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Article

p-Adic Heisenberg-Robertson-Schrodinger and p-Adic
Maccone-Pati Uncertainty Principles
K. Mahesh Krishna

School of Mathematics and Natural Sciences, Chanakya University Global Campus, NH-648, Haraluru Village, Devanahalli
Taluk, Bengaluru Rural District, Karnataka State, 562 110, India; kmaheshak@gmail.com

Abstract: Let X be a p-adic Hilbert space. Let A : D(A) ⊆ X → X and B : D(B) ⊆
X → X be possibly unbounded linear operators. For x ∈ D(A) with ⟨x, x⟩ = 1, define
∆x(A) := ∥Ax − ⟨Ax, x⟩x∥. Then for all x ∈ D(AB) ∩ D(BA) with ⟨x, x⟩ = 1, we show that

(1) max{∆x(A), ∆x(B)} ≥

√√√√∣∣∣∣〈[A,B]x,x
〉2

+
(
⟨{A,B}x,x⟩−2⟨Ax,x⟩⟨Bx,x⟩

)2
∣∣∣∣

√
|2|

and

(2) max{∆x(A), ∆x(B)} ≥ |⟨(A + B)x, y⟩|, ∀y ∈ X satisfying ∥y∥ ≤ 1, ⟨x, y⟩ = 0. We call
Inequality (1) as p-adic Heisenberg-Robertson-Schrodinger uncertainty principle and Inequality (2) as
p-adic Maccone-Pati uncertainty principle.

Keywords: uncertainty principle; p-adic Hilbert space
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1. Introduction
Let H be a complex Hilbert space and A be a possibly unbounded self-adjoint linear operator

defined on the domain D(A) ⊆ H. For h ∈ D(A) with ∥h∥ = 1, define the uncertainty of A at the
point h as

∆h(A) := ∥Ah − ⟨Ah, h⟩h∥ =
√
∥Ah∥2 − ⟨Ah, h⟩2.

In 1929, Robertson [1] derived the following mathematical form of the uncertainty principle of Heisen-
berg derived in 1927 [2]. Recall that for two operators A : D(A) ⊆ H → H and B : D(B) ⊆ H → H,
we define the commutator [A, B] := AB − BA and anti-commutator {A, B} := AB + BA.

Theorem 1. [1–4] (Heisenberg-Robertson Uncertainty Principle) Let A : D(A) ⊆ H → H and
B : D(B) ⊆ H → H be self-adjoint linear operators. Then for all h ∈ D(AB) ∩ D(BA) with ∥h∥ = 1, we
have

1
2

(
∆h(A)2 + ∆h(B)2

)
≥

(
∆h(A) + ∆h(B)

2

)2

≥ ∆h(A)∆h(B) ≥ 1
2
|⟨[A, B]h, h⟩|. (1)

In 1930, Schrodinger made the following improvement of Inequality (1).

Theorem 2. [5,6] (Heisenberg-Robertson-Schrodinger Uncertainty Principle) Let A : D(A) ⊆ H → H
and B : D(B) ⊆ H → H be self-adjoint linear operators. Then for all h ∈ D(AB) ∩D(BA) with ∥h∥ = 1,
we have
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∆h(A)∆h(B) ≥ |⟨Ah, Bh⟩ − ⟨Ah, h⟩⟨Bh, h⟩| =
√
|⟨[A, B]h, h⟩|2 + |⟨{A, B}h, h⟩ − 2⟨Ah, h⟩⟨Bh, h⟩|2

2

=

√
(⟨{A, B}h, h⟩ − 2⟨Ah, h⟩⟨Bh, h⟩)2 − ⟨[A, B]h, h⟩2

2
.

Surprisingly, in 2014, Maccone and Pati derived the following uncertainty principle which works
for any unit vector which is orthogonal to given unit vector [7].

Theorem 3. [7] (Maccone-Pati Uncertainty Principle) Let A : D(A) ⊆ H → H and B : D(B) ⊆ H →
H be self-adjoint linear operators. Then for all h ∈ D(A) ∩D(B) with ∥h∥ = 1, we have

∆h(A)2 + ∆h(B)2 ≥ 1
2

(
|⟨(A + B)h, k⟩|2 + |⟨(A − B)h, k⟩|2

)
, ∀k ∈ H satisfying ∥k∥ = 1, ⟨h, k⟩ = 0.

As the study of p-adic Hilbert spaces is equally important as the study of Hilbert spaces, we
naturally ask the following question.

Question 1.4. What are p-adic versions of Theorems 2 and 3?
In this paper, we answer Question 1.4.

2. p-Adic Heisenberg-Robertson-Schrodinger Uncertainty Principle and p-Adic
Maccone-Pati Uncertainty Principle

We are going to consider the following notion of p-adic Hilbert space which is introduced by
Kalisch [8] in 1947.

Definition 1. [8] Let K be a non-Archimedean valued field (with valuation | · |) and X be a non-Archimedean
Banach space (with norm ∥ · ∥) over K. We say that X is a p-adic Hilbert space if there is a map (called as
p-adic inner product) ⟨·, ·⟩ : X ×X → K satisfying following.

(i) If x ∈ X is such that ⟨x, y⟩ = 0 for all y ∈ X , then x = 0.
(ii) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X .
(iii) ⟨x, αy + z⟩ = α⟨x, y⟩+ ⟨x, z⟩ for all α ∈ K, for all x, y, z ∈ X .
(iv) |⟨x, y⟩| ≤ ∥x∥∥y∥ for all x, y ∈ X .

Following are standard examples.

Example 1. Let d ∈ N and K be a non-Archimedean valued field. Then Kd is a p-adic Hilbert space w.r.t. norm

∥(xj)
d
j=1∥ := max

1≤j≤d
|xj|, ∀(xj)

d
j=1 ∈ Kd

and p-adic inner product

⟨(xj)
d
j=1, (yj)

d
j=1⟩ :=

d

∑
j=1

xjyj, ∀(xj)
d
j=1, (yj)

d
j=1 ∈ Kd.

Example 2. Let K be a non-Archimedean valued field. Define

c0(N,K) := {(xn)
∞
n=1 : xn ∈ K, ∀n ∈ N, lim

n→∞
xn = 0}.

Then c0(N,K) is a p-adic Hilbert space w.r.t. norm

∥(xn)
∞
n=1∥ := sup

n∈N
|xn|, ∀(xn)

∞
n=1 ∈ c0(N,K)
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and p-adic inner product

⟨(xn)
∞
n=1, (yn)

∞
n=1⟩ :=

∞

∑
n=1

xnyn, ∀(xn)
∞
n=1, (yn)

∞
n=1 ∈ c0(N,K).

Let X ,Y be p-adic Hilbert spaces and T : X → Y be a linear operator. We say that T is adjointable
if there is a linear operator, denoted by T∗ : Y → X such that ⟨Tx, y⟩ = ⟨x, T∗y⟩, ∀x ∈ X , ∀y ∈ X .
Note that (i) in Definition 1 says that adjoint, if exists, is unique. An adjointable linear operator
T : X → X is said to be self-adjoint if T∗ = T.
Let A be a possibly unbounded linear operator (need not be self-adjoint) defined on domain D(A) ⊆ X .
For x ∈ D(A) with ⟨x, x⟩ = 1, define the uncertainty of A at the point x as

∆x(A) := ∥Ax − ⟨Ax, x⟩x∥.

We now have the p-adic version of Theorem 2.

Theorem 4. (p-adic Heisenberg-Robertson-Schrodinger Uncertainty Principles) Let X be a p-adic
Hilbert space. Let A : D(A) ⊆ X → X and B : D(B) ⊆ X → X be linear operators. Then for all
x ∈ D(AB) ∩D(BA) with ⟨x, x⟩ = 1, we have

(i)

∆x(A)∆x(B) ≥ |⟨Ax, Bx⟩ − ⟨Ax, x⟩⟨Bx, x⟩| = |⟨Bx, Ax⟩ − ⟨Ax, x⟩⟨Bx, x⟩|.

In particular, if A and B are self-adjoint, then

∆x(A)∆x(B) ≥ |⟨BAx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩| = |⟨ABx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩|.

(ii)

max{∆x(A), ∆x(B)} ≥

√∣∣∣∣〈[A, B]x, x
〉2

+
(
⟨{A, B}x, x⟩ − 2⟨Ax, x⟩⟨Bx, x⟩

)2
∣∣∣∣√

|2|
.

(iii) If A and B are adjointable, then

max{∆x(A), ∆x(B)} ≥

√∣∣∣∣⟨(A∗A + B∗B)x, x⟩ − ⟨(A + B)x, x⟩2 + ⟨(A − B)x, x⟩2

2

∣∣∣∣.
In particular, if A and B are self-adjoint, then

max{∆x(A), ∆x(B)} ≥

√∣∣∣∣⟨(A2 + B2)x, x⟩ − ⟨(A + B)x, x⟩2 + ⟨(A − B)x, x⟩2

2

∣∣∣∣
=

√∣∣∣∣ ⟨(A + B)2x, x⟩+ ⟨(A − B)2x, x⟩ − ⟨(A + B)x, x⟩2 − ⟨(A − B)x, x⟩2

2

∣∣∣∣.
(iv) If A and B are adjointable, then

max{∆x(A), ∆x(B)} ≥
√
|⟨(A∗A − B∗B)x, x⟩ − ⟨(A + B)x, x⟩⟨(A − B)x, x⟩|.
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In particular, if A and B are self-adjoint, then

max{∆x(A), ∆x(B)} ≥
√
|⟨(A2 − B2)x, x⟩ − ⟨(A + B)x, x⟩⟨(A − B)x, x⟩|.

(v)

max{∆x(A), ∆x(B)} ≥
√
|⟨(A + B)x, (A + B)x⟩ − ⟨(A + B)x, x⟩2|.

(vi)

max{∆x(A), ∆x(B)} ≥
√
|⟨(A − B)x, (A − B)x⟩ − ⟨(A − B)x, x⟩2|.

Proof. Let x ∈ D(AB) ∩D(BA) be such that ⟨x, x⟩ = 1.

(i) By using the definition of p-adic inner product,

∆x(A)∆x(B) = ∥Ax − ⟨Ax, x⟩x∥∥Bx − ⟨Bx, x⟩x∥
≥ |⟨Ax − ⟨Ax, x⟩x, Bx − ⟨Bx, x⟩x⟩|
= |⟨Ax, Bx⟩ − ⟨Ax, x⟩⟨Bx, x⟩|.

(ii) By making a direct expansion and simplification, we see that

〈
[A, B]x, x

〉2
+

(
⟨{A, B}x, x⟩ − 2⟨Ax, x⟩⟨Bx, x⟩

)2

=
(
⟨ABx, x⟩ − ⟨BAx, x⟩

)2
+

〈
{A, B}x, x

〉2
+ 4⟨Ax, x⟩2⟨Bx, x⟩2 − 4⟨{A, B}x, x⟩⟨Ax, x⟩⟨Bx, x⟩

=
(
⟨ABx, x⟩ − ⟨BAx, x⟩

)2
+

(
⟨ABx, x⟩+ ⟨BAx, x⟩

)2
+ 4⟨Ax, x⟩2⟨Bx, x⟩2

− 4⟨ABx, x⟩⟨Ax, x⟩⟨Bx, x⟩ − 4⟨BAx, x⟩⟨Ax, x⟩⟨Bx, x⟩
= 2⟨ABx, x⟩2 + 2⟨BAx, x⟩2 + 4⟨Ax, x⟩2⟨Bx, x⟩2 − 4⟨ABx, x⟩⟨Ax, x⟩⟨Bx, x⟩ − 4⟨BAx, x⟩⟨Ax, x⟩⟨Bx, x⟩
= 2(⟨ABx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩)2 + 2(⟨BAx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩)2.

Therefore∣∣∣〈[A, B]x, x
〉2

+
(
⟨{A, B}x, x⟩ − 2⟨Ax, x⟩⟨Bx, x⟩

)2
∣∣∣

= |2|
∣∣∣(⟨ABx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩)2 + (⟨BAx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩)2

∣∣∣
≤ |2|max

{∣∣∣(⟨ABx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩)2
∣∣∣, ∣∣∣(⟨BAx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩)2

∣∣∣}
= |2|max

{
|⟨ABx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩|2, |⟨BAx, x⟩ − ⟨Ax, x⟩⟨Bx, x⟩|2

}
≤ |2|max

{
max{∆x(A)2, ∆x(B)2}, max{∆x(B)2, ∆x(A)2}

}
= |2|max{∆x(A)2, ∆x(B)2}.
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(iii) By using the non-Archimedean triangle inequality and the definition of p-adic inner product,

max{∆x(A), ∆x(B)} = max{∥Ax − ⟨Ax, x⟩x∥, ∥Bx − ⟨Bx, x⟩x∥}

≥ max{
√
|⟨Ax − ⟨Ax, x⟩x, Ax − ⟨Ax, x⟩x⟩|,

√
|⟨Bx − ⟨Bx, x⟩x, Bx − ⟨Bx, x⟩x⟩|}

= max{
√
|⟨Ax, Ax⟩ − ⟨Ax, x⟩2|,

√
|⟨Bx, Bx⟩ − ⟨Bx, x⟩2|}

=
√

max{|⟨Ax, Ax⟩ − ⟨Ax, x⟩2|, |⟨Bx, Bx⟩ − ⟨Bx, x⟩2|}

≥
√
|⟨Ax, Ax⟩ − ⟨Ax, x⟩2 + ⟨Bx, Bx⟩ − ⟨Bx, x⟩2|

=
√
|⟨A∗Ax, x⟩+ ⟨B∗Bx, x⟩ − (⟨Ax, x⟩2 + ⟨Bx, x⟩2)|

=

√∣∣∣∣⟨(A∗A + B∗B)x, x⟩ − ⟨(A + B)x, x⟩2 + ⟨(A − B)x, x⟩2

2

∣∣∣∣.
(iv) Using initial calculations in (iii),

max{∆x(A), ∆x(B)} ≥
√

max{|⟨Ax, Ax⟩ − ⟨Ax, x⟩2|, |⟨Bx, Bx⟩ − ⟨Bx, x⟩2|}

≥
√
|⟨Ax, Ax⟩ − ⟨Ax, x⟩2 − ⟨Bx, Bx⟩+ ⟨Bx, x⟩2|

=
√
|⟨A∗Ax, x⟩ − ⟨B∗Bx, x⟩ − (⟨Ax, x⟩2 − ⟨Bx, x⟩2)|

=
√
|⟨(A∗A − B∗B)x, x⟩ − ⟨(A + B)x, x⟩⟨(A − B)x, x⟩|.

(v) Using ultrametric inequality first and then using p-adic inner product we get

max{∆x(A), ∆x(B)} = max{∥Ax − ⟨Ax, x⟩x∥, ∥Bx − ⟨Bx, x⟩x∥}
≥ ∥Ax − ⟨Ax, x⟩x + Bx − ⟨Bx, x⟩x∥

≥
√
|⟨Ax − ⟨Ax, x⟩x + Bx − ⟨Bx, x⟩x, Ax − ⟨Ax, x⟩x + Bx − ⟨Bx, x⟩x⟩|

=
√
|⟨Ax, Ax⟩+ ⟨Bx, Bx⟩+ 2⟨Ax, Bx⟩ − 2⟨Ax, x⟩⟨Bx, x⟩ − ⟨Ax, x⟩2 − ⟨Bx, x⟩2|

=
√
|⟨(A + B)x, (A + B)x⟩ − ⟨(A + B)x, x⟩2|.

(vi) Using initial calculations in (v),

max{∆x(A), ∆x(B)} = max{∥Ax − ⟨Ax, x⟩x∥, ∥Bx − ⟨Bx, x⟩x∥}
≥ ∥Ax − ⟨Ax, x⟩x − Bx + ⟨Bx, x⟩x∥

≥
√
|⟨Ax − ⟨Ax, x⟩x − Bx + ⟨Bx, x⟩x, Ax − ⟨Ax, x⟩x − Bx + ⟨Bx, x⟩x⟩|

=
√
|⟨(A − B)x, (A − B)x⟩ − ⟨(A − B)x, x⟩2|.

Note that for self-adjoint operators A and B, we have

⟨[A, B]x, x⟩ = ⟨ABx, x⟩ − ⟨BAx, x⟩ = ⟨Bx, Ax⟩ − ⟨Ax, Bx⟩ = ⟨Bx, Ax⟩ − ⟨Bx, Ax⟩ = 0

and

⟨{A, B}x, x⟩ = ⟨ABx, x⟩+ ⟨BAx, x⟩ = ⟨Bx, Ax⟩+ ⟨Ax, Bx⟩ = ⟨Bx, Ax⟩+ ⟨Bx, Ax⟩
= 2⟨Bx, Ax⟩ = 2⟨ABx, x⟩.

We next derive p-adic version of Theorem 3.
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Theorem 5. (p-adic Maccone-Pati Uncertainty Principle) Let X be a p-adic Hilbert space. Let A : D(A) ⊆
X → X and B : D(B) ⊆ X → X be linear operators. Then for all x ∈ D(A) ∩ D(B) with ⟨x, x⟩ = 1, we
have

max{∆x(A), ∆x(B)} ≥ |⟨(A + B)x, y⟩|, ∀y ∈ X satisfying ∥y∥ ≤ 1, ⟨x, y⟩ = 0

and

max{∆x(A), ∆x(B)} ≥ |⟨(A − B)x, y⟩|, ∀y ∈ X satisfying ∥y∥ ≤ 1, ⟨x, y⟩ = 0.

Proof. Let x ∈ D(A) ∩D(B) be such that ⟨x, x⟩ = 1. Let y ∈ X satisfies ∥y∥ ≤ 1 and ⟨x, y⟩ = 0. Then

|⟨(A + B)x, y⟩| = |⟨Ax − ⟨Ax, x⟩x + Bx − ⟨Bx, x⟩x, y⟩|
≤ ∥Ax − ⟨Ax, x⟩x + Bx − ⟨Bx, x⟩x∥∥y∥
≤ ∥Ax − ⟨Ax, x⟩x + Bx − ⟨Bx, x⟩x∥
≤ max{∥Ax − ⟨Ax, x⟩x∥, ∥Bx − ⟨Bx, x⟩x∥}
= max{∆x(A), ∆x(B)}.
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