prompt-Driven Self-Training

The concept of constrained prompt-driven self-training offers a promising alternative to
traditional fine-tuning, leveraging prompt engineering to guide the model’s responses while
enabling it to autonomously learn from newly retrieved data. The feasibility of this approach hinges
on advancements in model architecture and autonomous learning capabilities. Unlike traditional
fine-tuning, which requires substantial human intervention, constrained prompt-driven self-training
would allow models to dynamically adapt to domain-specific queries by retrieving relevant data
from open-access databases and incrementally updating their internal parameters. The potential
impact of this method is significant. By reducing reliance on pre-curated datasets, constrained
prompt-driven self-training could lower costs associated with data acquisition and training.
Furthermore, the ability to autonomously integrate new information on demand would make LLMs
far more flexible, enabling them to stay current with the latest research and developments in their
designated fields. This would be particularly beneficial in fast-evolving domains, such as medicine
or technology, where up-to-date knowledge is essential. If fully realized, this approach could shift
the paradigm of fine-tuning from a static, high-cost process to a dynamic, prompt-driven system,
offering an efficient and adaptive solution for domain-specific model enhancement.

Advantages of Self-Training: Cost-Effectiveness, Increased Efficiency, and
Enhanced Domain-Specificity

Self-training through constrained prompts has several distinct advantages over traditional fine-
tuning, particularly in terms of cost-effectiveness, efficiency, and domain-specificity. By enabling
models to autonomously gather and integrate relevant data, self-training reduces the need for manual
dataset curation and annotation, lowering operational costs. Additionally, this approach circumvents
the need for frequent retraining sessions, making it more efficient and allowing models to adapt
quickly to new information without extensive downtime. Another significant advantage of self-
training is the enhanced specificity it provides within specialized domains. By dynamically adjusting
parameters based on real-time data retrieval, models can produce highly targeted responses that
reflect the latest knowledge and terminology within a given field. This continuous adaptation process
ensures that the model’s responses are not only accurate but also highly relevant to the user’s needs,
providing a level of domain-specific precision that static fine-tuning methods struggle to achieve.

Challenges and Future Directions
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Standards and Data Quality in Open Databases for Reliable Self-Training

One of the primary challenges in implementing constrained prompt-driven self-training lies in
ensuring the quality and consistency of data retrieved from open-access databases. For self-training
to be effective, the model must rely on high-quality, reliable information that aligns with the specific
requirements of the constrained prompt. However, open-access databases often vary widely in terms
of data accuracy, completeness, and structure. The model’s performance can be significantly affected
by these inconsistencies, as inaccurate or outdated information may lead to flawed responses,
especially in technical or specialized fields where precision is critical. Establishing standards for data
quality in open databases is essential to support reliable self-training. This includes developing
criteria for data verification, relevance, and timeliness. Collaborations between database providers,
industry experts, and research institutions could help create guidelines and best practices for curating
data specifically for LLM training and retrieval. Implementing automated data quality assessment
tools, such as consistency checks and relevance scoring, could also enhance the model’s ability to
filter and select the most pertinent information, ensuring that self-training leads to trustworthy and
accurate responses.

Technical Challenges and the Need for Interdisciplinary Collaboration

The technical complexity of constrained prompt-driven self-training is another significant
challenge. Enabling LLMs to autonomously retrieve, filter, and integrate data from external sources
requires advancements in model architecture, data retrieval algorithms, and adaptive learning
mechanisms. Current LLMs are typically static in design, making them ill-suited for real-time
parameter adjustments and incremental learning based on new data inputs. Developing models that
can self-tune dynamically will necessitate novel architectural innovations, such as modular or hybrid
models that can independently process and integrate external data streams without compromising
overall model stability or accuracy. Achieving these technical goals will require interdisciplinary
collaboration across fields like machine learning, data science, and domain-specific expertise. For
example, integrating domain knowledge into model architectures could help improve the relevance
of data retrieval and self-training processes. Partnerships between Al researchers, data engineers,
and domain experts will be crucial to addressing these challenges. Interdisciplinary teams can
collectively design robust frameworks and test models across different domains, allowing for
iterative improvements that balance self-training flexibility with precision.

Future Applications and Technological Outlook: Pathways to Targeted Domain
Solutions

The successful implementation of constrained prompt-driven self-training could unlock a range
of applications, especially in fields that require tailored, up-to-date knowledge, such as healthcare,
finance, engineering, and law. For instance, in healthcare, a self-training model could adapt to the
latest medical research, guidelines, and case studies, providing clinicians with timely and evidence-
based insights. Similarly, in finance, models could adjust to real-time market data and emerging
economic trends, enabling analysts to make informed decisions based on current data without
waiting for formal retraining cycles. The technological outlook for constrained prompt-driven self-
training is promising. By establishing reliable data pipelines, developing adaptive model
architectures, and maintaining interdisciplinary collaboration, LLMs could evolve into powerful
tools for specialized problem-solving across multiple sectors. Future research may focus on refining
the balance between self-training adaptability and data accuracy, exploring methods such as
reinforcement learning to optimize real-time data integration while maintaining model robustness.
Furthermore, as Al governance and data ethics advance, ensuring transparency and accountability
in self-training processes will be key to achieving trust in these models.

In conclusion, constrained prompt-driven self-training represents a transformative direction for
LLM development. While challenges related to data quality, technical complexity, and
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interdisciplinary collaboration remain, addressing these obstacles could enable large language
models to provide precise, domain-specific solutions with unparalleled efficiency and
responsiveness, paving the way for a new era of specialized, adaptive Al applications.
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