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Abstract: Semisymbolic analysis is one of the most valuable procedures in an automated design of
circuits because it provides poles and zeros of a transfer function. The algorithm itself consists in
formulating generalized eigenvalue problem, which is subsequently transformed into a standard one
to be finally solved by a modification of QR or QZ algorithm. Although the semisymbolic analysis
itself is known for a very long time, its problems with numerical accuracy are known for a very long
time as well. Since the advent of very fast circuits, this problem has heightened due to the presence of
extremely small capacitances and inductances, which makes the values in the matrixes differing in a
huge number of orders of magnitude. One option to solve this problem of numerical instability is to
use more accurate arithmetics such as 128-bit numbers (and our previous works have assessed this
possibility). In this article, however, we propose a more sophisticated procedure based on a frequency
scaling, which naturally balances the magnitudes of the matrix elements. The proposed algorithm is
thoroughly verified in the article by a number of control analyzes demonstrating that the use of the
frequency scaling allows to achieve accurate results even by standard 64-bit arithmetic. Moreover,
the article also shows that the implementation of the frequency scaling into the subroutines for the
semisymbolic analysis is really very easy.

Keywords: analog circuits; microwave circuits; semisymbolic analysis; frequency scaling; generalized
eigenvalue problem; standard eigenvalue problem; QR algorithm; poles and zeros of transfer function

1. Introduction

The semisymbolic analysis is utilized in many various areas of the circuit design [1-11]. A general
idea how to use the semisymbolic analysis for computing the poles and zeros of a transfer function
was initially described in [12], where a very important method how to utilize the sparsity of matrices
is also suggested. This procedure systematically transforms the general eigenvalue problem to the
standard one that is solved by the QR or QZ [13] algorithms afterwards. However, during many years,
several numerical problems of this procedure have been recognized with miscellaneous suggestions
how to overcome them:

*  More works have been devoted to solving (very) large-scale problems, [14-17] e.g., both from
efficiency and accuracy point of views. Furthermore, using a parallelism could also be a natural
answer to this problem — especially contemporary versions of Fortran (2018 or 2023) are very
suitable for programming these tasks [18,19].

*  Solving the well known (and almost annoying) problem of the standard eigenvalue task: accuracy
of the computation of multiple or nearly multiple eigenvalues [20-23].

e  Many works have also been generally focused on the frequently insufficient precision of the
semisymbolic analyses, which is caused by utilized numerical processes [24-26].

Frequency scaling techniques were successfully used in many areas of microwave electronics,
antenna constructions, neural networks, and numerical methods in physical design [27-31], and it
is not surprising that these procedures often concern of the microwaves, because there are huge
differences in the values of individual circuit elements or technological parameters in the area of very
high frequencies. However, we did not find any use of the frequency scaling in the semisymbolic
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analysis, i.e., in the reduction of the general eigenvalue problem to the standard one solved by the
QR of QZ algorithms afterwards, which provides the poles and zeros of a transfer function of a linear
or linearized circuit. For this reason, a utilization of the frequency-scaled semisymbolic analysis for
more accurate computing the poles and zeros of the circuit transfer function is designated as the
fundamental goal of the article.

As this theme is unusual, we also demonstrate a simple method how to formulate the modified
system of the equations for the frequency-scaled semisymbolic analysis, and how to determine the
real poles and zeros of the transfer function corresponding to original (unscaled) system. Moreover,
the way of transforming the general eigenvalue problem to the standard one is demonstrated on an
analytically solved (extraordinary) so-called dynamically degenerate circuit. Finally, increasing the
precision by means of frequency-scaled semisymbolic analysis is demonstrated on a wide class of
electrical circuits, especially on the microwave ones where the accuracy enhancement is required most
of all.

The article is organized as follows. At the beginning, there is a brief overview of the semisymbolic
analysis utilized for computing the poles and zeros of linear circuits or circuits that are linearized at an
operating point. (Full details are not included because they can be found in our previous conference
paper [32] and book chapter [17].) The method is then demonstrated on an unusual example — on
a dynamically degenerate circuit [33], where a nonstandard step of the reduction procedure (in the
semisymbolic analysis) must be used. (This step has already been shown for a digital filter in [17],
however, here, its necessary use also for an analog circuit is demonstrated, which is quite strange
in this area.) Afterwards, there is a section in which a simple way of formulating equations for
the frequency-scaled semisymbolic analysis is explained, and how the real (non-transformed) poles
and zeros (and constant of transfer function) are obtained after its end. Finally, the accuracy and
reliability of the algorithm are verified by determining the poles and zeros of transfer functions of the
following four electronic circuits that are known (and tested) for considerable numerical demands in
the semisymbolic analysis:

1. Low-noise antenna amplifier for a multi-constellation radio receiver for all the (five) satellite
navigation systems [26] — details of methods for creating the low-noise devices as well as some
corresponding computer-aided design tools are described in [34-37].

2. An AB-class power amplifier [38] linearized at an operating point — more of negative feedbacks
as well as tiny capacitors of some transistors cause huge differences among the magnitudes of
poles and (especially) zeros of a transfer function.

3. A testbench circuit with the MDA272 operational amplifier [32,39] — as this circuit is (much more)
complicated than the previous one, it constitutes more demanding test as well.

4. A distributed microwave oscillator [40] represents the most demanding test — the LRCG models
of microstrip lines as well as the models of pHEMTs contain some (indeed) extremely small
values, therefore, the frequency-scaled semisymbolic analysis is thoroughly verified here.

And because of course there is another logical possibility of improving the numerical stability of
the calculations by combinations of the frequency scaling and 128-bit arithmetic, the benefits of this
approach are demonstrated on one of the examples above. As expected, there is a further increase in
the numeric robustness of the whole process in terms of choosing the accuracy parameter. However,
because this article is primarily focused on the frequency-scaled semisymbolic analysis (in which all
the above tasks could be managed in the standard 64-bit arithmetic), we do not expand on this matter
so much in detail in this article. (In addition, greater numerical calculation stability can be naturally
expected in the 128-bit arithmetic.)

The purpose of the work and its significance are clear:

e  First of all, the paper shows that the formulation of the system of equations for the frequency-
scaled semisymbolic analysis is very simple, only a slightly more complicated in comparison
with the standard (unscaled) semisymbolic analysis. Moreover, recalculation of the results of the
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frequency-scaled semisymbolic analysis to the actual (untransformed) values of the poles and
zeros of the circuit is also very simple.

e  Although the above operations (both before and after the semisymbolic analysis) are very simple
to implement, they lead to a substantial accuracy improvement, which is clearly demonstrated
in the four selected examples. And this uncomplicated adjustment of the algorithm, leading to
much more accurate results, is the main purpose of the article.

2. Brief Characteristic of Semisymbolic Analysis

In this section we will focus on the brief characteristic of the semisymbolic analysis only with
the necessary definitions that will be needed in the following sections. Much more details about this
very useful type of analysis can be found in [1,12-17,21,22,24,32,33,38]. However, everything needed
to explain the principle of the frequency-scaled semisymbolic analysis this section contains.

2.1. Reduction of Generalized Problem of Eigenvalues to Standard Problem of Eigenvalues

The system of the circuit equations of a linear circuit or a nonlinear circuit linearized at an
operating point is defined by the matrix equation (see [12], e.g., and many new others):

(sA+B)v=e, (1)

where s stands for Laplace operator, the A and B matrices are composed of circuit reactances and
resistances depending on the way of formulating equations, and v and e are the Laplace images of
circuit variables and input sources, respectively [14].

Poles (of all transfer functions) and zeros (of a specific transfer function) are solutions of general-
ized problems of eigenvalues:

det(sA+B) =0 for poles, (2a)
det(sAg(0) + Bi(e;)) =0 for zeros, (2b)
where the matrix A;(0) is formed by replacing the k" column of A by the column of zeros, and the

matrix By (e;) is created from B by replacing its k' column by the column e with all its elements zeroed

with the exception of one representing the I

source of input signal.

It goes without saying that the solution of the generalized problem of eigenvalues is more
complicated than solving the standard problem of eigenvalues det(sI — X) = 0 (which is carefully
processed in the literature and for which there are numerous software libraries). Therefore, a systematic
reduction of the generalized eigenvalue problem is performed to the standard eigenvalue problem
(so-called deflation to the standard form) by a sequence of operations that do not change the value of
the determinant except for its sign.

Using this systematically performed sequence (the system arrangement is described in detail, for
example, in [12,33,38], etc.), the matrices in (2) are converted to the shape shown in Figure 1. Although
the procedure resembles the Gaussian elimination method, it is a more complex process that also
contains specific operations such as differentiation of a row described in Subsect. 2.2.
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Figure 1. The (final) shape of the matrices after the transformation of the generalized eigenvalue problem to the
standard one. The matrices A11 and B> must always be diagonalized, and either matrix B1» or matrix By; must
be zeroed. (Of course, it is possible to zero both matrices Bj; and Bpq, but this leads to an unnecessarily large
number of operations performed.) Matrix By1 can have any final structure.

For the shape of the submatrices in Figure 1, we can simplify the calculation of the determinant in

(2a) (the artificial multiplication by the unit matrix A11A11 (= 1) from the left enables transforming
the general eigenvalue problem to the standard one):

n "

ny
det(sA + B) = (—l)nHI det [ A11:4;171 (SAH + Bu)] i:];l_ll;rl(Bzz)ii = (—1)"H1 E(An)ii i:1n_1[+1(B22)ii det(sl + A1171311) , (3)
where 1 is the total number of column and row interchanges during the transformation.
Thus, the standard eigenvalue problem has been created, and the poles of (all) the transfer
functions can be calculated as eigenvalues of the matrix X = — A1 'Bn1. (And the same method is
applied to the general eigenvalue problem (2b) for the calculation of zeros.)

2.2. Extraordinary Step for Reduction of “Irreducible” Non-diagonal Elements

The reduction process that leads to the final form on the right side of (3) seems to be a modification
of the Gaussian elimination method. In certain cases, however, there is a non-diagonal element in
the matrix Aqp that is not reducible by any other diagonal element of this matrix. In such a case,
a suitable row of the lower part of the matrix By, is multiplied by the operator s to move this row
to the left. (In the time area, this operation corresponds to differentiation.) And now the originally
irreducible element in the matrix A11 can be easily reduced using some element of this moved row. In
[17], we have already demonstrated the necessity of this step on an irregular digital filter described by
Z transform. In this article, we will show a more illustrative example based on a so-called dynamically
degenerate analog circuit [33]. However, compared to this book, we will introduce significantly easier
formulation of circuit equations.

2.3. Pivoting

Obviously, the accuracy of the process of the reduction of the generalized eigenvalue problem to
the standard form is significantly influenced by the selection of pivot elements. The best results are
achieved by full pivoting when the pivot elements are selected from the whole remaining submatrix.
However, the full pivoting is unsuitable for solving large tasks, and therefore in this article we only deal
with the partial pivoting, where the pivot elements are selected only from the respective subcolumns
of the matrix. (And, moreover, the partial pivoting is well compatible with the procedures exploiting
the sparsity of the matrices.) The pivoting strategies are defined in a very detailed way in [38]. Here,
we only describe checking the pivot element by the € parameter, which is also used in the examples.

The n'? pivot element is selected from the rest of the n" column of the reduced matrix:

App = argmax|Ay|, n=1,...,np—1, (4a)
n<is<ng


https://doi.org/10.20944/preprints202504.0520.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2025

but this pivot element is considered non-zero only if it is not too small in comparison with the largest
element in the remainder of the n'" row:

if |Aun| S € max |Ayj| then Ay, :=0. (4b)
n<j<np

2.4. Final Form of Transfer Function

After applying procedures described in the previous subsections for the calculations of both poles
and zeros, we obtain the circuit transfer function in the form

c. (5)

[1s=pi)

i=1

(Of course, the number of zeros n; ; may be different from the number of poles 7;.)

3. Analytically Solved Example of Reduction Algorithm On Dynamically
Degenerate Circuit

Simple but unusual circuit in Figure 2 was used in [33] to demonstration of multiple methods.
For example, it was used to demonstrate the formulation and reduction of the state equations, during
which some unusual operations had to be performed due to character of this circuit. However, the
original formulation of the state equations in [33] had five equations — for example, the current of the
voltage source E was also a variable. In this section, a simpler way of formulation of the system of
equations containing only three variables is used. The purpose is to easily demonstrate that even for
simple analog circuits, it may be necessary to use the non-standard step of the reduction consisting in
differentiation of one of the equations.

Vinp _r . Vv

Figure 2. Example of a dynamically degenerate circuit in which the capacitors C; and C, determining its dynamical
properties create a closed loop with the voltage source E. Therefore, their voltages are not independent each other.

The matrix equation corresponding to the circuit in Figure 2 is the following:

G -G G 1 1%
s| G + B—1 Vinp | = . (6)
1 I E

For the calculation of pole(s), we will start modifying the A and B matrices to obtain the shapes
shown in Figure 1. Initially, the first column will be added to the second column:

Cy G G 1
S Cz Cz + ‘3—1 ; (7)
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The second column will be subtracted from the first column:
G G 1
s @) + g—1 |; (8)
-1 1

A1y is now diagonalized, however, By; = 0. Therefore, the third row must be differentiated, i.e.,
moved to the left, which is the step absent in the standard Gaussian elimination:

s @) + p—1 |; )

(—Cy)-multiple of the third line will be added to the second line:

Cq G 1
s| G + -1 |; (10)
-1 1

(—%)—multiple of the first line will be added to the second line, and the third line is also de-
differentiated (integrated), i.e., moved to the right (to the original position) as was in (8):

C G 1
s + -Gg —g+p-1 | (an
-1 1

A1y is now diagonalized again. As the circuit is degenerate, it only consists of one element. The
second and third rows will be exchanged for a future diagonalization of Bj;:

G G 1
s + -1 1 ; (12)
C. C
-G2 -2+p-1

(G%)—multiple of the second row will be added to the third row:

C1 G 1
s +1 -1 1 ; (13)
C C
-Gg —2+4p-1

By, is now diagonalized, and we will start zeroing the By, matrix as shown in Figure 1. (—G)-
multiple of the second row will be added to the first row:

G G 1
s + -1 1 ; (14)
C C
-G¢& —&+p-1
(— C21H31>—multiple of the third row will be added to the first row:
~21p-
&
G+ —Lt—
[ + =T : (15)
-1 1 ’

C C
-Gg ~&+p-1
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As B is now zeroed, the only pole of (all) transfer functions can be easily evaluated using the

last part of (3):
1 &
I= 1/ Aﬁl = = Bll =G + 71/ (16)
11 G _% + ,B 1
therefore, the pole is the solution of the equation
1 G
det(s—l—C(G-i—CzCl)):O (17)
1 o +p-1
and thus
G
1 g G @)
P c1< ~Sip-1 G\ G+G(1-p (19

TG G+CGA-B)  G+CGQA-p)

which is in complete agreement with [33]. However, the procedure defined in [33] is conceived more
generally and therefore uses (repeatedly in more sections) matrices 5 x 5. Although the exceptional
row differentiation is also shown in [33], we are of the opinion that our version shown in (9) is more
illustrative, and the general reduction strategy is clearer overall here due to the usage of the smaller
matrices 3 x 3.

4. Modifying Equations for Frequency-Scaled Semisymbolic Analysis
4.1. Formulating Modified System

In the frequency-scaled semisymbolic analysis, the formulation of the modification of (1) is
controlled by a user-selected factor @. One option is to directly modify the elements of the matrix A.
However, locating these elements in memory is a bit complicated due to efficient utilization of sparsity
of this matrix. Therefore, for simple and immediate testing the proposed algorithm, we have used
modifying the capacitive and inductive elements during the formulation of the circuit equations.

Regarding the passive elements, the values of capacitors and inductors used for the formulation
arise from original ones by multiplying by :

Co=Cxw, Lp=LXaw. (20)

Regarding the active elements, the following modified model parameters are created and used in
the formulation instead of the original ones:

Tr,o = Tr X @ (ideal forward transit time), (21a)
TR, 0 = TR X @ (ideal reverse transit time), (21b)
Cie,0 = Cjg X @  (zero-bias base-emitter depletion capacitance), (21¢)
Cjc,o = Cjc x @ (zero-bias base-collector depletion capacitance), and (21d)
Cjs,0 = Cjs X @ (zero-bias collector-substrate depletion capacitance) (21e)

for bipolar junction transistors (a definition of the entire BJT model can be found in [41], but the quasi-
saturation part of the model was not included because at the operating point — where the nonlinear
models are linearized — transistors are far from the quasi-saturation),

D, = Tp X @ (transit time), and (22a)

Cjo,0 = Cjo X @ (zero-bias junction capacitance) (22b)
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for PN-junction diodes (the whole diode model is defined in [41] as well), and
(eW), = (eW) x @ (permittivity width product), (23a)
Cjs,0 = Cjs X @ (zero-bias gate-source junction capacitance), (23b)
Cip,0 = Cjp x @ (zero-bias gate-drain junction capacitance), and (23¢)
Cps,o = Cps x @ (drain-source capacitance) (23d)

for pHEMTs. (The original GaAs FET model is entirely defined in [42], however, for testing, we have
used our original modification [43], which has been verified that it attains precision of standard models,
e.g., see comparisons [44] for SiC MESFETs or [45] for GaN HEMTs.)

Let’s note some of the details of the models listed here are used to illustrate the possible way of
the formulation, the accuracy of the models is not, of course, the topic of the article.

4.2. Determining Actual Poles, Zeros, and Constant of Transfer Function

Adjusting the formulation described in Subsect. 4.1 will certainly change the original transfer
function (5), its poles, zeros, and constant of the transfer function, i.e., we will obtain modified values
Pio,i=1,...,11,2i0, i =1,...,n1,, and cp. The actual poles, zeros, and constant of the transfer
function (5) are simply determined in the following way:

pi=piox®, i=1,...,n (24a)
Zi = Zjpo X @, i= 1,...,1’1112, (24b)
c=cp X @M Mz, (24¢)

4.3. Note About Controlling Factor

As the semisymbolic analysis — deflation of the generalized task of characteristic values to
standard form — and subsequent determining characteristic numbers of matrix represent a very
complex numerical process, an exact determination of the factor « is not possible. For the vast majority
of tasks, however, a rather accurate result is achieved for a fairly wide class of values of this factor,
mostly even for more orders of @. (This circumstance was also utilized to deal with relatively difficult
test tasks in this article.) However, the semisymbolic analysis is a relatively rapid numerical process
(unlike, for example, optimization tasks), and hence there can always be performed multiple tests with
different values of @. And what is positive and very important: the inappropriate choice of @ leads to
calculating the wrong (at first glance) poles and zeros (with nonsensical orders, etc.) and can be so
easily recognized. (In all our tests, it was thus possible to identify incorrect results immediately.)

5. Sample Examples of Different Levels of Complexity
5.1. Antenna Low-Noise Preamplifier for Multi-Constellation Receiver of Satellite Navigation

The circuit diagram of the antenna low-noise preamplifier (for the multi-constellation receiver
of satellite navigation) is shown in Figure 3. (Note that the accurate values of the passive elements
originated from a sophisticated design by multi-objective optimization.)
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Figure 3. The circuit diagram of the antenna low-noise preamplifier (for the multi-constellation receiver of satellite
navigation). Let’s remark that the values of the passive elements were computed by a multi-objective optimization
(modified goal attainment method), and for testing the frequency-scaled semisymbolic analysis, we have used the
optimizer’s output that gives eight significant digits.

In this case, the frequency-scaled semisymbolic analysis was able to provide accurate re-
sults even with the standard 64-bit arithmetic. Therefore, the poles of (all) the transfer functions
—0.005093217 £ 0.5618716j, —0.7139237, —0.2145403 +£ 0.7367593 j, —0.5549448 + 1.486727, —3.117465,
—8.955381, —1.750791 + 14.44991j, —8.49903 £ 17.95136j, and —20.28827 as well as the zeros of the
% transfer function 0 (six-time zero), 18.70084, and —21.63001 4 19.72322j (poles/zeros written
in gigahertz— GHz —units) were determined identically (!) by both the frequency-scaled semisymbolic
analysis (64-bit compilation) and a controlling semisymbolic analysis with variable-length arithmetic
(2048-bit compilation). Hence, a comparison table is not necessary in this case.

In this first and simplest example, we can briefly demonstrate that the algorithm is not extremely
sensitive to the suggested new factor @. For example, for the @ values 108, 10%, 1019, 1011, and 1012,
we always get exactly the same poles and zeros listed in the previous paragraph. However, for the @
value 107 and several other lesser ones, we only get five-time zero instead of the correct six-times zero.
Therefore, for example, the @ value 10'° should be safe for analyses of this circuit.

For this “medium” @ value (10'°), we have also tried to examine the effect of the ¢ parameter
defined in (4b) on the accuracy of the solution. For the € values 10712,10~1, and 1019, we again
received exactly the same poles and zeros listed above, which were also confirmed by the extremely
accurate controlling analysis using 2048-bit compilation. The € values 10~?, 1078, and 10~7 were also
usable, all the poles and zeros were again the same with the exception of one pole, which differed
only in the seventh significant digit. However, the € values 10~'* and 1073 led only to a four-time
zero (instead of the correct six-time zero), which implies that the € parameter in (4b) cannot be too
small in some tasks. Nevertheless, it should be emphasized that a suitable € parameter selection must
be made in every semisymbolic analysis, the only new parameter in the suggested frequency-scaled
semisymbolic analysis is @, and hence the new task here is only to determine this @ factor.

5.2. Discrete Operational Power Amplifier Working in AB Class Mode

The circuit diagram of the power operational amplifier (with a brief description of the basic parts
of the circuit) is shown in Figure 4.
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Figure 4. The circuit diagram of the power operational amplifier. The amplifier is of an AB class, therefore, the
poles and zeros of a transfer function can be determined at amplifier’s operating point.

All the differing poles and zeros of the transfer function (the output is of course on the ungrounded
contact of Ryg) determined by both suggested frequency-scaled semisymbolic analysis and another
extremely accurate but VERY slow analysis are shown in Table 1. It clearly confirms that the 64-bit
implementation is sufficient if the frequency scaling is used.

Table 1. Differing poles and zeros of a transfer function of the AB-class power operational amplifier (¢ = 10~1°
and e = 10719 were used for analyses with the 64-bit and 2048-bit precisions, respectively). (There were 28 poles
and 28 zeros of the calculated transfer function.)

No.” 64-bit precision, o=10% 2048-bit precision, @=1

28 —73133.1 —73133.0

20 —558.736 —558.735
23 —2425.09 —2425.08
24 —2429.20 —2429.19
25 —9295.22 —9294.71

27 —11555.3 —11556.1
28 —69984.1 —69985.6

“  All the differing poles (upper part) and all the differing zeros (lower part) are included, they are ordered by their absolute
values, and they are written in megahertz (MHz) units, e.g., the only differing pole equals approximately to —73.133 GHz.

5.3. MDA 272 Integrated Operational Amplifier

The circuit diagram of integrated operational amplifier of 272 class is shown in Figure 5.
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Figure 5. The diagrams of the 272-class operational amplifier and a respective test-bench circuit. In this case, of course, it is a more difficult task due to the large number of the bipolar junction
transistors and hence a large total number of small capacitances and a large size of the matrices in (1) as well.
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The diagram also contains a description of the basic parts of this integrated circuit, and a test-
bench circuit is shown as well. Certainly, the transfer function of this circuit is much more complicated
than that for the previous one (in total, both 108 poles and zeros).

In Table 2, only the differing poles and zeros are shown. This comparison again clearly demon-
strates that the 64-bit implementation of the frequency-scaled semisymbolic analysis is able to provide
sufficient accuracy, because the differences between its results and the results of the extremely accurate
2048-bit implementation are negligible — for each pole and zero, less than one thousandth.

This example emphasizes how the use of the frequency scaling suggested in this article is very
important —in [17], we have shown that the 64-bit implementation of the traditional (i.e., frequency-
unscaled) semisymbolic analysis practically crashed in the case of using the sparse-matrix procedures.
(And this article — as already mentioned above — is primarily focused on algorithms utilizing the
sparsity of matrices that are promising for analyzes of huge circuits.) Another interesting matter is
here that the € value 1071 was also used for the 64-bit case, which implies that an application of (4b)
probably even was not necessary.

Table 2. Differing poles and zeros of a transfer function of MDA 272 operational amplifier (¢ = 10719 was used
for both analyses). (There were 108 poles and 108 zeros.)

No.” 64-bit precision, @=10'2

2048-bit precision, @=1

87,88"

—21253.7 £ 403.045j

—21253.7 4- 403.014]j

107° —875784 —875775
2 —0.00000101545 —0.00000101546

4243  —213.529 + 1.50255] —213.529 + 1.50252j
6465 —1755.19 & 8.05508j —1755.19 % 8.05507j
71,72 —3131.29 + 43.8994j —3131.29 4 43.8995j
100 —489213 —489214

101 —568857 —568858

104 —875530 —875514

105 —965929 —965928

106,107 —110377 + 1.15147x 10%]  —110343 + 1.15153x 10°j

1087 +7.50493 x 10° +7.50920 % 10°

Only the most differing poles (upper part) and all differing zeros (lower part) are included, they are ordered by their absolute
values, and they are written in megahertz (MHz) units, e.g., the last zero equals approximately to 7.5 THz. (The differences of
the zeros are more perceptible and hence they were all included.)

This pair of complex poles is the only one with a registerable difference in the imaginary parts, although the differences
are very small because 403.045/403.014 ~ 1.000077. The differences detected in all other complex poles are less than one
millionth, i.e., they are the same at least in the first six valid digits.

There are only eight slightly different real poles and this one is the most different, but the difference is very small because
875784/875775 ~ 1.00001. The differences of the other seven ones are below one millionth.

Contrary to poles, zeros with positive real parts do not cause instability. This last zero is also the most differing, but

7.50493/7.50920 ~ 0.99943, i.e., the difference is less than one thousandth.
5.4. Distributed Tunable Microwave Oscillator

The circuit diagram of the distributed (tunable) microwave oscillator is shown in Figure 6, together
with the schemes of the pHEMT, filter and microstrip.
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Figure 6. The circuit diagram of the tunable microwave distributed oscillator. (Tuning can be done using the voltage sources E; through E4.) It is the most difficult task due to a number of microstrip
transmission lines, because their LRCG models lead to a huge number of poles and zeros of a transfer function. Moreover, as there are many equal capacitances and inductances in these models, there
exist a number of clusters of almost multiple eigenvalues (and calculating multiple eigenvalues traditionally represents a numerical problem). Although the oscillator itself is a nonlinear circuit, it is
possible to calculate (especially for the weakly nonlinear oscillators like this one) so-called virtual (or pseudo) operating point, at which the circuit can be linearized and then the poles and zeros can
be calculated. (And one of the so-computed poles even allows a relatively accurate estimate of oscillating frequency as shown in Table. 3, see footnote !)
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This is the most complicated and difficult example due to especially the microstrips that generate
a really large number of poles and zeros. Although the circuit itself is an oscillator, it is possible to
calculate a virtual operating point for it (with inductors replaced by a short circuit and capacitors
omitted). And the circuit can be linearized at this operating point and the semisymbolic analyses can
be performed with the results shown in Table 3.

Table 3. Selected poles and a zero of the hypothetical transfer function of distributed microwave oscillator
(e = 10716 was used for 256-bit and 2048-bit precisions, 10~17 and 10~1° were also used for 64-bit precision for

confirmation, and @ = 1013 was used for 256-bit and 2048-bit & 64-bit precisions)

No.” 256-bit (ak.a. octuple precision)  2048-bit & 64-bit precisionsb
1 —1.11780 —1.11766
2 —1.60846 —1.60884
3 —1.7473 —1.7473
4 —1.74994 —1.74994
5 —24.8317 —24.8517
6 —31.5231 —31.5304
7 —32.1177 —32.1175
8 —32.1519 —32.1520
9,10 —32.1522 —32.1522
11,12 —22.4247 £ 144.110j —22.5129 4= 144.154
23247 111122 4 323701 +1164.77 4= 3249.59j
205206° —81.9262 &+ 54352j —81.9263 £ 54352
255 —725373 —725373
256 —731586 —731586
257 —738107 —738107
258 —741167 —741167
259260 —16.2578 + 3.56136 % 106j —16.2578 + 3.56136 % 106]'
261,262  —33.9564 + 5.74487 x 106]' —33.9564 + 5.74487 x 106]'
263 —6.0845x10° —6.0845x10°
264 —6.98149 x 10° —6.98149 x 10°
265  —6.98169 x 10° —6.98169 x 10°
26  —7.01757x10° —7.01757 x 10°
S 0 —0.0000000266458 (2048-bit)

—0.000000208294 (64-bit)

?  From a total of 266 poles, the twelve ones (1-12) with the smallest and the other twelve ones (255-266) with the biggest
absolute values are included, and two other interesting couples (23,24 and 205,206) of the poles as well. Regarding zeros,
only the first one (“zero at zero”) is included as an interesting test of the algorithm accuracy, the others do not have a physical
sense. Again, all are written in megahertz (MHz) units, e.g., the last pole equals to around —7 THz.

Really, all of the poles included in the table are the same for the 2048-bit and 64-bit precisions. (Remarkable result!)

Double (real) pole.

This is the smallest pole with a positive real part and therefore its imaginary part can be used for an estimation of the oscillation

frequency (as this circuit is “weakly nonlinear”). The presumably correct period was determined by the steady-state analysis

as 0.31057 ns, hence the oscillation frequency should be 1/(3.1057 x 10*10) = 3.219886 GHz. Therefore, the errors of the
estimations are only about 0.53 % and 0.92 % for the 256- and 2048- & 64-bit arithmetics, respectively!

This couple of poles are physically insignificant, only included here to show the smallest poles with a difference, because all

the poles 207-266 are the same for all arithmetics, which is interesting and confirms their accuracy.

f Asthereis a 100 PF capacitor in the path to the output, one zero of the transfer function should be at 0 Hz in principle, and
it is called “zero at zero”. Only the 256-bit arithmetic was able to isolate the zero absolutely, however, both 2048-bit and
64-bit arithmetics were able to approximate it really well. This approximation can be improved by decreasing ¢, e.g., using
€ = 1072 changes it to 0.00000000426201. However, it could be a bit risky because a too small € could generate some spurious
poles although quite easily recognizable.

Table 3 contains only selected poles (especially the interesting ones with the smallest and the
biggest absolute values) and a “zero at zero” that is also a good test of accuracy. (Please see the
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footnotes below the table for more details.) Moreover, Table 3 also contains an important couple of
poles 23,24, where the imaginary part can be used very well to estimate the oscillation frequency. This
further confirms the meaningfulness of the semisymbolic analysis for weakly nonlinear circuits (and
thus for weakly nonlinear oscillators as well)! Finally, let’s emphasize the really remarkable result
shown in Table 3: all the poles included in the table were the same (to six significant digits) for both
2048-bit and 64-bit precisions. This is obviously a clear evidence, without the use of the suggested
frequency scaling in the 64-bit implementation (here, @ = 10'3 chosen), such an accordance would not
be possible!

6. Combination of Frequency Scaling and More Accurate Arithmetic

In the previous sections, we have shown that the frequency-scaled semisymbolic analysis provides
sufficiently accurate results even using standard 64-bit arithmetic. This fact confirms the basic idea
of the frequency scaling itself and is also very important because a number of mathematical libraries
are provided in the 64-bit version. (E.g., the LAPACK DLL libraries are available in 32- and 64-bit
arithmetics, but not in the 80- or 128-bit version.) It is logical that the use of more accurate arithmetic in
the frequency-scaled semisymbolic analysis will further increase the numerical stability of the whole
process.

This can be clearly illustrated in the results for the low-noise antenna preamplifier described in the
last paragraph of Subsect. 5.1. When using 64-bit arithmetic and factor @ 10'°, the analysis provided
accurate zeros of the transfer function for the values of € 10719, 1011, and 10~!2, and inaccurate zeros
for 1013 and lesser. However, when using 128-bit arithmetic (and the same factor @ 10'?), the analysis

0739, and

will provide accurate zeros of the transfer function for the values of € 10-10, 10711, ..., 1
10731, and inaccurate zeros for 10732 and lesser. In other words, possible range of € in (4b) is far greater
for the 128-bit arithmetic!

It can be noted that the response of the analyses to the € parameter described in the previous
paragraph quite corresponds to expectations due to the used arithmetics. The 64-bit arithmetic provides
accuracy up to 17 significant digits, and the 128-bit arithmetic provides accuracy up to 34 significant
digits. Therefore, the minimum applicable values of € 10~'? and 10~3! correspond to these accuracies
quite well. (The value of the € parameter suitable for the 64-bit arithmetic is also confirmed by the
results in Table 1 and Table 3, where 10~1¢ was primarily used, although there exist tasks in which no
tiny element of the matrix had to be declared zero by (4b), and hence 1071%° could be used as seen in
Table 2.)

7. Another Minor, but Important Improvement

In connection with the overall increase of the robustness of all subroutines for the semisymbolic
analysis, we have introduced an important adjustment in both new and existing procedures concerning
the products [T:2, (A11); [ T2 ny+1(B22)j; in (3). For (very) large circuits, there is a considerable risk of
overflow (or underflow) in these multiplications. Therefore, we only store the logarithms of absolute
values and signs during the gradual execution of these products, which turned out to be an absolutely

safe solution in all the alternatives of the semisymbolic analysis.

8. Discussion

Although problems with the accuracy of semisymbolic analysis have been known for a long time,
most of the tasks can be solved by procedures programmed in the usual 64-bit arithmetic. However,
we have found several difficult cases in the library of our circuits analyzed in the previous period,
which could not be solved precisely even by the latest semisymbolic analysis procedures. (And poles
and zeros of a transfer function for some of them were determined completely incorrectly when using
standard 64-bit arithmetic.)

Certainly, the first way for solving this problem is to use a more precise arithmetic, e.g., 80-bit or
128-bit implementations of the algorithms. We first presented using this so-called brute force at the
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conference [32], and an extended version of this paper was subsequently selected for publication in
the book [17]. Both publications [17,32] documented the ability of the 128-bit arithmetic to improve the
accuracy of the calculation of poles and zeros of a transfer function. In addition, both publications
contain very illustratively solved tasks of the reduction of the general eigenvalue problem to the
standard eigenvalue problem. In [32], the reduction for of an unproblematic analog circuit was shown;
however, in [17], the reduction for a much more complicated digital circuit was demonstrated in a
detailed way.

In this article, a novel method based on the frequency scaling has been suggested. This new
method represents a much more sophisticated way of solving the accuracy problem compared to
simple enlargement of the lengths of numbers in memory described in our previous works [17,32]. In
addition, the implementation of the new method into existing algorithms of semisymbolic analysis is
very easy (one simple way is also shown in the article), so it is a very cheap yet very effective solution.

In addition, in the article we naturally mentioned probably the most powerful form of solution to
the problem of accuracy: a combination of the newly suggested frequency scaling and a more accurate
(e.g., 128-bit) arithmetic. Of course, this solution is probably the most robust, but the main objective of
this article was to check the proposed frequency scaling in the standard 64-bit arithmetic. (There are
not many compilers with 128-bit arithmetic; however, for example, Fortran/C compilers from Intel or
GNU have this arithmetic implemented.)

Another minor but valuable improvement in the implementation of the semisymbolic analysis
concerning the prevention of possible overflow is shown as well.

This article also contains the illustrative example of the reduction of the general eigenvalue
problem to the standard one for a simple but extraordinary dynamically degenerate analog circuit,
where the special step consisting in differentiating a row had to be used.

9. Conclusions
Briefly, the article summarizes these new achievements:

* A new method based on the frequency scaling is suggested for the semisymbolic analysis that
significantly improves the accuracy of poles and zeros of transfer functions.

¢ The proposed procedure is particularly important for modern microwave circuits, for which the
semisymbolic analysis leads to a huge difference in the magnitude of the matrix elements and
hence to a numeric instability.

* In this way, even very difficult tasks can be operated even by using the standard 64-bit implemen-
tations of algorithms for the semisymbolic analysis.

¢ Implementation of the frequency scaling into existing subroutines for semisymbolic analysis is
very easy, and one of the possible ways is shown in the article.

e  Four difficult tasks have been demonstrated, for which it is not possible to achieve accurate
poles and/or zeros by a 64-bit algorithm implementation. These tasks can only be solved with
the newly proposed frequency scaling in the 64-bit implementation (or by less common 128-bit
implementation, e.g., or by a combination of both).

e  Possible combination of the frequency scaling and a more accurate (especially 128-bit) arithmetic
is also considered. (Although the article is primarily focused on the scaling.)

e  The article also contains an illustrative analytically solved example of an unusual dynamically
degenerate circuit in which an extraordinary step of the reduction must be used.
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