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Abstract: Originally identified as a potential receptor for opioids, sigma-1 receptor is a class of
intracellular receptors expressed in various tissues including neurons. As a resident protein in the
mitochondria-associated endoplasmic reticulum (ER) membrane, sigma-1 receptor has been found
involved in various biological and disease processes including stress responses, neurotransmission,
and neurodegenerative diseases. Herein we discuss the history, structure, functions, and
pharmacology of sigma-1 receptor and its pathological implications in neurodegenerative diseases.
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1. Introduction

Sigma receptors were discovered in the 1970s when the scientific community was actively
exploring the mechanisms of action of opioids, focusing on their interactions with various receptors
in the brain. W.R. Martin investigated the effects of various drugs, including opioids and opioid-like
compounds, on the central nervous system. It was observed that SKF-10047, a congener of morphine,
caused mydriasis, tachypnea, tachycardia, and mania in contrast with morphine, a mu receptor
agonist, and ketocyclazocine, a kappa receptor agonist. Its unique binding profile did not align with
the traditional opioid receptors known at the time —mu, kappa, and delta, suggesting the existence
of a previously unidentified receptor type. The "sigma" classification, derived from the Greek letter
o, is used to denote its distinct binding properties [1]. This discovery has sparked considerable
interests in finding additional pathways through which the opioid drugs could exert their effects.

The 1980s and 1990s were pivotal for sigma receptor research. Studies by Tam and Cook (1984)
pointed out that the effects of sigma ligands could not be reversed by naloxone, an opioid antagonist,
which is a defining feature of opioid receptors, suggesting a pharmacological distinction from opioid
receptors [2]. It was eventually accepted that sigma receptors are not a typical opioid receptor due to
their unique binding sites, affinities, and pharmacological profile, as well as their naloxone
insensitivity [3].

Later, based on pharmacological profiles, binding characteristics, and tissue distribution
patterns, sigma receptors were categorized into sigma-1 receptor (S1R) and sigma-2 receptors (S2R)
[4]. For instance, the sigma-1 receptor has a high affinity for (+)-pentazocine, while the sigma-2
receptor does not. Conversely, certain ligands distinguish sigma-2 receptors by their higher affinity
for these receptors compared to sigma-1 receptors. This differential ligand binding was one of the
initial methods used to distinguish between the two receptor subtypes. In addition, the difference in
molecular weight as determined by photoaffinity labeling studies and other biochemical techniques
were noticed.

The cloning of the sigma-1 receptor in 1996 by Hanner et al. was a significant milestone,
revealing its molecular structure and function [5]. The gene for the sigma-1 receptor encodes a protein
that does not resemble any traditional G protein-coupled receptors but instead, actually shares some
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characteristics with molecular chaperones. In contrast, the molecular identity of the sigma-2 receptor
remained elusive until much later in 2017, with its gene revealing it to be distinct from sigma-1
receptor and involved in different cellular processes [6], setting a significant advancement in sigma
receptor research.

Initially misconstrued as a variant of opioid receptors, sigma receptors have emerged as a
distinct class of proteins, playing distinct roles in cellular signaling, neurophysiology, and
pharmacology. Their discoveries have opened new avenues to understand the molecular
underpinnings of various diseases and develop novel therapeutic strategies.

2. Sigma-1 Receptor: Structure, Functions and Pharmacology

The sigma-1 receptor is a novel protein localized to the endoplasmic reticulum (ER) that interacts
with lipid rafts [1,7-9]. The first cloning took place in 1996 when it was found to be on gene 9p13
[5,10]. The sigma-1 receptor crystal structure was identified shortly thereafter [5,11-13], which is a
homo-trimer with a unique transmembrane domain for each region [14,15]. Within this homo-trimer,
oligomerization is notably increased with sigma agonists and decreased with antagonists [16].
Certain multi-level oligomers induce the ability to form heteromers with other receptors, such as the
dopamine receptor [17,18]. With a molecular weight of 25kDa, it possesses no similarities to other
known proteins in the genome [9,19].

Following the discovery of the sigma-1 receptor was the sigma-2 receptor, which is less
researched, however it resembles similar properties of S1R due to binding patterns to SKF-10047 and
its location within lipid rafts [7,20-22]. Most notably, sigma-2 receptor is potentially a putative
binding site for progesterone receptor membrane component 1 (Pgrmcl) [23]. Eventually, the sigma-
2 receptor was later identified as the known protein TMEM97 [6]. Currently, SIR and S2R are
primarily differentiated based on ligand binding assays. H3(+) pentazocine has relatively selective
affinity for sigma-1, whereas H3-DTG or H3-(+)-3-PPP combined with a sigma-1 masking agent, such
as pentazocine, is selective for sigma-2 [24,25].

The sigma-1 receptor plays many roles within the cell. It can translocate between the ER,
mitochondria, and cell membrane [26-29]. In addition, the sigma-1 receptor couples with G-proteins,
ion channels, the IP3 receptor, and the glutamate receptor [29-31]. Specifically, it is expressed in
multiple vital organs such as the heart, liver, and kidney as well as immune cells [32]. The sigma-1
receptor can bind a wide variety of ligands, such as antipsychotics, antidepressants, and
neurosteroids [3,33]. Currently, it is suggested to play a role in cell survival, as tumors and other
cancers show highly expressed levels of sigma-1 receptor. Furthermore, it is suggested to play a role
in neuroprotection through acting as a molecular chaperone protein [8,34-37].

In the resting state, the sigma-1 receptor is under the classification of a mitochondria-associated-
ER membrane domain (MAM), as it resides near the mitochondria in ceramide and cholesterol rich
lipid microdomains with BiP, an ER chaperone protein [27,38]. Under times of cell stress, the ER
becomes injured, causing the sigma-1 receptor to dissociate from BiP. Upon dissociation, it can bind
IP3 receptors, leading to an increase in cell survival through calcium signaling between the ER and
mitochondria. Previous testing has shown that sigma-1 receptor agonists increase this stress-like
response, while antagonists cause the opposite effect [27].

Overall, the sigma-1 receptor is shown to play a non-regulatory role in normal conditions, but
act as a chaperone protein in times of stress to benefit cell survival [30]. In addition to modulating the
IP3 pathway, sigma-1 receptor is shown to interfere with dopaminergic and cholinergic transmission,
manipulating the ion channels in these various families [39-42]. Here we review the pharmacologic
and pathologic implications of the sigma receptors in the nervous system.

3. Sigma-1 Receptor in Nerve Injury

Injuries to the nervous system can take place with many mechanisms, such as mechanical trauma
or an ischemic insult in both the central and peripheral nervous system [43-45]. When a nerve
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undergoes injury, it has been studied that there is an increase in S1R expression [46]. SIR is theorized
to play a protective role in ischemic stroke by preventing neural apoptosis and inflammation while
increasing neurotrophic factors [47,48]. One of the key mechanisms in apoptosis following ischemic
stroke is endoplasmic reticulum stress, which can be lessened with SIR activation [48,49].

Strokes are one of the most common causes of disability in the world, with the majority being
ischemic [50]. Generally, the prognosis of a stroke can be derived from the extent of ischemia, which
represents the amount of dead neural tissue [51]. There is hope that SIR agonism can reduce the size
of an infarct and promote better outcomes [52]. Not only could SIR agonism result in a smaller infarct,
but there are potential mechanisms to restore damage already done in white matter injury after a
stroke [53]. Following an ischemic stroke, macrophages are critical for a process known as
efferocytosis, which clears dead neurons from the infarct and induces neural repair and inflammation
resolution [54]. The role of S1R in this topic has recently been unraveled, and studies show that S1IR
knockout (KO) models led to impaired macrophage function and worsened brain damage after
ischemic stroke [55]. The functional outcomes from SIR agonism after stroke are not limited to
functional outcomes but also cognition [56].

Strokes also carry the risk of damaging the blood-brain barrier (BBB) integrity and increasing
permeability to substances otherwise unable to enter the brain [57]. SIR activation may attenuate this
damage by inducing the BBB astrocytes to increase levels of glia-derived neurotrophic factor (GDNF)
[58,59]. BBB integrity may be compromised due to pericyte detachment, which can also be
ameliorated with SIR activation [60,61]. Another pathology seen in stroke is spreading
depolarizations (SDs), which are depolarizations of neural cells due to a failure of ion homeostasis
after an insult [62,63]. SIR agonists were able to resolve the SDs and promote neural survival and
reduce apoptosis [64]. A rather unfavorable outcome of ischemic stroke is reperfusion injury,
characterized by a worsening of damaged cells after blood flow is returned, causing inflammation
and apoptosis [65]. Upregulation of SIR may promote favorable outcomes after reperfusion injury
[66]

Interestingly, in models of traumatic brain injury (TBI), mice deficient in sigma receptors had
better outcomes, such as less coordination impairments and neurological deficits after 1 year [67].
Other studies of TBI find that SIR agonism led to better neurological function, including restoration
of blood flow and less brain edema, suggesting a biphasic role in TBI [68]. This paradoxical effect is
perhaps due to long-term SIR activation resulting in unfavorable long term outcome but are
beneficial in the acute phase. The acute phase of TBI is marked by inflammation, which is dampened
with S1R activation [69]. Implications of S2R on TBI is much less studied, however modulation may
result in more favorable outcomes [70]. As far as spinal cord injury, SIR activation resulted in
effective recovery after a mechanical insult to the spine. This was done through reducing
neuroinflammation and decreasing the amount of neural apoptosis and ferroptosis [71,72].
Ferroptosis is a rather novel mechanism for cell death related to the buildup of lipid oxidation
products and has been described as an unfavorable mechanism resulting in neuronal cell death after
injury [73,74]. Additional results concluded that ferroptosis was significantly upregulated after spinal
cord injury [71].

4. Sigma-1 Receptor in Neurodegenerative Disorders

Sigma receptors are implicated in a variety of neurodegenerative disorders due to their
functioning in calcium homeostasis, mitochondrial function, and oxidative stress regulation [29,75-
77]. In fact, genetic polymorphisms related to SIR have been shown to influence development of
Alzheimer’s disease (AD) [78]. Other mutations of SIR, such as loss-of-function, have been linked to
the development of amyotrophic lateral sclerosis (ALS) as well as frontotemporal dementia (FTD)
[79,80]. This is perhaps due to the loss of long-term potentiation seen in SIR KO mice [81]. Other
neurological disorders have had favorable outcomes with sigma-receptor modulation, and these
include Huntington’s Disease (HD), multiple sclerosis (MS), and Parkinson’s Disease (PD) [82-84]. In
recent years, the sigma-1 receptor has gained attention as potential therapeutic targets for mitigating
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these diseases, among others [85]. The overlapping mechanisms of S1R mediated neuroprotection are
summarized in Figure 1. Additionally, the utility of S2R ligands is rising in interest for their potential
in providing neuroprotection [86].

SIR agonism has been linked to neuroprotection through mechanisms involving synaptic
plasticity through brain-derived neurotrophic factor (BDNF) dependent mechanisms [87-89]. Other
mechanisms for neuroprotection studied with S1R agonism include reduction of intracellular nitric
oxide (NO) by inhibiting NO synthase [90,91]. Prevention of oxidative stress is another critical aspect
to slow the development of neurodegeneration, and sigma-receptor ligands often act through this
mechanism [92-94]. All these mechanisms play a central role in homeostatic plasticity, which is the
stabilization of neural pathways, and loss of this plasticity is central to neurodegeneration [95,96].
Gross manifestations of neuroprotection have been studied in mouse models using modalities such
as novel object recognition, showing favorable outcomes with sigma-1 agonism [97,98].

Neuroinflammation is another key factor in the progression of neurodegenerative disorders [99].
Downregulation of SIR has been shown to increase inflammation markers and induce dysregulation
of the surrounding microglia [100]. SIR agonists and allosteric modulators have been shown to
decrease neuroinflammation levels through reduction of microglial recruitment and inhibition of
pro-inflammatory cytokines, and the resulting attenuation of gliosis has potential to slow cognitive
impairment from various degenerative conditions, such a chronic epilepsy [101-104].

4.1. Sigma-1 Receptor in Alzheimer’s Disease

Mitochondrial dysfunction is a hallmark of neurodegeneration in many of neurodegenerative
disorders, including Alzheimer’s Disease (AD) [105]. Restoration of mitochondrial stability is a
sought-after avenue for SIR modulation [106]. SIR agonists, such as N, N-Dimethyltryptamine
(DMT), have been shown to restore levels of SIR and preserve mitochondrial function. Chronic
treatment with this ligand led general neuroprotection as well as a slowing of beta-amyloid
accumulation, the hallmark of Alzheimer’'s Disease [107-112]. A similar effect is seen with
pridopidine and PRE-084, other SIR agonists, which restored mitochondrial dysfunction through
lowering levels of reactive oxygen species [82,113]. Agonists of SIR also had synergistic
neuroprotective roles when combined with acetylcholinesterase inhibitors, the current treatment for
AD [114]. Paradoxically, other studies have shown that MAM induction leads to increased amyloid-
beta accumulation, which can be reduced with SIR downregulation [115].

Another critical hallmark in the development of AD is deposition of neurofibrillary tangles,
characterized by hyperphosphorylated tau protein [116]. In healthy individuals, it has been
discovered that SIR assists with maintaining normal levels of phosphorylation on tau proteins [117].
Additional studies show that the presence of functional SIR is imperative to ensure that the
development of AD does not take place [118]. Less studied mechanisms to slow the progression of
AD include their role in alleviating disruption of the BBB, which may be achieved through increasing
levels of vascular endothelial growth factor (VEGF) and low-density lipoprotein receptor-related
protein 1 (LRP-1) [119]. Newly studied S2R ligands have also showed promising results in beta-
amyloid induced neurologic dysfunction [120]. This impact may be related to restoration of calcium
homeostasis offered by sigma-2 ligands [121]. Additionally, reductions in neuroinflammation from
S1R have offered promising results in models of Alzheimer’s Disease [111,112]. Oxidative damage
plays a critical role in the development of neurologic impairment [122]. PRE-084 can provide
antioxidant properties during times of cell stress, offering safety from toxicity and prolonging
neuroprotection through preservation of synaptic connections [123,124].

4.2. Sigma-1 Receptor in Demyelinating Disorders

Demyelinating disorders, both inherited and acquired, have been studied in respect to their
response to SIR agonism as well. Krabbe Disease is an autosomal recessive disorder marked by
neurodegeneration and resultant demyelination [125]. Treatment with donepezil in models of Krabbe
Disease had both preservation of myelin as well as a reduction in reactivity of glial cells, contributing
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to neuroprotection [126]. This remains true for other, rare genetic neurodegenerative disorders such
as Wolfram Syndrome and Vanishing White Matter Disease (VWM) [127-130]. MS is an acquired and
autoimmune disorder that leads to inflammation as well as demyelination and loss of neuronal
structures [131]. Studies investigatnig models of MS concluded that S1R agonists were able to
attenuate worsening clinical course, offering a promising avenue for future clinical indications
[103,132]. The mechanism of action for protection in MS is thought to be due to protection of
oligodendroglia from apoptosis and reactive oxygen species [83].

4.3. Sigma-1 Receptor in ALS

ALS is a devastating neurodegenerative disease, with the most common inherited form
stemming from a mutation in the C9orf72 gene [133]. SIR is critical to maintaining MAMs, and
instability of these domains can predispose to the development of ALS [134,135]. Unregulated
autophagy can lead to this critical condition, among other neurodegenerative disorders [136]. A
common selective serotonin reuptake inhibitor (SSRI), fluvoxamine, is a SIR agonist that has been
shown to restore regulation of autophagy in inherited ALS through stabilization of nucleoporins
[137]. Other treatments with agonists such as pridopidine, PRE-084, and SA4503 led to improvement
of motor behavior and neuroprotection in mouse models of ALS [138,139]. Interestingly, in the same
study, BD1063, an antagonist of SIR, had a similar neuroprotective effect [139]. Another mechanism
leading to the development of ALS is the accumulation of RAN proteins within the nervous system
[140]. Overexpression of SIR led to less accumulation of RAN, offering a new potential mechanism
for treatment [141]. Additionally, a common hallmark in ALS are mutations in the Cu/Zn superoxide
dismutase (SOD1) gene, leading to accumulation of neurofilaments. Treatment with pridopidine led
to a reduction in this buildup, opening new avenues for treatment of this critical disease [142,143].

4.4. Sigma-1 Receptor in Huntington’s Disease

Huntington’s Disease is an inherited neurodegenerative disorder marked by a progressive loss
of neurons through one’s lifespan, with resultant debilitating, uncontrolled movements [144]. Like
other neurodegenerative disorders, mitochondrial dysfunction is critical to the pathogenesis [145]. In
models of HD, pridopidine restored the antioxidant response and decreased levels of reactive oxygen
species within the mitochondria [82,146]. Other studies have found that S1R agonism can reduce
endoplasmic reticulum stress or restore calcium homeostasis, contributing to attenuation of disease
progression [147-150]. Development of new treatment modalities are critical, as there are no disease-
modifying medications for HD available currently. Ongoing clinical trials offer promising results and
show less decline in patients [151].

4.5. Sigma-1 Receptor in Parkinson’s Disease

Parkinson’s Disease is one of the most common neurodegenerative disorders characterized by a
general slowing of movement as well as tremor and rigidity [152]. Toxic accumulation of alpha-
synuclein in the nervous system can lead to mitochondrial dysfunction and the degeneration
resulting in this pathology [153]. Accumulation of alpha-synuclein can be worsened with S1R
deficiencies, showing its importance in preventing this neurodegenerative disorder [154].
Antagonists of S2R potentially attenuate the alpha-synuclein induced neurodegeneration and offer a
novel treatment modality [155]. SIR agonists, alone or when combined with nicotinic agonists, have
also offered promising protection of the dopaminergic neurons commonly impacted in PD [156,157].
In addition, there are therapeutic strategies emerging using S1R agonism to restore already damaged
neurons in PD [158]. Levodopa is a common treatment in PD, however common side effects include
dyskinesia [159]. S1R agonists not only offered neuroprotection but were able to decrease levodopa
induced dyskinesia [160,161]. SIR antagonists may also play a role in altering the progression of PD.
One study found that SIR inhibits the transient receptor potential canonical (TRPC) channel, which
is important for calcium regulation and maintaining cell viability. SIR antagonism let to reversal of
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this inhibition which resulted in dopaminergic neuroprotection [162]. Other studies show that lower
levels of SIR reduce neurotoxicity in dopaminergic cells through suppression of the NMDA receptor
(NMDAR) and resulting excitotoxicity [163].

| Shared Mechanisms
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Figure 1. Effects of sigma-1 receptor agonism on neurodegenerative disorders. Agonism of sigma-1 receptor can
dampen inflammation and reduce ER and oxidative stresses while promotes mitochondrial functions and

calcium homeostasis. .

5. Conclusions

In conclusion, as shown in Figure 1, sigma receptors have emerged as critical modulators of
cellular homeostasis and neuroprotection. Their widespread expression has paved the road for
extensive research into their pathologic and pharmacologic roles. The sigma receptors represent an
intricate pharmacologic target with implications in multiple disease states of the nervous system.
Their versatile roles across a variety of pathologies emphasizes their potential as novel therapeutic
targets in future research. Contradictory findings in certain pathologies warrant the need for
temporal and tissue specific modulation to define the conditions in which sigma receptor activation
or inhibition is most beneficial. Combination therapies may soon offer use to provide mitigation for
presently uncurable diseases.
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