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Abstract: Current fine-tuning of large language models typically relies on manually curated datasets 
to enhance model performance in specialized domains. However, with the rise of prompt 
engineering, is it possible for models to utilize constrained prompts like “You are an expert in 
semiconductor materials” or “You are an expert in fluid mechanics” to trigger domain-specific self-
training? Could these prompts enable the model to autonomously retrieve and analyze information 
from open databases, thereby achieving a refined level of self-tuning without human intervention? 
This Perspective explores the feasibility of this idea and its potential to transform the conventional 
fine-tuning paradigm. We present conceptual models and experimental comparisons that illustrate 
the differences in model responses with and without constrained prompts. Finally, we discuss how 
enabling self-training in large models could greatly enhance their utility in solving targeted domain-
specific challenges. 

Keywords: Large language models; fine-tuning; prompt engineering; constrained prompt; self-
training 
 

Fine-tuning and prompt engineering 

As large language models (LLMs) have grown increasingly sophisticated [1,2], they show 
significant applications across diverse fields, materials preparation [3-5], drug design [6,7], 
fundamental physics research [8-15], and engineering [16,17]. The unique capability of LLMs to 
generate detailed, contextually rich responses has made them valuable assets for domain-specific 
tasks [18]. However, these benefits often depend on the fine-tuning of models to adapt them to 
particular fields, ensuring they deliver accurate and relevant responses [19]. Fine-tuning is a process 
that tailors the model’s responses to specific requirements or terminologies within a domain, 
enhancing the model's contextual understanding and response specificity [20]. For example, a model 
fine-tuned in the medical field is better equipped to handle questions regarding diagnostic 
procedures[21], whereas a model trained for financial applications might offer more accurate 
responses related to market trends and economic analysis [22]. 

Despite the critical importance of fine-tuning, current fine-tuning practices face significant 
challenges, particularly regarding data acquisition and manual training [23]. Fine-tuning typically 
requires large, domain-specific datasets, which are often costly and time-intensive to gather and 
annotate [24]. These datasets must be meticulously curated to ensure data quality, consistency, and 
relevance [25]. Additionally, manually training a model with these datasets is resource-intensive and 
demands substantial computational power and time investment [26]. These requirements create a 
bottleneck, slowing down the deployment of specialized LLMs and limiting the frequency with 
which they can be updated or adapted to emerging domain knowledge [27]. 

Prompt engineering has emerged as a promising alternative to traditional fine-tuning [28]. 
Rather than modifying the model’s internal parameters with new datasets, prompt engineering 
involves crafting specific input phrases or "prompts" that guide the model’s responses within the 
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desired context [29]. Through prompts such as “You are an expert in biochemistry” or “Explain as a 
quantum mechanics researcher,” models can be steered toward generating responses that align more 
closely with domain-specific knowledge [30]. This approach circumvents the need for extensive 
dataset training, offering a more flexible and cost-effective way to refine the model’s behavior on 
demand [31]. Recent advances in prompt engineering indicate that well-crafted prompts can 
significantly enhance model output quality by leveraging the vast amount of knowledge embedded 
in LLMs [32]. However, while prompt engineering can guide model responses, it does not replace 
the need for fine-tuning when deep, domain-specific knowledge is required [33]. The challenge lies 
in whether prompt engineering could enable constrained, domain-specific prompts that 
autonomously guide the model through a self-training process [34]. This approach could 
revolutionize the current paradigm by allowing models to develop expertise dynamically without 
extensive human intervention, unlocking a future where fine-tuning and prompt engineering 
coalesce into a seamless, self-training framework [35]. 

Concept: Constrained Prompt-Driven Self-Training 

Potential of Constrained Prompts to Improve Response Specificity and Relevance 
Constrained prompts, or specific instructions that direct a model to respond within a defined 

domain, hold significant promise in enhancing the specificity and relevance of large language 
models’ (LLMs) outputs [36]. A constrained prompt, such as “You are an expert in semiconductor 
materials,” provides the model with explicit domain context, guiding it to prioritize certain types of 
information while filtering out irrelevant data. This approach is particularly advantageous in 
specialized fields where accurate responses require a focused application of relevant knowledge. By 
narrowing the scope, constrained prompts can increase the likelihood of the model generating 
responses that meet the high standards expected in technical and scientific disciplines. The impact of 
constrained prompts extends beyond merely producing better-targeted responses; they can also 
facilitate a deeper interaction between the model and the prompt's domain. When an LLM operates 
under a constrained prompt, it becomes more likely to utilize specialized terminology, reflect on 
specific methodologies, or draw upon more nuanced insights within the requested domain. For 
example, a constrained prompt in the field of neuroscience could lead the model to incorporate 
relevant neuroscientific theories, terminology, or experimental frameworks, which would otherwise 
be less accessible without the explicit direction. As LLMs continue to expand their knowledge bases 
through training on extensive datasets, the potential of constrained prompts to leverage this latent 
domain knowledge becomes even more impactful. Constrained prompts can effectively unlock this 
potential by targeting responses more precisely, leading to outputs that align better with professional 
standards and expectations. Despite this promise, constrained prompts do not fully substitute the 
need for fine-tuning. While they enhance response relevance, they do not modify the underlying 
model parameters. As such, the model’s inherent limitations, particularly regarding depth and 
complexity of understanding within a specialized field, remain unchanged. However, with further 
advancements, constrained prompts could serve as the foundation for a dynamic self-training 
framework, where the model not only generates contextually relevant responses but also learns and 
improves autonomously within the constrained domain. 

Theoretical Workflow for Achieving Self-Training through Constrained 
Prompts 

In the envisioned framework of constrained prompt-driven self-training, large models would 
move beyond static responses to become dynamically adaptive, capable of learning autonomously in 
response to specified domain prompts. This process would begin with a user-input constrained 
prompt, such as “You are an expert in biomedical engineering,” which would then trigger a sequence 
of internal model operations aimed at locating, retrieving, and analyzing relevant data. Initially, the 
model would parse the prompt to identify the primary domain (e.g., biomedical engineering) and 
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secondary topics within that domain that are relevant to the user’s query. This identification process 
would draw on the model’s internal knowledge base to set the context and scope for its subsequent 
operations. Following the initial context-setting phase, the model would autonomously connect to 
open-access databases or repositories containing domain-specific knowledge. For example, given a 
constrained prompt in biomedical engineering, the model might access resources like PubMed for 
research articles or engineering databases for technical data. The goal of this data retrieval stage 
would be to obtain high-quality, authoritative information that aligns with the user-specified 
constraints. Using these resources, the model would proceed to a self-training phase in which it could 
refine its internal parameters based on the newly acquired data. This process could involve machine 
learning techniques, such as embedding updates or incremental learning, to integrate relevant 
insights from the domain into the model’s neural network [1]. Upon completing the data retrieval 
and self-training phase, the model would be equipped to generate responses that more closely align 
with the constrained prompt’s intent. This entire workflow would function in real-time, enabling the 
model to respond dynamically to a wide range of domain-specific questions. 

Current Limitations: Inability of Existing Models to Self-Train Autonomously 

While the concept of constrained prompt-driven self-training is theoretically sound, existing 
LLMs are currently unable to execute this process due to several technical limitations [37]. First, 
today’s models lack the capability to autonomously retrieve data or access external databases in 
response to prompts [38]. Most LLMs are designed to operate on pre-trained data without the ability 
to fetch or incorporate new information from online or offline databases dynamically [1]. 
Consequently, they cannot update their parameters in real-time based on new domain-specific data, 
which is a fundamental requirement for self-training [19]. Another significant limitation lies in the 
model architecture itself [18]. Current LLMs are designed as static structures; they are unable to 
modify their internal parameters or neural weights outside of formal retraining cycles [39]. This 
design is incompatible with the concept of real-time self-training, where the model would ideally 
update its understanding incrementally in response to constrained prompts [25]. Although some 
research has been directed toward creating adaptive and modular neural networks, the technology 
is still in its early stages and not yet suitable for large-scale application within LLMs. Moreover, the 
computational demands of autonomous self-training are considerable [40]. Achieving self-training 
would require real-time access to large volumes of domain-specific data and substantial processing 
power to integrate and update this information [41]. This would significantly increase operational 
costs and potentially limit the accessibility of self-training models to well-funded institutions and 
enterprises. Additionally, without rigorous quality control, allowing a model to autonomously ingest 
data from external sources could lead to inaccuracies or biases in the model’s outputs, further 
complicating the development of reliable self-training frameworks. 

Conceptual Framework and Illustrations 

Flowchart of Self-Training Driven by Constrained Prompts 
The flowchart for constrained prompt-driven self-training outlines a multi-step process that 

enables a large language model (LLM) to produce precise, contextually relevant responses within 
specified domains, driven by user-defined prompts. Here is a detailed breakdown of each step in the 
workflow: 

1. Start 
The process begins with the initiation of a session where a user can input specific instructions, 

setting the stage for domain-specific guidance. This phase marks the start of a targeted interaction 
tailored to the user's needs. 

2. User Input 
The user provides a constrained prompt, such as “You are an expert in semiconductor 

materials.” This prompt defines the scope and expected expertise of the model’s response. By framing 
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the model as a specialist in a specific area, the prompt sets a focused direction for subsequent steps, 
ensuring the response aligns with the domain’s standards and terminologies. 

3. Constrained Prompt Interpretation 
The model interprets the constrained prompt, understanding the specific area of expertise 

required. This step involves processing the prompt to identify keywords that define the domain and 
subtopics, allowing the model to narrow its focus accordingly. For instance, with a prompt in 
semiconductor materials, the model would focus on technical aspects relevant to that field rather than 
general scientific information. 

4. Domain Identification 
Once the constrained prompt is processed, the model categorizes the main topic and subtopics 

relevant to the user’s specified domain. This categorization refines the model’s understanding, 
enabling it to limit its attention to specific areas like materials science, semiconductor fabrication, or 
relevant advancements within the semiconductor industry. By isolating relevant themes, the model 
prepares itself to retrieve accurate, contextually appropriate data. 

5. Data Retrieval 
In this phase, the model connects to open-access databases or knowledge repositories to gather 

authoritative information within the identified domain. For example, if the prompt pertains to 
medical sciences, the model might access PubMed, while an engineering prompt might lead it to IEEE 
Xplore. This automated data retrieval allows the model to gather up-to-date, high-quality 
information, forming the foundation for its self-training. 

6. Self-Training 
After retrieving relevant data, the model enters the self-training phase, where it integrates the 

new information and refines its internal parameters. Through processes like embedding updates or 
incremental adjustments, the model adapts its neural weights to better reflect domain-specific 
knowledge. This phase is crucial, as it allows the model to learn autonomously from the newly 
gathered data, enhancing its ability to respond accurately and with specialized insight within the 
given field. 

7. Specialized Response Generation 
With its parameters updated and domain knowledge enhanced, the model is now ready to 

generate responses that closely align with the constrained prompt. The response generation phase 
produces detailed, contextually accurate answers that use appropriate terminology, reference recent 
developments, and meet the professional standards expected in the domain. This step marks the 
culmination of the self-training process, where the model delivers output that is both specific and 
relevant. 

8. End 
The process concludes after the model has generated its domain-specific response. At this point, 

the model is prepared to repeat the cycle if further input is provided, allowing for continuous, 
prompt-driven adaptation within the specified field. 

This structured approach, starting from user input and progressing through data retrieval and 
self-training to specialized response generation, highlights the potential of combining constrained 
prompts with self-training to achieve adaptive, domain-focused responses. Each stage is designed to 
maximize the model's accuracy and relevance within the chosen area of expertise, offering a flexible 
and powerful alternative to traditional fine-tuning. 
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Figure 1. Conceptual Framework of Self-Training Driven by Constrained Prompts in Large Language 
Models. This flowchart illustrates a theoretical framework for enabling self-training in large language models 
(LLMs) through the use of constrained prompts, which guide the model to respond within a specified domain. 
The process begins with "User Input," where a constrained prompt such as "You are an expert in semiconductor 
materials" sets a clear context and domain for the model. This leads to the "Constrained Prompt Interpretation" 
stage, where the model processes and interprets the prompt to identify key topics and subtopics relevant to the 
specified field. Following this, the "Domain Identification" phase further refines the model's focus, categorizing 
the main topic and associated subtopics to ensure targeted responses. The next step, "Data Retrieval," involves 
the model autonomously accessing open-access databases, gathering relevant and high-quality information to 
enrich its knowledge base. In the "Self-Training" phase, the model integrates this newly acquired data, updating 
its parameters to enhance accuracy and specificity within the chosen domain. Finally, the model reaches the 
"Specialized Response Generation" stage, where it produces refined, domain-specific responses aligned with 
professional standards. This framework exemplifies the potential of combining constrained prompts and self-
training to create adaptive, highly specialized LLMs. 

Comparative Illustration: Response Differences with and without Constrained 
Prompts 

The following illustrates the comparison between responses generated with and without 
constrained prompts across multiple models, including Kimi, ERNIE Bot, Qwen and ChatGPT 4o. 
Three questions representing different fields, i.e., physics, biology and materials, are included. The 
three questions are: ‘How does the contact angle affect the spreading of droplets?’ in Fig. 2, ‘How to 
synthesize qRBG1/OsBZR5?’ in Fig. 3 and ‘How to synthesize 6, 5 chiral single-walled carbon 
nanotubes?’ in Fig. 4.  

(1) Response without Constrained Prompt 

When presented with a general question, a model without a constrained prompt can provide a 
detailed response. Sometimes, the detailed steps for biology and materials also could be given. 
However, the response is somewhat broad, sometimes overly generalized response. For example, 
when asked about “How to synthesize 6, 5 chiral single-walled carbon nanotubes?” the model may 
produce a general step and possible methods, without providing specific information such as 
materials, experimental conditions, etc. This is not very useful for using these models to directly 
guide experiments. 

(2) Response with Constrained Prompt 
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Using a constrained prompt like “You are an expert in the field of carbon nanotube synthesis.” 
the model may narrow its focus to advancements in carbon nanotube synthesis, discussing recent 
methods synthesizing carbon nanotube. Although restrictive prompts were added, the response of 
the general models did not show significant optimization. The responses are still vague and do not 
provide detailed steps. As compared to the cases when there are no restrictive prompts, there is a 
slight improvement in the answer. However, compared to the fine tuned models, the response 
obtained is still unsatisfactory. 

 

Figure 2. The comparison of the question ‘How does the contact angle affect the spreading of droplets?’ with 
and without constrained prompt. 
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Figure 3. The comparison of the question ‘How to synthesize qRBG1/OsBZR5?’ with and without constrained 
prompt. 

 

Figure 4. The comparison of the question ‘How to synthesize 6, 5 chiral single-walled carbon nanotubes?’ with 
and without constrained prompt. 
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Discussion and Reflections on Fine-Tuning Approaches 

Pros and Cons of Current Fine-Tuning Methods 
Current fine-tuning methods for large language models (LLMs) involve retraining the model on 

domain-specific datasets to improve accuracy and relevance within particular fields. One of the 
primary advantages of this approach is the high level of precision it can offer in generating responses. 
By training on curated, domain-specific data, fine-tuned models can develop a detailed 
understanding of specialized terminology, context, and industry standards, making them well-suited 
for technical or academic applications. Additionally, fine-tuning allows for continuous 
improvements in the model’s performance by updating it with recent data, ensuring the model 
remains relevant and aligned with current advancements. However, traditional fine-tuning also has 
notable drawbacks. It is often a time-intensive and costly process, requiring large, high-quality 
datasets that are expensive to collect and annotate. The computational resources needed for fine-
tuning are substantial, especially for large models, making it difficult for many organizations to 
undertake frequent updates. Furthermore, fine-tuning is generally a static process, meaning that any 
new training requires starting over from the last iteration, which limits flexibility. These factors 
collectively hinder the adaptability of models and increase the overall cost, posing a challenge for 
applications that require rapid updates or domain-specific customization. 

Feasibility and Potential Impacts of Constrained Prompt-Driven Self-Training 
The concept of constrained prompt-driven self-training offers a promising alternative to 

traditional fine-tuning, leveraging prompt engineering to guide the model’s responses while 
enabling it to autonomously learn from newly retrieved data. The feasibility of this approach hinges 
on advancements in model architecture and autonomous learning capabilities. Unlike traditional 
fine-tuning, which requires substantial human intervention, constrained prompt-driven self-training 
would allow models to dynamically adapt to domain-specific queries by retrieving relevant data 
from open-access databases and incrementally updating their internal parameters. The potential 
impact of this method is significant. By reducing reliance on pre-curated datasets, constrained 
prompt-driven self-training could lower costs associated with data acquisition and training. 
Furthermore, the ability to autonomously integrate new information on demand would make LLMs 
far more flexible, enabling them to stay current with the latest research and developments in their 
designated fields. This would be particularly beneficial in fast-evolving domains, such as medicine 
or technology, where up-to-date knowledge is essential. If fully realized, this approach could shift 
the paradigm of fine-tuning from a static, high-cost process to a dynamic, prompt-driven system, 
offering an efficient and adaptive solution for domain-specific model enhancement. 

Advantages of Self-Training: Cost-Effectiveness, Increased Efficiency, and 
Enhanced Domain-Specificity 

Self-training through constrained prompts has several distinct advantages over traditional fine-
tuning, particularly in terms of cost-effectiveness, efficiency, and domain-specificity. By enabling 
models to autonomously gather and integrate relevant data, self-training reduces the need for manual 
dataset curation and annotation, lowering operational costs. Additionally, this approach circumvents 
the need for frequent retraining sessions, making it more efficient and allowing models to adapt 
quickly to new information without extensive downtime. Another significant advantage of self-
training is the enhanced specificity it provides within specialized domains. By dynamically adjusting 
parameters based on real-time data retrieval, models can produce highly targeted responses that 
reflect the latest knowledge and terminology within a given field. This continuous adaptation process 
ensures that the model’s responses are not only accurate but also highly relevant to the user’s needs, 
providing a level of domain-specific precision that static fine-tuning methods struggle to achieve.  

Challenges and Future Directions 
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Standards and Data Quality in Open Databases for Reliable Self-Training 

One of the primary challenges in implementing constrained prompt-driven self-training lies in 
ensuring the quality and consistency of data retrieved from open-access databases. For self-training 
to be effective, the model must rely on high-quality, reliable information that aligns with the specific 
requirements of the constrained prompt. However, open-access databases often vary widely in terms 
of data accuracy, completeness, and structure. The model’s performance can be significantly affected 
by these inconsistencies, as inaccurate or outdated information may lead to flawed responses, 
especially in technical or specialized fields where precision is critical. Establishing standards for data 
quality in open databases is essential to support reliable self-training. This includes developing 
criteria for data verification, relevance, and timeliness. Collaborations between database providers, 
industry experts, and research institutions could help create guidelines and best practices for curating 
data specifically for LLM training and retrieval. Implementing automated data quality assessment 
tools, such as consistency checks and relevance scoring, could also enhance the model’s ability to 
filter and select the most pertinent information, ensuring that self-training leads to trustworthy and 
accurate responses. 

Technical Challenges and the Need for Interdisciplinary Collaboration 

The technical complexity of constrained prompt-driven self-training is another significant 
challenge. Enabling LLMs to autonomously retrieve, filter, and integrate data from external sources 
requires advancements in model architecture, data retrieval algorithms, and adaptive learning 
mechanisms. Current LLMs are typically static in design, making them ill-suited for real-time 
parameter adjustments and incremental learning based on new data inputs. Developing models that 
can self-tune dynamically will necessitate novel architectural innovations, such as modular or hybrid 
models that can independently process and integrate external data streams without compromising 
overall model stability or accuracy. Achieving these technical goals will require interdisciplinary 
collaboration across fields like machine learning, data science, and domain-specific expertise. For 
example, integrating domain knowledge into model architectures could help improve the relevance 
of data retrieval and self-training processes. Partnerships between AI researchers, data engineers, 
and domain experts will be crucial to addressing these challenges. Interdisciplinary teams can 
collectively design robust frameworks and test models across different domains, allowing for 
iterative improvements that balance self-training flexibility with precision. 

Future Applications and Technological Outlook: Pathways to Targeted Domain 
Solutions 

The successful implementation of constrained prompt-driven self-training could unlock a range 
of applications, especially in fields that require tailored, up-to-date knowledge, such as healthcare, 
finance, engineering, and law. For instance, in healthcare, a self-training model could adapt to the 
latest medical research, guidelines, and case studies, providing clinicians with timely and evidence-
based insights. Similarly, in finance, models could adjust to real-time market data and emerging 
economic trends, enabling analysts to make informed decisions based on current data without 
waiting for formal retraining cycles. The technological outlook for constrained prompt-driven self-
training is promising. By establishing reliable data pipelines, developing adaptive model 
architectures, and maintaining interdisciplinary collaboration, LLMs could evolve into powerful 
tools for specialized problem-solving across multiple sectors. Future research may focus on refining 
the balance between self-training adaptability and data accuracy, exploring methods such as 
reinforcement learning to optimize real-time data integration while maintaining model robustness. 
Furthermore, as AI governance and data ethics advance, ensuring transparency and accountability 
in self-training processes will be key to achieving trust in these models. 

In conclusion, constrained prompt-driven self-training represents a transformative direction for 
LLM development. While challenges related to data quality, technical complexity, and 
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interdisciplinary collaboration remain, addressing these obstacles could enable large language 
models to provide precise, domain-specific solutions with unparalleled efficiency and 
responsiveness, paving the way for a new era of specialized, adaptive AI applications. 
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