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Abstract: Autism spectrum disorder (ASD) is a pervasive condition of neurodevelopmental origin 

with an increasing burden on society. Idiopathic ASD is notorious for its heterogenous behavioural 

manifestations, and despite substantial efforts, its etiopathology is still unclear. An increasing 

amount of data point at the causative role of critical developmental alterations in the first year of 

life, although the contribution of fetal, environmental, and genetic factors cannot be clearly 

distinguished. This review attempts to propose a narrative starting from neuropathological findings 

in ASD, involving insulin-like growth factor 1 (IGF-1) as a key modulator, and demonstrates how 

the most consistent gestational risk factors of ASD – maternal insulin resistance and fetal growth 

insufficiency – converge at the perinatal dysregulation of offspring anabolism in the critical period 

of early development. A unifying hypothesis is derived, stating that co-occurence of these 

gestational conditions leads to postnatal biphasic dysregulation of IGF-1 tone in the offspring, 

leading first to insulin-dependent accelerated development, then to subsequent arrest of growth 

and brain maturation in ASD as an etiologic process. This hypothesis is tested for its explanation of 

various widely reported risk factors and observations of idiopathic ASD, including early postnatal 

growth abnormalities, the pervasive spectrum of symptoms, familial predisposition, and male 

susceptibility. Finally, further directions of research are outlined. 

Keywords: autism; brain overgrowth; insulin-like growth factor 1; intrauterine growth restriction; 

insulin resistance 

 

1. Introduction 

1.1. Background 

Autism spectrum disorder (ASD) is a group of pervasive developmental and behavioural 

disabilities [1,2] with a steadily increasing burden on society and families [3]. ASD is diagnosed based 

on behavioural symptoms, but its manifestations are notoriously heterogeneous [2,4]. Despite high 

prevalence and increasing awareness, little is known about the etiology of ASD [5,6] and although 

numerous genetically defined syndromes display high comorbidity with autism, idiopathic ASD 

represents the majority of cases [7,8]. Despite clearly demonstrated familial risk and high heritability 

of idiopathic ASD [9,10], increasingly large-scale genetic studies with a concomitantly increasing 

number of candidate genes have so far failed to find mono- or oligogenic causes for ASD [8,11]. 

The disorder is typically diagnosed in toddlers or in early childhood [12], although first 

manifestations seem to occur around 6-12 months of age [13,14]. The diagnosis of autism is rather 

stable throughout childhood [15,16] and adolescence [17,18] suggesting a critical role for early brain 

maldevelopment in the emergence of autism symptoms [19,20]. Therefore, in addition to the 

heterogeneity in symptoms, studies of ASD are also hampered by timing of symptom onset, namely 

incidence during a period of intense brain development and maturation of the nervous system 
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[21,22], requiring longitudinal observations and analysis often in at-risk populations placed in a 

developmental framework [19,23]. 

Recognizing the proposed early origin of the disorder, environmental, familial, and gestational 

risk factors have been investigated extensively, and several risk factors of idiopathic ASD have been 

identified [1,24]. Among familial and environmental factors, an affected sibling [9,25] or male sex 

[26,27] are widely documented to substantially increase the risk for autism. Furthermore, increased 

maternal and paternal age have also been demonstrated as risk factors [28,29]. Among gestational 

and maternal conditions, the most robust and consistently identified risk factors for ASD are 

conditions related to maternal hypertension, namely preeclampsia and gestational or chronic 

hypertension [24,30,31]; maternal use of antidepressants, in particular selective serotonin reuptake 

inhibitors (SSRIs) [24,32,33] and symptoms related to maternal metabolic disturbances like 

gestational diabetes [34–37] and pre-gestational overweight or obesity [24,38,39]. For perinatal 

factors, signs of fetal growth insufficiency, like preterm birth [35,40] or low or very low birth weight 

[35,41] are associated with ASD risk, but, interestingly, macrosomia (fetal overgrowth) also bears a 

slight risk for later ASD diagnosis [41]. 

Although ASD is typically not diagnosed before the age of 18 months, at the population level 

several growth and developmental deviations have been described to precede or correlate with later 

ASD diagnosis. Accelerated early growth has been demonstrated for body length [42,43], total brain 

volume [20,44–46], cortical surface area [47] and excess extra-axial fluid volume [48]. Importantly, 

following a period of overgrowth in toddlers, a slowing or even arrested growth has been reported 

for many of these parameters in early childhood [46,47,49,50]. 

In addition to that observed in anthropometric measures, a biphasic developmental trajectory 

was also found for brain structural connectivity [51]. In particular, two highly valuable longitudinal 

imaging studies, comparing at-risk infants later diagnosed with ASD to non-affected peers [52] or 

diagnosed toddlers to typical controls [53]), reported structural hyperconnectivity between brain 

regions at earlier scans, in contrast to hypoconnectivity at the later time points (24- ca. 36 months, 

depending on the study). In studies of head circumference direct comparisons found early 

overgrowth in ASD (and in pervasive developmental disorder not otherwise specified, in earlier 

studies), which was absent in patients with attention deficit hyperactivity disorder (ADHD) [54,55] 

or generalized or other developmental delays [43,56]. 

Despite robust data on well-defined prenatal risk factors and postnatal developmental 

alterations with substantial comorbidity with ASD, to date no theoretical framework exists for the 

etiology of this disruptive disorder which convincingly matches these observations. In recognition of 

the pervasive heterogeneity of the disorder, recently multiple etiologies have been considered to 

account for the diverse manifestations of the dysfunctions [57]. However, it has yet to be 

demonstrated that symptoms group according to suggested pathomechanisms or risk factors [4]. 

Moreover, multiple disjunct etiologies or genetic causation has to account for the increasing 

prevalence of ASD, with the disorder retaining its heterogeneity of manifestations, stable pattern of 

risk factors and characteristic developmental trajectory. Alternatively, instead of multiple etiologies 

or risk genes, a central pathomechanism could be considered in idiopathic ASD, a process that could 

inherently account for the heterogeneity of symptoms and be associated with known ASD risk 

factors. In the latter sections such a hypothesis of idiopathic ASD etiology is proposed and discussed 

in light of scientific observations on ASD. 

1.2. Neuropathological Findings in ASD and a Neurodevelopmental Narrative 

Despite occasional and specific peripheral comorbidities of ASD it is reasonable to assume that 

the brain is the most-affected organ in the disorder. Neuropathology studies of autism patients report 

a diverse variety of microscopic brain alterations [58–61]. The most consistent microscopic 

observation, demonstrated in about 75% of cases, is the decreased number of Purkinje cells (PCs) in 

the cerebellum [58,60] – typically in the form of dispersed and partial loss [62,63]. The origin of this 

cell loss was believed to be prenatal, suggested by the lack of retrograde cell loss in the inferior olive 
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[64], however, the presence of excess cerebellar basket and stellar cells [65] and the lack of hypoplastic 

folia [60] suggests a relatively late timing of this event, and therefore precise time of atrophy could 

not be convincingly established yet (discussed in [60]). Late postnatal loss of PCs in autism has not 

been considered in the literature, due to the putative dependence of inferior olivary neuron survival 

on their PC targets [64]. However, two findings support the possibility of postnatal atrophy. First, the 

dependence of inferior olive neurons on their target PCs seems to weaken during postnatal 

development [66,67]. Namely, although retrograde inferior olivary numeric atrophy has been 

demonstrated in various mutant mouse strains with early PC loss, in strains with the latest postnatal 

onset of PC death (around postanal days 30 and 20 in leaner and nervous mice, respectively), little or 

no loss of inferior olivary neurons is reported [67,68]. Secondly, although retrograde atrophy of the 

inferior olive has been observed in human patients following acute cerebellar lesions [69], gradual 

and partial loss of PCs, in contrast, does not necessarily lead to detectable inferior olivary atrophy in 

adults [69,70]. Intriguingly, neuropathologic analysis of the youngest ASD specimens (3 to 4 years) 

revealed no PC loss [58,63,71], in line with the possibility of late postnatal atrophy. In summary, PC 

loss in ASD in latter neonatal development cannot be excluded as a possibility and might be even in 

line with pathological findings [65]. If PCs were present throughout regular development of the 

cerebellum, their loss might report on later changes in internal environment, like sudden loss of 

neurotrophic or survival factors, as PCs are known for their particular vulnerability to 

pathophysiological insults [72–74]. 

When searching for survival-promoting agents of PCs, insulin-like growth factor 1 (IGF-1) has 

been identified as a hormone having a pronounced and reproducible positive effect on PC survival 

[75,76] and development [77] both in vitro and in vivo [78–80]. The marked survival-promoting effect 

of IGF-1 on PCs seems specific in comparison to numerous other neurotrophic factors like nerve 

growth factor, brain-derived neurotrophic factor [81–83], ciliary neurotrophic factor [84], basic 

fibroblast growth factor, insulin and insulin-like growth factor 2 [75], or to contradictory effects of 

neurotrophin-3 [81,83] or glial cell line-derived neurotrophic factor [79,85]. Thus, although other 

survival-promoting factors might also play a role, PC loss in ASD might be a result of late postnatal 

attenuation in the neurotrophic tone of IGF-1. Strikingly, in two highly valuable clinical datasets, 

liquor IGF-1 level of younger ASD patients, ages 1.9 years to 5 years, was found to be extremely low 

and lower than that of age-matched nonaffected patients [86] or neurotypical controls [87], a 

difference not found for nerve growth factor [88], insulin-like growth factor 2 or IGF-1 in ASD 

patients above the age of 5 [87]. Several authors have even suggested the loss of IGF-1 tone as an 

underlying mechanism in ASD [89–91] and treatment with IGF-1 or analogues has been proposed for 

treatment of ASD or related disorders [91–93]. However, the hypothesis of IGF-1 deficit, 

unfortunately, does not account for the most consistent characteristics and risk factors of idiopathic 

ASD, such as early growth and connectivity anomalies, or various perinatal or familial risk factors. 

Furthermore, although IGF-1 regulates PC survival and development, IGF-1 knockout mice are not 

characterized by PC loss [94], which suggests a more complex dysregulation of IGF-1 in ASD. 

1.3. IGF-1 and Its Dysregulation in Perinatal Complications 

IGF-1 is a trophic factor, a mediator of growth via its major molecular target, the IGF-1 receptor, 

ubiquitously expressed in most tissues. Circulating IGF-1 is predominantly secreted from the liver 

but can be taken up by the brain, enabling modulation of central levels by circulating IGF-1 of liver 

origin [95,96]. IGF-1 is widely expressed also in other tissues [97] including the brain [76] and while 

paracrine action contributes to postnatal growth [98], liver-produced systemic IGF-1 also exerts 

substantial somatic growth-promoting effects [99,100], indicating that multiple sources of IGF-1 act 

jointly on tissue development and that endocrine IGF-1 also affects growth. Secretion of IGF-1 from 

the liver is predominantly regulated via the growth hormone releasing hormone (GHRH) – growth 

hormone (GH) – IGF-1 axis [101] but peculiarly, perinatal regulation of endocrine IGF-1 is different, 

creating a vulnerability through a specific constellation of perinatal factors associated with later ASD 

risk. Finally, unlike the closely related insulin, IGF-1 is bound to a family of carrier proteins (insulin-

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2025 doi:10.20944/preprints202504.0624.v1

https://doi.org/10.20944/preprints202504.0624.v1


 4 of 18 

 

like growth factor-binding proteins, IGFBP), which can regulate IGF-1 availability and thus exert 

further control on IGF-1 function in vivo. 

In the fetus, IGF-1 release from the liver is regulated by circulating insulin with little effect of 

GH [102–104], also mirrored in the close to normal birth weight of GH-deficient infants [105]. In 

newborns, circulating IGF-1 is a determinant of somatic growth [106–108] and is associated with 

insulin level [109,110] with no or negative correlation to GH or GH binding protein [111–113], in line 

with typically no signs of growth deficit in congenital GH deficiency prior to 6-12 months [105]. 

Regulation of circulating IGF-1 in infants thus gradually changes from insulin-dependent to GH-

dependent throughout the first year of life [113,114]. 

As IGF-1 is a major regulator of fetal growth, two groups of gestational maternal complications 

associated with metabolic and growth alterations in the offspring can lead to its dysregulation. Fetal 

growth restriction or intrauterine growth restriction (IUGR) often leads to a neonate with birth weight 

lower than 10th percentile. These small for gestational age (SGA) infants are characterized by short 

stature, decreased serum or cord IGF-1 level [112,115,116], and elevated insulin sensitivity at birth 

[116,117]. Their majority undergo a period of compensatory accelerated early postnatal growth 

(catch-up growth) [118,119] and reach a more insulin-resistant metabolic state [117,120,121]. An 

opposite alteration from typical perinatal growth trajectory and metabolism is observed after 

macrosomia or fetal overgrowth. Macrosomic, or large for gestational age, newborns display 

hyperinsulinemia [122,123] and higher IGF-1 levels [124,125] in a more insulin resistant state 

[123,126,127] and often suffer decelerated early postnatal growth – catch-down growth [128–130]. 

Catch-up and catch-down growth take place mainly within the first 6-9 months [128,129], the time 

window of insulin-dependent IGF-1 secretion in the newborn. SGA infants experiencing catch-up 

growth have elevated circulating IGF-1 levels compared to those remaining short or light [131,132]. 

These specific perinatal growth anomalies are highlighted because their maternal risk factors 

show a striking overlap with those of idiopathic ASD discussed earlier. In one group of conditions, 

SGA offspring and low birth weight are associated with maternal SSRI and antidepressant use 

[133,134], and IUGR is highly comorbid with preeclampsia [135,136] and gestational hypertension 

[137,138]. Conversely, in a second group of gestational conditions, macrosomia is strongly associated 

with maternal metabolic disturbances like gestational diabetes [139], obesity [140] or higher than 

recommended gestational weight gain [141], driven by insulin resistance [142]. Importantly, as 

discussed above, both groups of maternal conditions are strongly connected with ASD risk in the 

offspring [24,31,37,39]. 

2. Hypothesis 

2.1. A Possible Etiological Role of IGF-1 Dysregulation in Idiopathic ASD 

The gestational risk factors of ASD described above thus form two groups associated with 

opposing dysregulation of fetal growth, neonatal insulin sensitivity, circulating neonatal or cord IGF-

1 level, and infant growth trajectory. More importantly, timing of their postanatal consequences also 

overlap with the earliest developmental alterations preceding ASD in infancy. Based on these 

overlaps the novel hypothesis for idiopathic ASD presented here is that simultaneous occurrence of 

these counteracting conditions during gestation could lead to a complex dysregulation of perinatal 

insulin homeostasis and insulin-mediated IGF-1 action in the affected offspring. Prenatally, these co-

occurring factors might partially neutralize each other despite misalignment of fetal insulin 

sensitivity, however, after birth, isolated from maternal circulation, asynchronous compensatory 

processes could lead to biphasic dysregulation of neonatal insulin sensitivity and IGF-1 tone. In the 

first phase, separated from the placental unit, prevailing elevated insulin action in tissues could result 

in higher IGF-1 secretion, leading to accelerated growth in a sensitive period of brain development 

in infancy. Next, by the age of 12-15 months, maturation of the GHRH-GH-IGF-1 axis and sharp 

negative feedback due to elevated IGF-1 levels could lead to an abrupt drop in GHRH-GH-IGF-1 

tone, and concomitantly to arrest of IGF-1-dependent developmental processes and slowed 
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maturation of the central nervous system. According to this hypothesis, thus, prenatal gestational 

anabolic disturbances result in a complexly dysregulated neonatal insulin-IGF-1 axis, leading first to 

elevated and later to decreased IGF-1 levels in affected infants leading to somatic and brain 

overgrowth and subsequent growth arrest and delayed maturation (summarized in Figure 1). This 

biphasic postnatal growth differs from that of catch-up growth in SGA or low birth weight infants in 

that the latter is characterized by in utero growth restriction or insufficiency leading to delayed 

growth up to birth, while cooccurrence of maternal insulin resistance would partly compensate 

IUGR, resulting in a generally well-developed newborn with high capacity for overdevelopment in 

a postnatal compensatory growth spurt. 

 

Figure 1. Schematic diagram of age-dependent IGF-1 tone during and following gestational conditions with 

counteracting effect on fetal growth. 

Since somatic growth anomalies, observed only in a subset of ASD patients, supposedly do not 

form the etiologic factors of ASD, core symptoms should depend on developmental alterations in 

affected brain regions. Brain development and connectivity of ASD brains seem to show peculiar 

dynamics with early age [19,20,51]. Early connectivity abnormalities – mixed functional over- and 

underconnectivity – at 6 months were used to predict later ASD diagnosis with 100% specificity [143] 

and the alterations seem specific to ASD [144]. Additionally, brain overgrowth predominantly in 

cortical surface area by 6 and 12 months identified affected infants with high specificity (95%) [20]. 

As these developmental trajectories are distinct from those in global developmental delay [145] and 

ADHD [146] and as diagnosis stability of ASD is relatively high, it can be reasoned that this early 

period of brain overgrowth and probably overconnectivity is specific to autism and might form the 

pathomechanistic basis of idiopathic ASD [147]. 

A potential role of IGF-1 in ASD has been suggested in the literature and even IGF-1 

administration has been considered as a treatment of ASD [89–91,148,149], but the hypothesis of early 

postnatal elevated central IGF-1 tone or its biphasic dysregulation has not been raised before. The 

above hypothesis thus represents a novel viewpoint of the possible neurodevelopmental 

dysregulation by IGF-1 in the appearence of idiopathic ASD. 

2.2. Explanation of Observations and Risk Factors of ASD 

IGF-1 is a pleiotropic modulator of growth [97] and brain development [150], therefore, 

dysregulation of IGF-1 tone affects a broad range of neurodevelopmental processes and therefore 

could account for the most pervasive observation in ASD: the puzzling diversity of brain 

developmental, pathophysiological, and pathological findings, as well as the resulting variety of 
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behavioural or neurological symptoms. According to this view, it is not a single site, but most of the 

organism and the central nervous system affected by abnormal biphasic early overgrowth, and 

genetic and other factors could further shape the appearance of ASD. Since the highly arbored PCs 

of the cerebellum are known to display elevated vulnerability to pathophysiological conditions in 

vivo [72,74,151], their survival and development could be the most affected by altered central IGF-1 

availability. Unprogrammed postnatal elevation of IGF-1 tone followed by an abrupt drop could lead 

to late and selective postnatal PC loss, without substantial atrophy of cerebellar basket cells, 

cerebellar stellar cells, and inferior olivary neurons. As cited above, the lack of PC loss in the youngest 

ASD cases subjected to neuropathological analysis is noteworthy, not contradicting the supposed PC 

loss throughout early childhood. This assumption is in line with the extremely low liquor levels of 

IGF-1 between 1.9 to 5 years in ASD patients [86,87]. Similarly, although peripheral and central IGF-

1 do not necessarily correlate, lower serum level of IGF-1 was found in ASD patients of 2-3 years age 

compared to age-matched controls [152], and lower urinary secretion of IGF-1 has been reported in 

ASD in a very similar age range (2-5 years) [153]. Interestingly, in older pediatric subjects 

cerebrospinal fluid (CSF) levels of IGF-1 did not differ between affected and control subjects [87], 

while serum levels were reported varied in older children with ASD [152,154–156]. 

The timing of the suggested biphasic alteration in circulating IGF-1 level coincides well with the 

ASD-specific switch in growth rate compared to controls [51,157] in light of the observations that 

neonatal somatic growth correlated to circulating IGF-1 levels [107,158]. In infants with later ASD 

diagnosis, excess extraaxial volume [48] and brain volume [47] seem to stabilize after 12-18 months. 

Similarly, although imaging studies reported structural hyperconnectivity prior to 20 months, 

hypoconnectivity was observed in ASD patients by the age of 2-3 years [52,53]. Additionally, a 

particularly interesting analysis has found that white matter overgrowth in ASD is specific to 

myelinization processes starting within the first 4 months after birth [159]. Based on the well-

described effect of IGF-1 on brain development [150], the timing of these brain myelination periods 

overlaps well with the proposed timing of early postnatal developmental dysregulations in ASD. 

The most consistent non-gestational risk factors of ASD could also be explained by the concept 

of perinatal IGF-1 dysregulation. Boys bear approximately 3-fold risk of ASD incidence compared to 

girls [27]. Male infants are known to be born larger [160,161], have higher brain volume [162,163] and 

undergo slightly faster postnatal brain growth than females [21,164]. The IGF-1 level of newborn 

boys, in contrast, is reported as lower or similar to that of girls, both in serum [107,165–167] and CSF 

[168], and female infants are more insulin-resistant than boys [161,169]. Therefore, male infants, since 

they display higher growth rate with lower or similar IGF-1 levels and concomitant higher insulin 

sensitivity than females, might be more sensitive to insulin-regulated hypertrophy mediated by 

excess IGF-1 and its abrupt drop, and this amplification of IGF-1-mediated effects might be the cause 

of their susceptibility to ASD. 

The single highest risk for idiopathic ASD is an affected sibling [1,25] with clear familial 

connection [10] despite lack of high penetrance single risk gene variants [170]. Genetic architecture 

clearly modifies the penetrance of neurodevelopmental disturbances and thus definitely exerts a 

contribution to appearence of ASD that should not be underestimated. Still, according to the 

hypothesis above, combined incidence of two groups of gestational conditions could be the specific 

etiologic trigger for idiopathic ASD, and therefore careful separation of genetic influence from the 

influence of the intrauterine environment is required. Contribution of genetic and environmental 

factors is most often assessed by analyzing concordance in monozygotic and dizygotic twins [10]. 

However as intrauterine growth restriction, as presented above, can be suspected in the etiology of 

ASD, such a heritability analysis has to take into account the difference in placental organization of 

dizygotic and monozygotic twins. Dizygotic twins namely are obligatory dichorionic, they possess 

separate placentas, while the majority of monozygotic twin pairs are monochorionic, sharing the 

same placenta. Placental dysfunction is a major contributor to fetal growth insufficiency and IUGR 

[171,172], therefore, monochorionicity might lead to overestimation of heritability as impaired 

placental function might not be separated from genetic overlap. It has to be noted that preeclampsia, 
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the strongest maternal risk factor of ASD and a risk factor for IUGR, parallels idiopathic ASD in its 

familial aggregation with yet unclear genetic etiology [173]. 

The steeply increasing prevalence of ASD can be partly related to the increased awereness and 

diagnostic tolerance of the behavioral spectrum, however, a true increase in prevalence is 

nevertheless suggested [174,175]. According to the etiologic hypothesis presented, cooccurrence of 

maternal insulin resistance and risk factors of IUGR like chronic or gestational hypertonia are 

prerequisites for biphasic neonatal metabolic dysregulation. While prevalence trends in gestational 

hypertensive disorders in the last decades are reported as varied [176–178], prevalence of 

pregestational obesity and pregestational/gestational diabetes has been rising significantly since 

decades [179–182] in line with the steadily increasing ASD prevalence. 

Finally, increasing maternal age, too, is unambiguously a risk factor for metabolic syndrome – 

by multiple definitions – in women of childbearing age in developed countries [183,184], and also for 

its various manifestations like gestational diabetes [179,185], overweight, or obesity [186]. Increasing 

maternal age as a risk factor for ASD could therefore indirectly transmit the effect of these gestational 

conditions. 

2.3. Prospective Testing of the Hypothesis 

The etiologic hypothesis presented here attempts to add points for consideration in order to 

improve our understanding of this pervasive disorder. Numerous epidemiologic studies have 

investigated the contribution of environmental, gestational, and maternal conditions to ASD risk. The 

principle proposed above is that of a combination of gestational conditions leading to opposing 

postnatal growth dysregulation (e.g. maternal metabolic disturbances in combination with 

preeclampsia, gestational hypertension or SSRI use). Therefore, investigation of combinations of 

these specific conditions in regard to ASD incidence risk would be interesting, suggested in general 

in [30]. Additionally, as signs of maternal metabolic syndrome and insulin resistance are risk factors 

of ASD [37] and as gestational diabetes bears a significant risk of later type 2 diabetes of the mother, 

the apparent risk posed by having an ASD offspring on later maternal type 2 diabetes is worth 

investigating. Moreover, as discussed above, heritability studies on ASD prevalence in monozygotic 

twins taking chorionicity into account could improve dissection of genetic and intrauterine 

environmental effects, further increasing our understanding of role of genetic influence. Higher 

concordance in monochorionic compared dichorionic twins would support a role of placental 

dysfunction in the latter incidence of ASD. 

Finally, and perhaps most importantly, CSF IGF-1 level determination could be extended to at-

risk neonates 3-6 months old in order to test the hypothesis of early elevated level of this neurotrophic 

factor as such an analysis has not been reported yet. The lower concentration of arginine vasopressin, 

but not oxytocin, in the CSF of 0-3 months old neonates in high concordance with idiopathic ASD 

diagnosis in a quasi-prospective re-evaluated random population sample [187] supports that 

neonatal liquor composition could show clear alteration in ASD from typical development at such an 

early age. 

Limitations of the above hypothesis lie in the lack in incorporation of the paracrine effects of 

IGF-1 or the complex contribution of IGFBPs, and the role of genetic predisposition in affecting the 

incidence and the phenotype of emerging ASD, factors that could serve as subjects of further research. 

3. Concluding Remarks 

The most consistent maternal and gestational risk factors of idiopathic ASD overlap with two 

groups of gestational conditions affecting fetal growth through the insulin-IGF-1 axis. Asynchronous 

termination of these drivers after birth would lead to a biphasic postnatal dysregulation of IGF-1 tone 

in the infant, with the early insulin resistance-driven overgrowth in the first life year coinciding with 

the well-documented and specific accelerated development and growth in ASD. This excess IGF-1 

spurt might lead to irreversible structural connectivity abnormalities specific to ASD followed by 

slowed maturation of neurocircuits, resulting in lasting network dysfunction. If this concept wins 
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confirmation in at-risk infants, in addition to providing new research avenues, it could support 

effective early prevention initiatives for this burdensome condition. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ADHD Attention deficit hyperactivity disorder 

ASD Autism spectrum disorder 

CSF Cerebrospinal fluid 

GH Growth hormone 

GHRH Growth hormone releasing hormone 

IGF-1 Insulin-like growth factor 1 

IGFBP Insulin-like growth factor-binding protein 

IUGR Intrauterine growth restriction 

PC Purkinje cell 

SGA Small for gestational age 

SSRI Selective serotonin reuptake inhibitor 
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