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Abstract: In this work, we develop a method of rational approximation of the Fourier transform (FT)
based on the real and imaginary parts of the complex error function w(z) = e−z2

(1 − erf(−iz)) =

K(x, y) + iL(x, y), z = x + iy, where K(x, y) and L(x, y) are known as the Voigt and imaginary Voigt
functions, respectively. In contrast to our previous rational approximation of the FT, the expansion
coefficients in this method are not dependent on values of a sampled function. As a set of the
Voigt/complex error function values remains the same, this approach provides rapid computation.
Mathematica codes with some examples are presented.

Keywords: rational approximation; Fourier transform; Voigt function; complex error function

1. Introduction
The forward and inverse Fourier transforms (FTs) can be defined in a symmetric form as [1,2]

F{ f (t)}(ν) =
∫ ∞

−∞
f (t)e−2πiνtdt = f̂ (ν) (1)

and
F−1

{
f̂ (ν)

}
(t) =

∫ ∞

−∞
f̂ (ν)e2πiνtdν = f (t), (2)

respectively. In this work we will consider only the forward FT (1) since due to symmetric form the
approximations for the inverse FT (2) can be readily obtained from the forward FT by change of the
variables.

There are relations between a function f (t) and its even feven(t) and odd fodd(t) components. In
particular, the even and odd functions can be readily generated by using the following relations

feven(t) =
f (t) + f (−t)

2
(3)

and

fodd(t) =
f (t)− f (−t)

2
(4)

such that
f (t) = feven(t) + fodd(t).

Therefore, due to linearity of the FT we can also state that

f̂ (ν) = f̂even(ν) + f̂odd(ν). (5)

Using Euler’s identity
eix = cos(x) + i sin(x),
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we can express equation (1) as

F{ f (t)}(ν) =
∫ ∞

−∞
f (t)(cos(2πνt)− i sin(2πνt)) dt (6)

Since an even function satisfies the condition

feven(t) = feven(−t), (7)

it follows that ∫ ∞

−∞
feven(t) cos(2πνt) dt = 2

∫ ∞

0
feven(t) cos(2πνt) dt

and ∫ ∞

−∞
feven(t) sin(2πνt) dt = 0.

Since an odd function satisfies the condition

− fodd(t) = fodd(−t), (8)

we have ∫ ∞

−∞
fodd(t) cos(2πνt) dt = 0

and ∫ ∞

−∞
fodd(t) sin(2πνt) dt = 2

∫ ∞

0
fodd(t) sin(2πνt) dt.

Consequently, from these relations and equations (5), (6) we get the following identities

F{ feven(t)}(ν) = 2
∫ ∞

0
feven(t) cos(2πνt) dt = f̂even(ν) (9)

and
F{ fodd(t)}(ν) = −2i

∫ ∞

0
fodd(t) sin(2πνt) dt = f̂odd(ν). (10)

Equations (9) and (10) are of the primary importance since they will be used in derivation of the
new approximation of the FT.

In our recent publication we developed a new methodology providing a rational approximation of
the FT [3]. Specifically, the FT of a function f (t) can be approximated as a rational function consisting
of low-order polynomials, 3 × 4, in form

f̂ (ν) ≈
M

∑
m=1

(
αm + βmν2

νm + λmν2 + ν4 − i
γmν + θmν3

κm + λmν2 + ν4

)

=
M

∑
m=1

αm − iγmν + βmν2 − iθmν3

κm + λmν2 + ν4 ,

(11)

where expansion coefficients are given by

αm =
1

8Mπ4

N

∑
n=−N

feven(nh)enhσ
(

µ2
m + σ2

)
(σ cos(nhµm) + µm sin(nhµm)),

βm =
1

2Mπ2

N

∑
n=−N

feven(nh)enhσ(σ cos(nhµm)− µm sin(nhµm)),
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γm =
1

4Mπ3

N

∑
n=−N

fodd(nh)enhσ
(

σ2 − µ2
m

)
(cos(nhµm) + 2σµm sin(nhµm)),

θm =
1

Mπ

N

∑
n=−N

fodd(nh)enhσ cos(nhµm),

κm =
1

16π4

(
µ2

m + σ2
)2

,

λm =
1

2π2

(
σ2 − µ2

m

)
µm =

π(m − 1/2)
Mh

.

Some examples of rational approximation (11) of the FT are shown in our work [3] and can be
visualized by running a provided Matlab code 1.

There are many methods for rational approximations such as Padé approximation [4,5], minimax
approximation [6,7], Remez algorithm [8,9] and so on. However, to the best of our knowledge, a
method of rational approximation that we developed in [3] is new and has been reported in scientific
literature.

It should be noted that in our previous publication [10], we de facto applied a rational approxima-
tion of the FT. Therefore, a new method of rational approximation, described in our paper [3], is just a
generalization of a sampling and integration technique that we proposed earlier in [10] to derive rapid
and high-accuracy rational approximations of the complex error function.

The small order polynomials 3 × 4 in quotients of rational approximation (11) may be advanta-
geous for numerical analysis with any kind of computations including matrix manipulations, integra-
tions and differentiations. However, the rational approximation (11) requires re-computation of the
four expansion coefficients αm, βm, γm, θm every time when the sampled function f (t) changes. In this
work, we propose a new method of rational approximation of the FT based on a sum of the real and
imaginary parts of the complex error function [11–13]. Such a representation of rational approximation
of the FT does not require re-computation when shape of the sampled function f (t) changes.

2. Preliminaries
The complex error function, also commonly known as the Faddeeva function, can be defined

as [13,14]

w(z) = e−z2
(

1 +
2i√
π

∫ z

0
et2

dt
)

, (12)

where z = x + iy. Comparing equation (12) with definition of the error function [11]

erf(z) =
2√
π

∫ z

0
e−t2

dt

one can see that the complex error function can be expressed as [11,15]

w(z) = e−z2
[1 − erf(−iz)]. (13)

Therefore, the complex error function w(z) can be considered as a reformulation of the error function
erf(z).

Complex error function satisfies the following relation

w(−z) = 2e−z2 − w(z). (14)

1 Matlab code can be copy-pasted from this link: arXiv:2001.07533
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It can be shown that the complex error function is a solution of the following differential equation

w′(z) + 2zw(z) =
2i√
π

,

with initial condition
w(0) = 1.

The complex error function w(z) is closely related to the complex probability function [12,13]

W(z) =
i
π

∫ ∞

−∞

e−t2

z − t
dt. (15)

There is a direct relationship between these two functions. In particular, both functions are equal
to each other on the upper half of the complex plane [12,13]

w(z) = W(z), Im[z] > 0.

Separating the real and imaginary parts of the complex probability function (15) as

W(z) = K(x, y) + iL(x, y),

results in

K(x, y) =
y
π

∫ ∞

−∞

e−t2

y2 + (x − t)2 dt (16)

and

L(x, y) =
1
π

∫ ∞

−∞

e−t2
(x − t)

y2 + (x − t)2 dt, (17)

respectively.
The real part K(x, y) of the complex probability function is known as the Voigt function that is

widely used in Atmospheric Physics to describe absorption and emission of atmospheric molecules [16–
18].

The imaginary part L(x, y) is also used in various fields of Physics and Engineering [19,20]. It
does not have a specific name. However, following Zaghloul and Ali [15], for the convenience we will
also refer to the function L(x, y) as the imaginary Voigt function.

It is not difficult to show that substituting the following identity [12]

y
y2 + (x − t)2 =

∫ ∞

0
e−yq cos[(x − t)q] dq, y > 0, (18)

into equation (16), we obtain [12,21]

K(x, y) =
1
π

∫ ∞

−∞
e−t2 y

y2 + (x − t)2 dt

=
1
π

∫ ∞

0

∫ ∞

−∞
e−t2

e−yq cos[(x − t)q]dt dq

=
1
π

∫ ∞

0
e−yq

∫ ∞

−∞
e−t2

cos[(x − t)q]dt dq

and since ∫ ∞

−∞
e−t2

cos[(x − t)q] dt =
√

πe−q2/4 cos(qx),

we can write
K(x, y) =

1√
π

∫ ∞

0
e−t2/4−yt cos(xt) dt, y > 0. (19)
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Similarly, substituting the identity

x − t
y2 + (x − t)2 =

∫ ∞

0
e−yq sin(q(x − t)) dq, y > 0,

into equation (17) we get [21]

L(x, y) =
1
π

∫ ∞

−∞
e−t2 x − t

y2 + (x − t)2 dt

=
1
π

∫ ∞

0

∫ ∞

−∞
e−t2

e−yq sin[(x − t)q]dt dq

=
1
π

∫ ∞

0
e−yq

∫ ∞

−∞
e−t2

sin[(x − t)q]dt dq

and since ∫ ∞

−∞
e−t2

sin[(x − t)q] dt =
√

πe−q2/4 sin(qx),

we have
L(x, y) =

1√
π

∫ ∞

0
e−t2/4−yt sin(xt)dt, y > 0. (20)

Sum of the equations above in terms of the real and imaginary parts yields [21]

K(x, y) + iL(x, y) =
1√
π

∫ ∞

0
e−t2/4−yt[cos(xt) + i sin(xt)] dt

=
1√
π

∫ ∞

0
e−t2/4−yteixt dt

=
1√
π

∫ ∞

0
e−t2/4e(−y−ix)t dt

= e(y−ix)2
[1 − erf(y − ix)].

We can see now that this equation is consistent with equation (13) of the complex error function w(z).

3. Results and Discussion
3.1. Methodology

Consider the rectangular function (solitary rectangular function) that can be defined as

fr(t) =


1, − 1/2 < t < 1/2,

1/2, |t| = 1,

0, otherwise.

This function can be expressed by the following limit

fr(t) = lim
k→∞

1

(2t)2k + 1
. (21)

Consequently, we can approximate the rectangular function by taking sufficiently large value of the
parameter k.

Figure 1 shows the rectangular function and its approximation at k = 35 by dashed red and light
blue colors, respectively. As we can see, at k = 35 equation (21) approximates the rectangular function
reasonably well. Therefore, we can use the following approximation

fr(t) ≈
1

(2t)70 + 1
(22)

and apply it to perform numerically the FT.
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Figure 1. Rectangular and sawtooth functions and their approximations. Rectangular and sawtooth functions are

shown by dashed red and solid black lines. Even 1/
(
(2t)70 + 1

)
and odd t/

(
(2t)70 + 1

)
functions are shown by

blue and green curves.

Previously, we have used the following sampling function

s(t) =
h

c
√

π
e−(

t
c )

2
,

where h and c are small fitting parameters, for high-accuracy approximation of the complex error
function [22]. Thus, applying this sampling function over the points nh to approximation (22), the
rectangular function can be approximated as

fr(t) ≈
N

∑
n=−N

s(t − nh) fr(nh)

=
h

c
√

π

N

∑
n=−N

e−( t−nh
c )2

fr(nh)

=
h

c
√

π

N

∑
n=−N

e
(

2 nh
c2

)
te−(

t
c )

2
e−(

nh
c )

2

fr(nh)

(23)

Figure 2 shows the approximations of the rectangular function at different fitting parameters h
and c. Specifically, the green curve corresponds to h = 0.065, c = 0.035 and N = 25, the red curve
corresponds to h = 0.05, c = 0.03 and N = 25 while the light blue curve corresponds to h = 0.02,
c = 0.025 and N = 25. The rectangular function is also shown by black dashed curve.

Figure 2. The rectangular function (dashed black curve) and its approximations by sampling at h = 0.065,
c = 0.035, N = 25 (green curve), h = 0.05, c = 0.03, N = 25 (red curve) and h = 0.02, c = 0.025, N = 25 (light
blue curve).
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Since the rectangular function fr(t) is even, we can use equation (9) for the FT. Thus, the substitu-
tion of approximation (23) into equation (9) leads to

f̂r(ν) ≈ 2
h

c
√

π

∫ ∞

−∞

N

∑
n=−N

e−(
t
c )

2
+
(

2 nh
c2

)
te−(

nh
c )

2

fr(nh) cos(−2πνt)dt

= 2
h√
π

∫ ∞

−∞

N

∑
n=−N

e−t2+ 2nh
c te−(

nh
c )

2

fr(nh) cos(2πνct)dt

=
h√
π

∞∫
−∞

N

∑
n=−N

e−
t2
4 + nh

c te−(
nh
c )

2

fr(nh) cos(πνct)dt.

Comparing now approximation above with equation (19), one can see that the FT of the rectangular
function (21) can be expressed in terms of the Voigt function

f̂r(ν) = h
N

∑
m=−N

e−(
nh
c )

2

fr(nh)K
(

πνc,
nh
c

)
. (24)

As a simplest example for an odd function, we can consider the sawtooth function (solitary
sawtooth function)

fs(t) = t fr(t) =


t, − 1/2 < t < 1/2,

1/4, t = 1,

0, otherwise.

Since this function can be express though the following limit

fs(t) = t lim
k→∞

1
(2t)2k + 1

, (25)

we can approximate it by multiplying t with equation (22) as follows

fs(t) ≈ t
1

(2t)70 + 1
. (26)

Figure 1 shows the sawtooth function (25) and its approximation (26) by black and light green
curves, respectively.

Applying the sampling function over the points nh to approximation (26), we obtain

fs(t) ≈
N

∑
n=−N

s(t − nh) fs(nh)

=
h

c
√

π

N

∑
n=−N

e−( t−nh
c )2

fs(nh)

=
h

c
√

π

N

∑
n=−N

e
(

2 nh
c2

)
te−(

t
c )

2
e−(

nh
c )

2

fs(nh).

Consequently, the FT of the sawtooth function (25) can be approximated as

f̂s(ν) ≈ −2i
h

c
√

π

∫ ∞

−∞

N

∑
n=−N

e−(
t
c )

2
+
(

2 nh
c2

)
te−(

nh
c )

2

fs(nh) sin(−2πνt)dt

= 2i
h√
π

∫ ∞

−∞

N

∑
n=−N

e−t2+ 2nh
c te−(

nh
c )

2

fs(nh) sin(2πνct)dt

= i
h√
π

∫ ∞

−∞

N

∑
n=−N

e−
t2
4 + nh

c te−(
nh
c )

2

fs(nh) sin(πνct)dt.
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Comparing this equation with the imaginary Voigt function (20), we can rearrange equation above as

f̂s(ν) ≈ ih
N

∑
m=−N

e−(
nh
c )

2

fs(nh)L
(

πνc,
nh
c

)
. (27)

The applied methodology for the FTs of the rectangular and sawtooth functions (24) and (27) can
be generalized to any even or odd functions as

f̂even(ν) ≈ h
N

∑
m=−N

e−(
nh
c )

2

feven(nh)K
(

πνc,
nh
c

)
(28)

and

f̂odd(ν) ≈ ih
N

∑
m=−N

e−(
nh
c )

2

fodd(nh)L
(

πνc,
nh
c

)
. (29)

Due to symmetric properties of the even and odd functions (see equations (7) and (8)), the number
of the summation terms in these approximations can be reduced by a factor of two.

Let us rearrange equation (28) in the following form

f̂even(ν) ≈ h

[
feven(0)K(πνc, 0) +

N

∑
m=1

e−(
nh
c )

2

feven(nh)K
(

πνc,
nh
c

)

+
−1

∑
m=−N

e−(
nh
c )

2

feven(nh)K
(

πνc,
nh
c

)]
.

Change of summation index as

−1

∑
m=−N

e−(
nh
c )

2

feven(nh)K
(

πνc,
nh
c

)
=

N

∑
m=1

e−(
−nh

c )
2

feven(−nh)K
(

πνc,
−nh

c

)
leads to

f̂even(ν) ≈ h

[
feven(0)K(πνc, 0) +

N

∑
m=1

e−(
nh
c )

2

feven(nh)K
(

πνc,
nh
c

)

+
N

∑
m=1

e−(
−nh

c )
2

feven(−nh)K
(

πνc,
−nh

c

)]
.

Since according to equation (7)

e−(
−nh

c )
2

= e−(
nh
c )

2

,

feven(−nh) = feven(nh),

and since
K(x, 0) = e−x2 ⇒ K(πνc, 0) = e−(πνc)2

,

we can write

f̂even(ν) ≈ h

(
feven(0)e−(πνc)2

+
N

∑
m=1

e−(
nh
c )

2

feven(nh)Vk

(
πνc,

nh
c

))
, (30)

where

Vk

(
πνc,

nh
c

)
= K

(
πνc,

nh
c

)
+ K

(
πνc,

−nh
c

)
(31)
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Equation (29) can be expanded as

f̂odd(ν) ≈ ih

[
fodd(0)L(πνc, 0) +

N

∑
m=1

e−(
nh
c )

2

fodd(nh)L
(

πνc,
nh
c

)

+
−1

∑
m=−N

e−(
nh
c )

2

fodd(nh)L
(

πνc,
nh
c

)] (32)

Taking into consideration that

−1

∑
m=−N

e−(
nh
c )

2

fodd(nh)L
(

πνc,
nh
c

)
=

N

∑
m=1

e−(
−nh

c )
2

fodd(−nh)L
(

πνc,
−nh

c

)
such that according to (8)

fodd(−nh) = − fodd(nh)

and since
L(πνc, 0) = 0,

we can recast equation (32) as given by

f̂odd(ν) ≈ ih

[
N

∑
m=1

e−(
nh
c )

2

fodd(nh)L
(

πνc,
nh
c

)

+
N

∑
m=1

e−(
−nh

c )
2

fodd(−nh)L
(

πνc,
−nh

c

)]

or

f̂odd(ν) ≈ ih

[
fodd(0)L(πνc, 0)

+
N

∑
m=1

e−(
nh
c )

2

fodd(nh)
(

L
(

πνc,
nh
c

)
− L

(
πνc,

−nh
c

))]
or

f̂odd(ν) ≈ ih
N

∑
m=1

e−(
nh
c )

2

fodd(nh)Vℓ

(
πνc,

nh
c

)
, (33)

where

Vℓ

(
πνc,

nh
c

)
= L

(
πνc,

nh
c

)
− L

(
πνc,

−nh
c

)
. (34)

At first glance the FT formulas (30) and (33) may appear computationally costly as they require
user defined (external) function files. However, unlike equation (11), the expansion coefficients
Vk(πνc, nh/c) and Vℓ(πνc, nh/c), shown by equations (31) and (34), respectively, do not require re-
computations every time when we change the sampled function f (t) to any other function. This
gives a significant advantage. Since the values Vk(πνc, nh/c) and Vℓ(πνc, nh/c) remain always the
same regardless the shape of the sampled function, these values can be precomputed in form of the
look-up tables. Such implementation makes computation rapid as the required values Vk(πνc, nh/c)
and Vℓ(πνc, nh/c) can be instantly picked up from the computer memory during computation of the
FT. Furthermore, many algorithms, based on rational approximations, have been developed for rapid
and high-accuracy computation of the Voigt/complex error function [23–33]. Therefore, the proposed
technique can also be used as an alternative for rational approximation (11) of the FT.
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3.2. Numerical Results

The FT of the rectangular function can be readily found by integration as

f̂r(ν) =
∫ ∞

−∞
fr(t)e−2πiνtdt =

∫ 1/2

−1/2
e−2πiνtdt = sinc(πν), (35)

where

sinc(x) =


sin(x)

x
, x ̸= 0,

1, x = 0,

is the sinc function [34,35]. Similarly, we can find the FT of the sawtooth function as follows

f̂s(ν) =
∫ ∞

−∞
fs(t)e−2πiνtdt =

∫ ∞

−∞
t fr(t)e−2πiνtdt

=
∫ 1/2

−1/2
te−2πiνtdt = i

πν cos(πν)− sin(πν)

2π2ν2 ,
(36)

We can use these analytical results for comparison with numerical FTs computed by using equations
(30) and (33).

Figure 3 shows numerical FTs of rectangular and the sawtooth functions by light green and
magenta curves, respectively. Equations (35) and (36) are also shown by dashed black curves.

Figure 3. Fourier transforms of the rectangular and sawtooth functions (dashed black curves) and their approxi-
mations (green and magenta curves, respectively).

Figure 4 illustrates the absolute differences ∆r and ∆s between equations (35), (36) and numerical
FT approximations (30) and (33) at h = 0.02, c = 0.025 and N = 25 by blue and red curves, respectively.
As we can see, despite abrupt behavior of the rectangular and sawtooth functions fr(t) and fs(t) at
t1,2 = ±1/2 and t1,2 = ±1/4, the FT approximations (24) and (27) can provide reasonable accuracies.

Figure 4. Absolute differences between equations (35), (36) and their approximations. Blue curve corresponds to
equation (35), red curve corresponds to equation (36)).
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The accuracy of the FT can be significantly better for the well-behaved functions. As an example,
consider a function

g(t) = e−(6πt)2 − sin(32t)e−(7πt)2
. (37)

The first term of this function is even

geven(t) =
g(t) + g(−t)

2
= e−(6πt)2

(38)

while its second term is odd

godd(t) =
g(t)− g(−t)

2
= − sin(32t)e−(7πt)2

. (39)

Figure 5 shows the functions g(t), geven(t) and godd(t) by blue, red and green colors, respectively.

Figure 5. Equation (37) and its even and odd components (blue, red and green curves, respectively).

The FTs of even and odd components (38) and (39) can be obtained analytically. In particular,
substituting equations (38) and (39) into FT formulas (9) and (10) yields

ĝeven(ν) =
e−(

ν
6 )

2

6
√

π
(40)

and
ĝodd(ν) = i

1
14
√

π
e−(

16+πν
7π )

2(
e

64ν
49π − 1

)
. (41)

Figure 6 depicts the absolute errors ∆even and ∆odd between equations (40), (41) and corresponding
FT approximations (30) and (33) at h = 0.004, c = 0.0045 and N = 30 by blue and red colors,
respectively. As we can see, the absolute errors do not exceed 0.00035 and 0.0005 for the functions and
ĝeven(ν) and ĝodd(ν), respectively, over the wide interval of ν.

Figure 6. Absolute differences between equations (30), (33) and their approximations. Blue curve corresponds to
equation (30), red curve corresponds to equation (33).
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3.3. Trigonometric Forms

As it has been mentioned above, the equations (28), (29) and their variations (30), (33) can be used
to implement a rational approximation of the FT. We can also show how to represent these equations
in trigonometric forms.

The real part of equation (14) gives

K(x,−y) = 2e−x2+y2
cos(2xy)− K(x, y)

Therefore, equation (31) can be further simplified as

Vk

(
πνc,

nh
c

)
= K

(
πνc,

nh
c

)
+ 2e−(πνc)2+ nh

c cos
(

πνc,
nh
c

)
− K

(
πνc,

nh
c

)
= 2e−(πνc)2+ nh

c cos
(

πνc,
nh
c

)
.

leading to

f̂even(ν) ≈ he−(πνc)2

(
feven(0) + 2

N

∑
m=1

feven(nh) cos(2πνnh)

)
(42)

in accordance with equation (30).
The imaginary part of equation (14) provides

L(x,−y) = 2e−x2+y2
sin(2xy) + L(x, y)

Substituting this equation into approximation (34) yields

Vℓ

(
πνc,

nh
c

)
= L

(
πνc,

nh
c

)
− 2e−(πνc)2+( nh

c )
2

sin(2πνnh)− L
(

πνc,
nh
c

)
= −2e−(πνc)2+( nh

c )
2

sin(2πνnh).

This results in

f̂odd(ν) ≈ −2ihe−(πνc)2
N

∑
m=1

fodd(nh)(sin(2πνnh)) (43)

according to equation (33).
As we can see, equations (42) and (43) represent trigonometric versions of the equations (30)

and (33), respectively. Despite trigonometric representations, equations (42) and (43) do not have any
advantage over equations (30) and (33) in computational speed since all required values Vk(πνc, nh/c)
and Vℓ(πνc, nh/c) can be precomputed and saved in a computer memory in form of the look-up tables.

Combining equations (3), (4), (5), (42) and (43) together, we obtain

f̂ (ν) ≈ he−(πνc)2

[
f (0) +

N

∑
m=1

(( f (nh) + f (−nh)) cos(2πνnh)

−i( f (nh)− f (−nh))(sin(2πνnh)))

]

or

f̂ (ν) ≈ he−(πνc)2

(
f (0) +

N

∑
m=1

(
f (nh)e−2πiνnh + f (−nh)e2πiνnh

))
. (44)

We can see that equation (44) resembles the discrete Fourier transfer (DFT) [1,2]. However, unlike
the DFT, equation (44) provides non-periodic output due to exponential multiplier e−(πνc)2

acting like
the Hamming window that sometimes may be introduced to eliminate periodicity in time or frequency
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domains. Remarkably, this exponential multiplier in equation (44) was not introduced but appeared
naturally in derivation.

Examples of the numerical FTs based on equations (30) and (33) can be validated by running the
Mathematica codes, shown in the next section.

4. Mathematica Codes
4.1. Complex Error Function

To compute the complex error function w(z), we can use, for example, the algorithm provided in
our work [29]. To cover the entire complex plane with high accuracy of computation, we used only
three approximations. We will use four cells to define each equation and to distribute them accordingly
on the complex plane.

The first cell below is to define equation (7) from [29].

Clear[a0, b0, c0, \[CapitalOmega], w1];

(* Fitting parameters *)

H = 0.25; \[Stigma] = 2.75; M = 25; maxN = 23;

(* Expansion coefficients, 1st set *)

a0[m_] := a0[m] = ((Sqrt[Pi]*(m - 1/2))/(2*M^2*H))*
Sum[E^(\[Stigma]^2/4 - n^2*H^2)*Sin[(Pi*(m - 1/2)*

(n*H + \[Stigma]/2))/(M*H)], {n, -maxN, maxN}];

b0[m_] := b0[m] = (-(I/(M*Sqrt[Pi])))*
Sum[E^(\[Stigma]^2/4 - n^2*H^2)*Cos[(Pi*(m - 1/2)*

(n*H + \[Stigma]/2))/(M*H)], {n, -maxN, maxN}];

c0[m_] := c0[m] = (Pi*(m - 1/2))/(2*M*H);

(* Equation (7) from Ref. [29] *)

\[CapitalOmega][z_] := \[CapitalOmega][z] = Sum[(a0[m] + b0[m]*z)/
(c0[m]^2 - z^2), {m, 1, M - 2}];

w1[z_] := \[CapitalOmega][z + I*(\[Stigma]/2)];

The second cell is required to instantiate equation (8) from [29].

Clear[a1, b1, c1, d1, w2];

(* Expansion coefficients, 2nd set *)

a1[m_] := a1[m] = b0[m]*(((Pi*(m - 1/2))/(2*M*H))^2 -
(\[Stigma]/2)^2) + I*a0[m]*\[Stigma];

b1[m_] := b1[m] = b0[m];

c1[m_] := c1[m] = (((Pi*(m - 1/2))/(2*M*H))^2 +
(\[Stigma]/2)^2)^2;

d1[m_] := d1[m] = 2*((Pi*(m - 1/2))/(2*M*H))^2 -
\[Stigma]^2/2;
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(* Equation (8) from Ref. [29] *)

w2[z_] := E^(-z^2) + z*Sum[(a1[m] - b1[m]*z^2)/
(c1[m] - d1[m]*z^2 + z^4), {m, 1, M - 2}];

This third cell is required to define equation (9) from [29].

Clear[w3];

(* Equation (9) from Ref. [29] *)
w3[z_] := I/(Sqrt[Pi]*(z - 1/(2*(z - 1/(z - 3/

(2*(z - 2/(z - 5/(2*(z - 3/(z - 7/(2*(z - 4/
(z - 9/(2*(z - 5/(z - 11/(2*z))))))))))))))))));

Once these three equations are instantiated, we need to distribute them correspondingly on the
complex plane. The forth cell below contains code to accomplish this task.

Clear[wUp, w];

(* Complex error function for upper complex plane *)

wUp[z_] := If[Abs[z] > 8, w3[z],
If[Im[z] > 0.05*Abs[Re[z]], w1[z], w2[z]]];

(* Complex error function for entire complex plane *)

w[z_] := If[Im[z] >= 0, wUp[z],
Conjugate[2*E^-Conjugate[z]^2 - wUp[Conjugate[z]]]];

Now the code for computation of the complex error function is ready to use.
It should be noted that another Mathematica code for high-accuracy computation of the complex

error function can be downloaded from [33]. This code was written by Jan Mangaldan on the bases of
three rational approximations described in our publication [30].

4.2. Fourier Transform

The Mathematica codes below consist of six cells. The code shown in the first cell below defines
the Voigt function K(x, y) and imaginary Voigt function L(x, y), the rectangular function fr(t) and the
sawtooth function fs(t).

Clear[K,L,fr,fs];

(* Defining K(x,y) and L(x,y) functions *)
K[x_, y_] := Re[w[x + I*y]];
L[x_, y_] := Im[w[x + I*y]];

(* Rectangular function *)
fr[t_] := 1/((2*t)^(2*35) + 1);

(* Sawtooth function *)
fs[t_] := t*fr[t];

The second cell below generates two look-up tables for the values Vk(πνc, nh/c) and Vℓ(πνc, nh/c).
It also generates a list of grid-points for the parameter ν.

Clear[lookUpTab1, lookUpTab2, nuList];

(* Parameters for computation *)
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h = 0.02; c = 0.025; nMax = 25;

(* Computing two look-up tables *)

lookUpTab1 = Table[{K[Pi*\[Nu]*c, (n*h)/c] +
K[Pi*\[Nu]*c, ((-n)*h)/c]}, {n, 1, nMax},

{\[Nu], -2*Pi, 2*Pi, 0.1}];

lookUpTab2 = Table[{L[Pi*\[Nu]*c, (n*h)/c] -
L[Pi*\[Nu]*c, ((-n)*h)/c]}, {n, 1, nMax},

{\[Nu], -2*Pi, 2*Pi, 0.1}];

nuList = Table[\[Nu], {\[Nu], -2*Pi, 2*Pi, 0.1}];

The code in the following third cell is needed to format two look-up table with values
Vk(πνc, nh/c) and Vℓ(πνc, nh/c) for plotting the graphs. It is also required to join Vk(πνc, nh/c)
and Vℓ(πνc, nh/c) values together with corresponding values of the parameter ν.

Clear[ftList1, ftList2];

(* Main computations by using look up tables *)

ftList1 = Flatten[h*(fr[0]/E^(Pi*nuList*c)^2 +
Sum[(fr[n*h]*lookUpTab1[[n]])/E^((n*h)/c)^2, {n, 1, nMax}])];

ftList2 = Flatten[h*Sum[(fs[n*h]*lookUpTab2[[n]])/E^((n*h)/c)^2,
{n, 1, nMax}]];

(* Arranging FT data lists *)

ftList1 = Table[{nuList[[n]], ftList1[[n]]}, {n, 1, Length[nuList]}];

ftList2 = Table[{nuList[[n]], ftList2[[n]]}, {n, 1, Length[nuList]}];

The code in next forth cell is required to generate the references in accordance with equations (35)
and (36).

Clear[ftRef1, ftRef2];

(* FT references *)

ftRef1 = Table[{\[Nu], Sinc[Pi*\[Nu]]}, {\[Nu], -2*Pi, 2*Pi, 0.1}];

ftRef2 = Table[{\[Nu], (Pi*\[Nu]*Cos[Pi*\[Nu]] - Sin[Pi*\[Nu]])/(2*
Pi^2*\[Nu]^2)}, {\[Nu], -2*Pi, 2*Pi, 0.1}];

The code in the fifth cell below produces the graph shown in the Fig. 3.

(* Plotting the graphs from the data lists *)

ListPlot[{ftList1, ftRef1, ftList2, ftRef2}, PlotRange -> All,
Joined -> True, PlotStyle -> {{Lighter[Green, 0], Thickness[0.005]},

{Black, Dashed, Thickness[0.0025]}, {Lighter[Magenta, 0.5],
Thickness[0.005]}, {Black, Dashed, Thickness[0.0025]}},

PlotRange -> {{-2*Pi, 2*Pi}, {-0.3, 1.1}},
AxesLabel -> {"\[Nu]", None}]

Lastly, the code in following sixth cell applies the derived formula (44) to generate the same Fig. 3
without Voigt functions.
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(* Plotting the graphs by using the FT formula (42) *)

f[t_] := fr[t] + fs[t];

ft[\[Nu]_] := (h*(f[0] + Sum[f[n*h]/E^(2*Pi*I*\[Nu]*n*h) +
f[(-n)*h]*E^(2*Pi*I*\[Nu]*n*h), {n, 1, nMax}]))/

E^(Pi*\[Nu]*c)^2;

Plot[{Re[ft[\[Nu]]], Sinc[Pi*\[Nu]], Im[ft[\[Nu]]],
(Pi*\[Nu]*Cos[Pi*\[Nu]] - Sin[Pi*\[Nu]])/(2*(Pi*\[Nu])^2)},

{\[Nu], -2*Pi, 2*Pi}, PlotRange -> All, PlotStyle ->
{{Lighter[Green, 0], Thickness[0.005]}, {Black, Dashed,

Thickness[0.0025]}, {Lighter[Magenta, 0.5],
Thickness[0.005]},{Black, Dashed, Thickness[0.0025]}},

PlotRange -> {{-2*Pi, 2*Pi}, {-0.3, 1.1}},
AxesLabel -> {"\[Nu]", None}]

The codes shown in this section can be copy-pasted directly to the Mathematica notebook.

5. Conclusions
An alternative method of rational approximation of the FT based on the real and imaginary

parts of the complex error function (12) is developed. Unlike the rational approximation (11) of the
FT, the expansion coefficients Vk(πνc, nh/c) and Vℓ(πνc, nh/c) in this method do not depend on
values of the sampled function f (t). Since the values of the Voigt functions remain always the same,
this approach can be used for rapid computation with help of look-up tables. We also show that
this rational approximation of the FT can also be rearranged in a trigonometric form (44) with an
exponential multiplier e−(πνc)2

acting like the Hamming window that removes periodicity.

Author Contributions: Sanjar M. Abrarov wrote the manuscript and developed the codes. Rajinder K. Jagpal
and Rehan Siddiqui and Brendan M. Quine performed data analysis and verifications. All authors reviewed and
approved the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FT Fourier transform
DFT Discrete Fourier transform

References
1. Hansen, E.W.; Fourier Transforms: Principles and Applications; John Wiley & Sons, Hoboken, 2014.
2. Bracewell, R.N.; The Fourier Transform and Its Applications; 3rd Edition, McGraw-Hill, New York, 2000.
3. Abrarov, S.M.; Siddiqui, R.; Jagpal, R.K.; Quine, B.M. A rational approximation of the Fourier Transform by

integration with exponential decay multiplier. Appl. Math. 2021, 12, 947–962. https://doi.org/10.4236/am.
2021.1211063

4. Baker Jr., G.A.; Gammel, J.L; Wills, J.G. An investigation of the applicability of the Padé approximant method.
J. Math. Anal. Appl. 1961, 2, 405–418. https://doi.org/10.1016/0022-247X(61)90019-1

5. Brezenski, C. Extrapolation algorithms and Padé approximations. Appl. Numer. Math. 1996, 20, 299–318.
https://doi.org/10.1016/0168-9274(95)00110-7

6. Filip, S.-I.; Nakatsukasa, Y.; Trefethen, L.N.; Beckermann, B. Rational minimax approximation via adaptive
barycentric representations. SIAM J. Sci. Comput. 2018, 40, A2427–A2455. https://doi.org/10.1137/17M113
2409

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202504.0559.v1

https://doi.org/10.4236/am.2021.1211063
https://doi.org/10.4236/am.2021.1211063
https://doi.org/10.1016/0022-247X(61)90019-1
https://doi.org/10.1016/0168-9274(95)00110-7
https://doi.org/10.1137/17M1132409
https://doi.org/10.1137/17M1132409
https://doi.org/10.20944/preprints202504.0559.v1


17 of 18

7. Nakatsukasa, Y.; Trefethen, L.N. An algorithm for real and complex rational minimax approximation. SIAM
J. Sci. Comput. 202, 42, A3157–A3179. https://doi.org/10.1137/19M1281897

8. Pachón R.; Trefethen, L.N. Barycentric-Remez algorithms for best polynomialap proximation in the chebfun
system. BIT Numer. Math. 2009, 49, 721–741. https://doi.org/10.1007/s10543-009-0240-1

9. Hofreither, C. An algorithm for best rational approximation based on barycentric rational interpolation.
Numer. Algor. 2021, 88, 365–388. https://doi.org/10.1007/s11075-020-01042-0

10. Abrarov, S.M.; Quine, B.M. Sampling by incomplete cosine expansion of the sinc function: application to the
Voigt/complex error function. Appl. Math. Comput. 2015, 258, 425–435. https://doi.org/10.1016/j.amc.2015
.01.072

11. Abramowitz, M.; Stegun, I.; Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables;
9th Ed. Dover, New York, 1972.

12. Armstrong, B.H.; Nicholls, B.W. Emission, Absorption and Transfer of Radiation in Heated Atmospheres.
Pergamon Press, New York, 1972.

13. Schreier, F. The Voigt and complex error function: a comparison of computational methods. J. Quant.
Spectrosc. Radiat. Transfer. 1992, 48, 743–762. http://dx.doi.org/10.1016/0022-4073(92)90139-U

14. Armstrong, B.H. Spectrum line profiles: the Voigt function. J. Quant. Spectrosc. Radiat. Transfer. 1967, 61–88.
http://dx.doi.org/10.1016/0022-4073(67)90057-X

15. Zaghloul, M.R.; Ali, A.N. Algorithm 916: Computing the Faddeyeva and Voigt functions. ACM Trans. Math.
Soft. 2012, 38, 1–22. https://doi.org/10.1145/2049673.2049679

16. Berk, A.; Hawes, F. Validation of MODTRAN®6 and its line-by-line algorithm. J. Quant. Spectrosc. Radiat.
Transfer. 2017, 203, 542–556. https://doi.org/10.1016/j.jqsrt.2017.03.004

17. Pliutau, D.; Roslyakov, K. Bytran −|− spectral calculations for portable devices using the HITRAN database.
Earth Sci. Inf. 2017, 10, 395404. https://doi.org/10.1007/s12145-017-0288-4

18. Pliutau, D. Combined “Abrarov/Quine-Schreier-Kuntz (AQSK)” algorithm for the calculation of the Voigt
function. J. Quant. Spectrosc. Radiat. Transfer. 2021, 272 107797. https://doi.org/10.1016/j.jqsrt.2021.107797

19. Balazs, N.L.; Tobias, I. Semiclassical dispersion theory of lasers. Phil. Trans. Royal Soc. A. 1969, 264, 1–29.
https://doi.org/10.1098/rsta.1969.0002

20. Chan, L.K.P. Equation of atomic resonance for solid-state optics. Appl. Opt. 1986, 25,) 1728–1730. https:
//doi.org/10.1364/AO.25.001728

21. Srivastava, H.M.; Miller, E.A. A unified presentation of the Voigt function. Astrophys. Space Sci. 1987, 135,
111-–118. https://doi.org/10.1007/BF00644466

22. Abrarov, S.M.; Quine, B.M. A new application of the Fourier transform for rational approximation of the
complex error function. J. Math. Research, 2016, 8, 14–23. https://doi.org/10.5539/jmr.v8n1p14
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