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Abstract: Originally identified as a potential receptor for opioids, sigma-1 receptor is a class of 

intracellular receptors expressed in various tissues including neurons. As a resident protein in the 

mitochondria-associated endoplasmic reticulum (ER) membrane, sigma-1 receptor has been found 

involved in various biological and disease processes including stress responses, neurotransmission, 

and neurodegenerative diseases. Herein we discuss the history, structure, functions, and 

pharmacology of sigma-1 receptor and its pathological implications in neurodegenerative diseases. 
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1. Introduction 

Sigma receptors were discovered in the 1970s when the scientific community was actively 

exploring the mechanisms of action of opioids, focusing on their interactions with various receptors 

in the brain. W.R. Martin investigated the effects of various drugs, including opioids and opioid-like 

compounds, on the central nervous system. It was observed that SKF-10047, a congener of morphine, 

caused mydriasis, tachypnea, tachycardia, and mania in contrast with morphine, a mu receptor 

agonist, and ketocyclazocine, a kappa receptor agonist. Its unique binding profile did not align with 

the traditional opioid receptors known at the time—mu, kappa, and delta, suggesting the existence 

of a previously unidentified receptor type. The "sigma" classification, derived from the Greek letter 

σ, is used to denote its distinct binding properties [1]. This discovery has sparked considerable 

interests in finding additional pathways through which the opioid drugs could exert their effects. 

The 1980s and 1990s were pivotal for sigma receptor research. Studies by Tam and Cook (1984) 

pointed out that the effects of sigma ligands could not be reversed by naloxone, an opioid antagonist, 

which is a defining feature of opioid receptors, suggesting a pharmacological distinction from opioid 

receptors [2]. It was eventually accepted that sigma receptors are not a typical opioid receptor due to 

their unique binding sites, affinities, and pharmacological profile, as well as their naloxone 

insensitivity [3]. 

Later, based on pharmacological profiles, binding characteristics, and tissue distribution 

patterns, sigma receptors were categorized into sigma-1 receptor (S1R) and sigma-2 receptors (S2R) 

[4]. For instance, the sigma-1 receptor has a high affinity for (+)-pentazocine, while the sigma-2 

receptor does not. Conversely, certain ligands distinguish sigma-2 receptors by their higher affinity 

for these receptors compared to sigma-1 receptors. This differential ligand binding was one of the 

initial methods used to distinguish between the two receptor subtypes. In addition, the difference in 

molecular weight as determined by photoaffinity labeling studies and other biochemical techniques 

were noticed. 

The cloning of the sigma-1 receptor in 1996 by Hanner et al. was a significant milestone, 

revealing its molecular structure and function [5]. The gene for the sigma-1 receptor encodes a protein 

that does not resemble any traditional G protein-coupled receptors but instead, actually shares some 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2025 doi:10.20944/preprints202504.0955.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.0955.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 16 

 

characteristics with molecular chaperones. In contrast, the molecular identity of the sigma-2 receptor 

remained elusive until much later in 2017, with its gene revealing it to be distinct from sigma-1 

receptor and involved in different cellular processes [6], setting a significant advancement in sigma 

receptor research. 

Initially misconstrued as a variant of opioid receptors, sigma receptors have emerged as a 

distinct class of proteins, playing distinct roles in cellular signaling, neurophysiology, and 

pharmacology. Their discoveries have opened new avenues to understand the molecular 

underpinnings of various diseases and develop novel therapeutic strategies. 

2. Sigma-1 Receptor: Structure, Functions and Pharmacology 

The sigma-1 receptor is a novel protein localized to the endoplasmic reticulum (ER) that interacts 

with lipid rafts [1,7–9]. The first cloning took place in 1996 when it was found to be on gene 9p13 

[5,10]. The sigma-1 receptor crystal structure was identified shortly thereafter [5,11–13], which is a 

homo-trimer with a unique transmembrane domain for each region [14,15]. Within this homo-trimer, 

oligomerization is notably increased with sigma agonists and decreased with antagonists [16]. 

Certain multi-level oligomers induce the ability to form heteromers with other receptors, such as the 

dopamine receptor [17,18]. With a molecular weight of 25kDa, it possesses no similarities to other 

known proteins in the genome [9,19]. 

Following the discovery of the sigma-1 receptor was the sigma-2 receptor, which is less 

researched, however it resembles similar properties of S1R due to binding patterns to SKF-10047 and 

its location within lipid rafts [7,20–22]. Most notably, sigma-2 receptor is potentially a putative 

binding site for progesterone receptor membrane component 1 (Pgrmc1) [23]. Eventually, the sigma-

2 receptor was later identified as the known protein TMEM97 [6]. Currently, S1R and S2R are 

primarily differentiated based on ligand binding assays. H3(+) pentazocine has relatively selective 

affinity for sigma-1, whereas H3-DTG or H3-(+)-3-PPP combined with a sigma-1 masking agent, such 

as pentazocine, is selective for sigma-2 [24,25]. 

The sigma-1 receptor plays many roles within the cell. It can translocate between the ER, 

mitochondria, and cell membrane [26–29]. In addition, the sigma-1 receptor couples with G-proteins, 

ion channels, the IP3 receptor, and the glutamate receptor [29–31]. Specifically, it is expressed in 

multiple vital organs such as the heart, liver, and kidney as well as immune cells [32]. The sigma-1 

receptor can bind a wide variety of ligands, such as antipsychotics, antidepressants, and 

neurosteroids [3,33]. Currently, it is suggested to play a role in cell survival, as tumors and other 

cancers show highly expressed levels of sigma-1 receptor. Furthermore, it is suggested to play a role 

in neuroprotection through acting as a molecular chaperone protein [8,34–37]. 

In the resting state, the sigma-1 receptor is under the classification of a mitochondria-associated-

ER membrane domain (MAM), as it resides near the mitochondria in ceramide and cholesterol rich 

lipid microdomains with BiP, an ER chaperone protein [27,38]. Under times of cell stress, the ER 

becomes injured, causing the sigma-1 receptor to dissociate from BiP. Upon dissociation, it can bind 

IP3 receptors, leading to an increase in cell survival through calcium signaling between the ER and 

mitochondria. Previous testing has shown that sigma-1 receptor agonists increase this stress-like 

response, while antagonists cause the opposite effect [27]. 

Overall, the sigma-1 receptor is shown to play a non-regulatory role in normal conditions, but 

act as a chaperone protein in times of stress to benefit cell survival [30]. In addition to modulating the 

IP3 pathway, sigma-1 receptor is shown to interfere with dopaminergic and cholinergic transmission, 

manipulating the ion channels in these various families [39–42]. Here we review the pharmacologic 

and pathologic implications of the sigma receptors in the nervous system. 

3. Sigma-1 Receptor in Nerve Injury 

Injuries to the nervous system can take place with many mechanisms, such as mechanical trauma 

or an ischemic insult in both the central and peripheral nervous system [43–45]. When a nerve 
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undergoes injury, it has been studied that there is an increase in S1R expression [46]. S1R is theorized 

to play a protective role in ischemic stroke by preventing neural apoptosis and inflammation while 

increasing neurotrophic factors [47,48]. One of the key mechanisms in apoptosis following ischemic 

stroke is endoplasmic reticulum stress, which can be lessened with S1R activation [48,49]. 

Strokes are one of the most common causes of disability in the world, with the majority being 

ischemic [50]. Generally, the prognosis of a stroke can be derived from the extent of ischemia, which 

represents the amount of dead neural tissue [51]. There is hope that S1R agonism can reduce the size 

of an infarct and promote better outcomes [52]. Not only could S1R agonism result in a smaller infarct, 

but there are potential mechanisms to restore damage already done in white matter injury after a 

stroke [53]. Following an ischemic stroke, macrophages are critical for a process known as 

efferocytosis, which clears dead neurons from the infarct and induces neural repair and inflammation 

resolution [54]. The role of S1R in this topic has recently been unraveled, and studies show that S1R 

knockout (KO) models led to impaired macrophage function and worsened brain damage after 

ischemic stroke [55]. The functional outcomes from S1R agonism after stroke are not limited to 

functional outcomes but also cognition [56]. 

Strokes also carry the risk of damaging the blood-brain barrier (BBB) integrity and increasing 

permeability to substances otherwise unable to enter the brain [57]. S1R activation may attenuate this 

damage by inducing the BBB astrocytes to increase levels of glia-derived neurotrophic factor (GDNF) 

[58,59]. BBB integrity may be compromised due to pericyte detachment, which can also be 

ameliorated with S1R activation [60,61]. Another pathology seen in stroke is spreading 

depolarizations (SDs), which are depolarizations of neural cells due to a failure of ion homeostasis 

after an insult [62,63]. S1R agonists were able to resolve the SDs and promote neural survival and 

reduce apoptosis [64]. A rather unfavorable outcome of ischemic stroke is reperfusion injury, 

characterized by a worsening of damaged cells after blood flow is returned, causing inflammation 

and apoptosis [65]. Upregulation of S1R may promote favorable outcomes after reperfusion injury 

[66] 

Interestingly, in models of traumatic brain injury (TBI), mice deficient in sigma receptors had 

better outcomes, such as less coordination impairments and neurological deficits after 1 year [67]. 

Other studies of TBI find that S1R agonism led to better neurological function, including restoration 

of blood flow and less brain edema, suggesting a biphasic role in TBI [68]. This paradoxical effect is 

perhaps due to long-term S1R activation resulting in unfavorable long term outcome but are 

beneficial in the acute phase. The acute phase of TBI is marked by inflammation, which is dampened 

with S1R activation [69]. Implications of S2R on TBI is much less studied, however modulation may 

result in more favorable outcomes [70]. As far as spinal cord injury, S1R activation resulted in 

effective recovery after a mechanical insult to the spine. This was done through reducing 

neuroinflammation and decreasing the amount of neural apoptosis and ferroptosis [71,72]. 

Ferroptosis is a rather novel mechanism for cell death related to the buildup of lipid oxidation 

products and has been described as an unfavorable mechanism resulting in neuronal cell death after 

injury [73,74]. Additional results concluded that ferroptosis was significantly upregulated after spinal 

cord injury [71]. 

4. Sigma-1 Receptor in Neurodegenerative Disorders 

Sigma receptors are implicated in a variety of neurodegenerative disorders due to their 

functioning in calcium homeostasis, mitochondrial function, and oxidative stress regulation [29,75–

77]. In fact, genetic polymorphisms related to S1R have been shown to influence development of 

Alzheimer’s disease (AD) [78]. Other mutations of S1R, such as loss-of-function, have been linked to 

the development of amyotrophic lateral sclerosis (ALS) as well as frontotemporal dementia (FTD) 

[79,80]. This is perhaps due to the loss of long-term potentiation seen in S1R KO mice [81]. Other 

neurological disorders have had favorable outcomes with sigma-receptor modulation, and these 

include Huntington’s Disease (HD), multiple sclerosis (MS), and Parkinson’s Disease (PD) [82–84]. In 

recent years, the sigma-1 receptor has gained attention as potential therapeutic targets for mitigating 
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these diseases, among others [85]. The overlapping mechanisms of S1R mediated neuroprotection are 

summarized in Figure 1. Additionally, the utility of S2R ligands is rising in interest for their potential 

in providing neuroprotection [86]. 

S1R agonism has been linked to neuroprotection through mechanisms involving synaptic 

plasticity through brain-derived neurotrophic factor (BDNF) dependent mechanisms [87–89]. Other 

mechanisms for neuroprotection studied with S1R agonism include reduction of intracellular nitric 

oxide (NO) by inhibiting NO synthase [90,91]. Prevention of oxidative stress is another critical aspect 

to slow the development of neurodegeneration, and sigma-receptor ligands often act through this 

mechanism [92–94]. All these mechanisms play a central role in homeostatic plasticity, which is the 

stabilization of neural pathways, and loss of this plasticity is central to neurodegeneration [95,96]. 

Gross manifestations of neuroprotection have been studied in mouse models using modalities such 

as novel object recognition, showing favorable outcomes with sigma-1 agonism [97,98]. 

Neuroinflammation is another key factor in the progression of neurodegenerative disorders [99]. 

Downregulation of S1R has been shown to increase inflammation markers and induce dysregulation 

of the surrounding microglia [100]. S1R agonists and allosteric modulators have been shown to 

decrease neuroinflammation levels through reduction of microglial recruitment and inhibition of 

pro-inflammatory cytokines, and the resulting attenuation of gliosis has potential to slow cognitive 

impairment from various degenerative conditions, such a chronic epilepsy [101–104]. 

4.1. Sigma-1 Receptor in Alzheimer’s Disease 

Mitochondrial dysfunction is a hallmark of neurodegeneration in many of neurodegenerative 

disorders, including Alzheimer’s Disease (AD) [105]. Restoration of mitochondrial stability is a 

sought-after avenue for S1R modulation [106]. S1R agonists, such as N, N-Dimethyltryptamine 

(DMT), have been shown to restore levels of S1R and preserve mitochondrial function. Chronic 

treatment with this ligand led general neuroprotection as well as a slowing of beta-amyloid 

accumulation, the hallmark of Alzheimer’s Disease [107–112]. A similar effect is seen with 

pridopidine and PRE-084, other S1R agonists, which restored mitochondrial dysfunction through 

lowering levels of reactive oxygen species [82,113]. Agonists of S1R also had synergistic 

neuroprotective roles when combined with acetylcholinesterase inhibitors, the current treatment for 

AD [114]. Paradoxically, other studies have shown that MAM induction leads to increased amyloid-

beta accumulation, which can be reduced with S1R downregulation [115]. 

Another critical hallmark in the development of AD is deposition of neurofibrillary tangles, 

characterized by hyperphosphorylated tau protein [116]. In healthy individuals, it has been 

discovered that S1R assists with maintaining normal levels of phosphorylation on tau proteins [117]. 

Additional studies show that the presence of functional S1R is imperative to ensure that the 

development of AD does not take place [118]. Less studied mechanisms to slow the progression of 

AD include their role in alleviating disruption of the BBB, which may be achieved through increasing 

levels of vascular endothelial growth factor (VEGF) and low-density lipoprotein receptor-related 

protein 1 (LRP-1) [119]. Newly studied S2R ligands have also showed promising results in beta-

amyloid induced neurologic dysfunction [120]. This impact may be related to restoration of calcium 

homeostasis offered by sigma-2 ligands [121]. Additionally, reductions in neuroinflammation from 

S1R have offered promising results in models of Alzheimer’s Disease [111,112]. Oxidative damage 

plays a critical role in the development of neurologic impairment [122]. PRE-084 can provide 

antioxidant properties during times of cell stress, offering safety from toxicity and prolonging 

neuroprotection through preservation of synaptic connections [123,124]. 

4.2. Sigma-1 Receptor in Demyelinating Disorders 

Demyelinating disorders, both inherited and acquired, have been studied in respect to their 

response to S1R agonism as well. Krabbe Disease is an autosomal recessive disorder marked by 

neurodegeneration and resultant demyelination [125]. Treatment with donepezil in models of Krabbe 

Disease had both preservation of myelin as well as a reduction in reactivity of glial cells, contributing 
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to neuroprotection [126]. This remains true for other, rare genetic neurodegenerative disorders such 

as Wolfram Syndrome and Vanishing White Matter Disease (VWM) [127–130]. MS is an acquired and 

autoimmune disorder that leads to inflammation as well as demyelination and loss of neuronal 

structures [131]. Studies investigatnig models of MS concluded that S1R agonists were able to 

attenuate worsening clinical course, offering a promising avenue for future clinical indications 

[103,132]. The mechanism of action for protection in MS is thought to be due to protection of 

oligodendroglia from apoptosis and reactive oxygen species [83]. 

4.3. Sigma-1 Receptor in ALS 

ALS is a devastating neurodegenerative disease, with the most common inherited form 

stemming from a mutation in the C9orf72 gene [133]. S1R is critical to maintaining MAMs, and 

instability of these domains can predispose to the development of ALS [134,135]. Unregulated 

autophagy can lead to this critical condition, among other neurodegenerative disorders [136]. A 

common selective serotonin reuptake inhibitor (SSRI), fluvoxamine, is a S1R agonist that has been 

shown to restore regulation of autophagy in inherited ALS through stabilization of nucleoporins 

[137]. Other treatments with agonists such as pridopidine, PRE-084, and SA4503 led to improvement 

of motor behavior and neuroprotection in mouse models of ALS [138,139]. Interestingly, in the same 

study, BD1063, an antagonist of S1R, had a similar neuroprotective effect [139]. Another mechanism 

leading to the development of ALS is the accumulation of RAN proteins within the nervous system 

[140]. Overexpression of S1R led to less accumulation of RAN, offering a new potential mechanism 

for treatment [141]. Additionally, a common hallmark in ALS are mutations in the Cu/Zn superoxide 

dismutase (SOD1) gene, leading to accumulation of neurofilaments. Treatment with pridopidine led 

to a reduction in this buildup, opening new avenues for treatment of this critical disease [142,143]. 

4.4. Sigma-1 Receptor in Huntington’s Disease 

Huntington’s Disease is an inherited neurodegenerative disorder marked by a progressive loss 

of neurons through one’s lifespan, with resultant debilitating, uncontrolled movements [144]. Like 

other neurodegenerative disorders, mitochondrial dysfunction is critical to the pathogenesis [145]. In 

models of HD, pridopidine restored the antioxidant response and decreased levels of reactive oxygen 

species within the mitochondria [82,146]. Other studies have found that S1R agonism can reduce 

endoplasmic reticulum stress or restore calcium homeostasis, contributing to attenuation of disease 

progression [147–150]. Development of new treatment modalities are critical, as there are no disease-

modifying medications for HD available currently. Ongoing clinical trials offer promising results and 

show less decline in patients [151]. 

4.5. Sigma-1 Receptor in Parkinson’s Disease 

Parkinson’s Disease is one of the most common neurodegenerative disorders characterized by a 

general slowing of movement as well as tremor and rigidity [152]. Toxic accumulation of alpha-

synuclein in the nervous system can lead to mitochondrial dysfunction and the degeneration 

resulting in this pathology [153]. Accumulation of alpha-synuclein can be worsened with S1R 

deficiencies, showing its importance in preventing this neurodegenerative disorder [154]. 

Antagonists of S2R potentially attenuate the alpha-synuclein induced neurodegeneration and offer a 

novel treatment modality [155]. S1R agonists, alone or when combined with nicotinic agonists, have 

also offered promising protection of the dopaminergic neurons commonly impacted in PD [156,157]. 

In addition, there are therapeutic strategies emerging using S1R agonism to restore already damaged 

neurons in PD [158]. Levodopa is a common treatment in PD, however common side effects include 

dyskinesia [159]. S1R agonists not only offered neuroprotection but were able to decrease levodopa 

induced dyskinesia [160,161]. S1R antagonists may also play a role in altering the progression of PD. 

One study found that S1R inhibits the transient receptor potential canonical (TRPC) channel, which 

is important for calcium regulation and maintaining cell viability. S1R antagonism let to reversal of 
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this inhibition which resulted in dopaminergic neuroprotection [162]. Other studies show that lower 

levels of S1R reduce neurotoxicity in dopaminergic cells through suppression of the NMDA receptor 

(NMDAR) and resulting excitotoxicity [163]. 

 

Figure 1. Effects of sigma-1 receptor agonism on neurodegenerative disorders. Agonism of sigma-1 receptor can 

dampen inflammation and reduce ER and oxidative stresses while promotes mitochondrial functions and 

calcium homeostasis. . 

5. Conclusions 

In conclusion, as shown in Figure 1, sigma receptors have emerged as critical modulators of 

cellular homeostasis and neuroprotection. Their widespread expression has paved the road for 

extensive research into their pathologic and pharmacologic roles. The sigma receptors represent an 

intricate pharmacologic target with implications in multiple disease states of the nervous system. 

Their versatile roles across a variety of pathologies emphasizes their potential as novel therapeutic 

targets in future research. Contradictory findings in certain pathologies warrant the need for 

temporal and tissue specific modulation to define the conditions in which sigma receptor activation 

or inhibition is most beneficial. Combination therapies may soon offer use to provide mitigation for 

presently uncurable diseases. 
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