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Processing Algorithms for IoT Applications
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POLITEHNICA Bucharest National University for Science and Technology; sorin@elcom.pub.ro

Abstract: This paper analyses an implementation approaches of matrix-based image processing
algorithms. As an example, an image processing algorithm that provides both image compression
and image denoising using random sample consensus and discrete cosine transform is analyzed. Two
implementations are illustrated: one using Blackfin processor with 32 bits fixed point representation
and the second using the Convolutional Neural Network (CNN) accelerator in MAX78000
microcontroller. A comparison of these two implementations and the validation using MATLAB with
64 bits floating point representation are conducted. The obtained performance is good both in terms
of quality of reconstructed image and execution time and the performance differences between the
infinite precision implementation and the finite precision implementation are small. The CNN
accelerator implementation, based of matrix multiplication implemented using CNN, has a better
performance suitable for Internet of Things applications.

Keywords: discrete cosine transform; random sample consensus; Visual DSP++, Blackfin processor;
CNN accelerator; Internet of Things

1. Introduction and Related Work

In Internet of Things (IoT) application, both reducing a transmission bandwidth and removing
noise are necessary. The image compression can involve algorithm such, MPEG, but this algorithm
is not able to remove the noise in the signal. Removing noise from images is quite a difficult task
considering the content of the images and the possible types of noise.

An image is created by reflected light into the camera lens and captures by the sensor, that
convert the variable levels of the light into digital signals for each image element (pixel). In the most
common sensor, an amplifier is attached to each pixel and adjusts the output making the image
darker or brighter, respectively. The output voltage is converted using an analog-to-digital converter
where the variance in voltage to each pixel gets a binary value.

Noise represents unwanted content in an image caused by the condition existing when the image
is captured: low light, slow shutter, sensor issues [1]. Sharp and sudden disturbances could be
appeared in the image, as well as uniform or constant disturbances. There are several noise sources.
Most of the noise comes from the sensor or analog-to-digital conversion. For example, gaussian noise
is a type of sensor noise as an effect of sensor heat. Another example, the salt and pepper noise
manifests as pixels erroneously bright values in dark parts of the image or dark values in bright parts.
It is similar with dead pixels, except salt and pepper noise will produce this effect randomly. Usually,
analog-to-digital conversion cause this kind of noise or in transmitting images over noisy digital
links. One class of denoising methods are based on filtering. Various filters are used to remove the
noise in image. However, that filters produce approximations, and the noise characteristics and the
unknown positions of noised pixels may cause errors in reconstructed image. This aspect represents
motivation to develop non-filtering denoising techniques, based on detection and reconstruction of
affected pixels [1]. There are many methods to remove noise (median filtering, discrete cosine
transform, wavelet transform, etc.) but each method can lead to blurring of the image or the removal
of fine details from the image. On the other hand, the implementation of the noise elimination
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algorithm on microcontrollers with relatively limited resources and lower precision are aspects that
must be studied.

This paper considers an image processing algorithm that involve compressive sensing and
random sample consensus. It involves the discrete cosine transform (DCT) and can be used both to
compress the image and to denoise it. This approach could remove efficiently different types of noise
combined. The algorithm intensively uses the matrix multiplications.

In the literature is shown that sparse signals can be reconstructed from a reduced number of
measurements. Digital images can be represented (for example in a discrete cosine transform — DCT)
by a small number of coefficients with significant values and can be considered as sparse or
approximately sparse in this domain. Other methods have been developed in the noise elimination
from images which employ sparsity [2-6]:

- weighted encoding with sparse nonlocal regularization (WESNR) based on soft impulse pixel
detection, weighted encoding, and an integration of the sparsity and non-local self-similarity

- block-matching 3D (BM3D) algorithm based on the grouping of similar blocks, a collaborative
filtering (an adaptive filter and a two-stage average adaptive filter) by shrinkage in the
transform domain, and then combine back the blocks into a two-dimensional signal

- total-variation (TV) L1 methodology based on solving a minimization problem, considering
that the image has a high total variation

- hyperspectral denoising, using the spatio-spectral total variation

- denoising algorithms based on deep learning and convolutional neural networks

- variants of the traditional mean and median filters

The compressive sensing idea is based on the sparsity of the sampled signal. Sparsity means that
a discrete-time signal depends on several degrees of freedom much smaller than its finite length [7,8].
Many natural signals are sparse or compressible in the sense that they have concise representations
when expressed in the proper basis or transformation ¥ . There is a duality between time and
transformation domain (frequency) that expresses the idea that samples having a sparse
representation in transformation domain (frequency) must be spread out in the domain in which they
are acquired (time). We consider x=wyC where X is an image with size (W,H) pixels
represented as a vector, with N=WH , y is a matrix of size (N,N) and C is a vector of size

(N,1). The small coefficients C; may be discard in the representation of x(n) without much loss.

The right choice of coefficients can lead both to the elimination of noise and to the compression of the
image. Let Y be a vector of size (N,1) with § random chosen elements of X in the set Sand the

rest zero elements and ® a matrix of size (N, N)with rows of the inverse of matrix \ selected by

elements in set S. The coefficients can be chosen using the compressive sensing principle. The
coefficients are computing as Cl =@y and then the signal is reconstructed as X, = TCl . The

vector Y will be selected so that ”Xl —X” to be minimum. The vector Y can be chosen using

random sampling consensus (CS-RANSAC) algorithm that works well in presence of relatively large
number of disrupted pixels that will be considered as outliers. The other pixels, undisturbed or
disturbed by weak noise will be considered as inliers and will be selected by CS-RANSAC algorithm
as consensus set. The consensus set is the vector Yy and will be used in compressive sensing

reconstruction as explain above.

The paper analyzes a noise elimination algorithm (CS-RANSAC) based on compressing sense
and RANSAC combined with the DCT transform [8-10]. It is focused on the implementation on
microcontrollers (for the IoT applications) and performance analysis (execution time and precision)
to reduce the calculation time. The following sections will describe the algorithm in detail, its
performance with infinite precision, the implementation of proposed algorithm using
microcontrollers and the performances obtained using finite precision. To improve the execution


https://doi.org/10.20944/preprints202504.0438.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2025

time, a modified algorithm that involve DCT denoising for image’s regions less affected by noise and
CS-RANSAC algorithm for the image’s regions more affected by noise can be used. To do this, a
simplified algorithm to estimate the noise power can be used [18]. Finally, the results are shown and
commented. The conclusion is that such non-filtering denoising techniques can be applied with good
performance to eliminate or reduce the noise in images, and to compress the image, and suitable for
IoT applications.

2. The Algorithm Description

The above-mentioned algorithm is based on sparsity of discrete cosine transform.

The CS-RANSAC algorithm is used to choose the non-noisy pixels. The DCT coefficients are
determined using the compressive sensing method. The image to be processed is divided into blocks
of smaller size (B,B) (chosen according to the size of the two-dimensional DCT transform) and
each block is processed separately. The two-dimensional DCT transforms (direct and inverse) will be
calculated as matrix multiplications, considering that the block to be processed is transformed into a

column vector, x, of dimensions (N,1)with N = B> which will be multiplied by a matrix W of

dimensions (B?,B?) determined by the DCT transformation matrix T with W=T®T where ®

is the Kronecker product. The DCT transform will be X = WX and the inverse DCT transform is
determined as X = WX = WX For each of the blocks, a subset y p Oof theset x, with §< B’

pixels is randomly chosen. A matrix A is then determined which contains the lines of transpose of
W corresponding to the indices of the elements chosen from the X b Using the matrix, A and the

vector 'y, , the first k coefficients of the two-dimensional DCT transform are determined. Using

these coefficients, the Xrb vector is reconstructed and the error between Xb and Xrb is

determined. These steps are repeated until the error is small enough or the number of iterations
exceeds a maximum imposed number. The last determined DCT coefficients will be the coefficients
used to restore the pixels from the processed block.

The algorithm uses two functions:

- the CSrec function which receives as parameters the set of randomly chosen elements for
determining non-noisy pixels, the modified transformation matrix and the number of DCT
coefficients (sparsity factor) and returns the DCT coefficients that will be used to reconstruct
the elements in the block.[9]

- the pseudoinv function, which calculates the inverse of a matrix using an iterative method [17].

The algorithm is designed so that it can be implemented as efficiently as possible (both on a
computer with infinite precision and on a microcontroller with fewer resources and lower precision).
The critical elements for a microcontroller implementation are matrix multiplication and calculation
precision, especially when implementing the inverse matrix function. These aspects will be discussed
in the microcontrollers’ implementation section. The algorithm is illustrated in Figure 1. It was
implemented in MATLAB (on a computer with an Intel 5-10210U processor at 1.60GHz, 4 cores, 6MB
cache memory, 16 GB memory RAM and operating system Windows 10 Pro 64-bit) in order to
validate the its functionality and to evaluate the performances obtained with infinite precision. Two
implementations in C language were made using the Visual DSP++ development environment for
Blackfin microcontrollers and a Maxim Eclipse SDK for MAX78000 microcontroller, including ARM
, RISC V and CNN cores, with 32 bits finite precision fixed point.
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D=®,D=0,N =0 /*defineaset Dwith D elements chosen frominput vector X, */
while(D <T andn< N, )/ *T is the maximum number of elementsin D */
/*n index of currentiteration, N, maximum number of iterations* /

n=n+l
randomly choose S with S numbers from 0 to N —1 / *define set S with Selements* /
A=W" |null elementsonrow ie S /*Ais DCT matrix withrows index in set S */

/*all rows withindexin S are zero */
y, =X, |null elements of index i¢ S /*y, is X,vector with element indexin set S*/

/*all elements of 'y, withindexin S arezero */
X, =CSrec(y,,A,k) /*choose k DCT coefficients fromobservationy, */

/ *that reconstructs better the vector x, * /

x, =W'X, /*x,, is the reconstructed input vector* /

rb

D= {elements iof x,with |xb @O —x,@)|<d }/*update set Dwith theinput vector elements™ /

/ *that respect the distance d to reconstructed element | *
cardD = number of elementse D/ *update number of elementsinD*/

end while

A=W |null elementsonrow i ¢ D/* Ais DCT matrix withrowsindexin set S */
/*all rows withindexin S arezero */

y=X, |null elements of index i ¢ D/*yis x,vector with element indexin set S*/

/*all elements of 'y, withindexin S arezero */
X =CSrec(y, A, k) ! *choose k DCT coefficients fromy */

/ *that reconstructs better the vector x, * /

x=W'X / * calculate reconstructed input | *
a) CS-RANSAC algorithm
function X, =CSrec(y, A, k) /*determine thebest k DCT coefficients | *
/ *to reconstruct the input (remove noise and compressit)* /
K=d,e=y / *define a set K withtheindexes of maximum values of ‘ATe| */

/* eistheerror between observations y and reconstructed */

/*observation 'y, */

fori=1ltok
p =arg max(‘ATe|) /* pis theindex of maximum element of ‘ATe| */
K=Kup /* add p intheset K*/

A, =A |null elements oncolumn je K /*A, is matrix with matrix A columns indexes in K */

X,, = pseudoinv(A| A, )(ALy) /*calculateinverseof (AL A,)(ALy)*/

Yo = A X, / * determine reconstructed vectory,, */
e=y—-y, /* error*/
end for

X, =X, |null elements of index i & K /*determinethebest k DCT coefficients X, */
/ *as elements of X,, with indexinK*/

end function

b) Compressive sensing function
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function B = pseudoinv(A)

o =1/max element of (AA")

A0=aA” /* initial inverse matrix* /

while(err < € and iter < NR, ) / *update inverse matrix until * /
[ *theerroris smaller than £*/
/ *or themaximum number of iterations
/ *iter exceeds NR,,, */

Al=A0+(1-A0.A).A0 [ *determineinverse A1*/
err = max element of {(A.A1.A — A),(A1.A.A1- A1)} / *computeerror*/

iter = iter +1 / *increments the number of iterations * /
A0 = Al / *update AQ */

end while

B=Al /*saveinverse*/

end function

¢) Pseudo-inverse function

Figure 1. The CS-RANSAC algorithm.

The following sections describe the performance obtained for the MATLAB implementation, the
specific implementation for microcontrollers and compare the performance obtained in the two
implementations.

3. The Algorithm Performance Evaluation

This section describes the performance of above described algorithm in terms of quality of the
reconstructed image. Selected parameters of the algorithm are: B=4,§ =15,k =3 . The image size
is set to 512 pixels in height and 512 pixels in width [16] (for both type of implementations - MATLAB
and microcontrollers). Gaussian noise, salt, and pepper noise (impulsive) and multiplicative noise
(speckle) were successively added to the test images. Also, the image was blurred.

The performance of the algorithm was evaluated using peak signal to noise ratio

2552 with [ the noisy image, and /. the reconstructed image,
PSNR=10log)y ——— . y mmag r &
)
both  of  dimensions (N,M) , and structural similarity index measure

SSIM (x,y) = ZHb +CIR0+C) w1, 1, 02, o7

> s v and O, are the mean, the
(/’lx +11'ly +Cl)(o-x +O_y +C2)

variance and the covariance of pixels in windows X and . The constant coefficients C; and C,

are used to stabilize the division with weak denominator. The SSIM quantifies image quality
degradation caused by data compression or by losses in data transmission. Unlike PSNR, SSIM is
based on visible structures in the image and perhaps represents a more reliable indicator of image
quality degradation. PSNR is an alternative measurement of quality of reconstructed image [15]. The
Figures 2—4 illustrate the performance of denoising algorithm with infinite precision (MATLAB
implementation — 64 bits floating point). The noise is mixed noise. The results show an image quality
improvement in both PSNR (up to 6 dB) and SSIM (up to 3 times) when using the CS-RANSAC
algorithm.
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dencised DCT dencised C5-RANSAC

SSIM 0. 46{'.'24 SSIM 0. 63265

Figure 2. Performance evaluation for low noise (noised image PSNR 20 dB, SSIM 0.36). Mixed noise : gaussian
variance=0.001; salt and pepper density 2%; blur kernel window length =3; speckle variance=0.001.

denoised DCT denocised CS-RANSAC

ssnm uzsea ' S5IM= ﬂSBEEE

Figure 3. Performance evaluation for large noise (noised image PSNR 17 dB, SSIM 0.22). Mixed noise : gaussian

variance=0.001; salt and pepper density 5%; blur kernel window length =3; speckle variance=0.001.

dencised DCT denoised CS-RANSAC

" PSNR=25.4149,55IM=0.71779

PSNR=18.039,5SIM=0.21238

Figure 4. Performance evaluation for impulsive noise. Noise density 10% (noised image PSNR 14 dB, SSIM
0.15).

The Table 1 summarizes the performance of CS-RANSAC algorithm comparing with DCT
denoising at the same level of sparsity. One can observe that the performance is netter for CS-
RANSAC algorithm both for PSNR and SSIM criteria.

Table 1. DCT denoising vs CS-RANSAC denoising.

Noised Image DCT Reconstructed Image CS-RANSAC Reconstructed Image
PSNR SSIM PSNR SSIM PSNR SSIM
20.48 0.36 24.04 0.46 28.14 0.63
17.14 0.21 20.91 0.29 26.92 0.58

14.29 0.15 18.03 0.21 25.41 0.71
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A more detailed performance evaluation is given in [9]. In this paper, we evaluate the algorithm
performance, in various implementation, to give a performance comparison between these
implementations and to prove the possibility to implement, with good performance, relative complex
image processing algorithms using microcontrollers in IoT applications.

4. The Microcontrollers’ Implementations

Two 32 bits fixed point microcontroller (e.g. Blackfin BF5xx, and MAX7800x, Analog Device)
implementations are proposed in this section.

The Blackfin architecture is designed for multimedia applications, the accessible memory is up
to hundreds of Mbytes and the processor clock frequency is up to 750 MHz The instruction set is
powerful (arithmetic instructions, multiplications with accumulation, dual and quad instructions,
hardware loops, multifunction instructions) [13,14].

The MAX7800x chip is a dual core ultra-low power microcontroller with an ARM Cortex M4
processor with FPU up to 100 MHz with 16KB instruction cache, 512KB flash memory and 128KB
SRAM, and a RISC-V Coprocessor up to 60MHz for digital signal processing instructions. There are
many interfaces (general purpose IO pins — GPIO, serial ports, analog to digital convertor (10 bit, 8
channels), neural network accelerator optimized for deep convolutional neural networks (442k 8-bit
weight capacity, network depth up to 64 layers with up to 1024 channels per layer), power
management for battery operations, real time clock, timers, AES 128/192/256 and CRC hardware
acceleration engine. The ARM Cortex-M4 with FPU processor CM4 is well suited for the neural
networks system control and combines high-efficiency signal processing functionality with low
energy consumption. The 32-bit RISC-V coprocessor is dedicated for ultra-low power consumption
signal processing. The instructions set include: four parallel 8-bit additions/subtractions, floating
point single precision operations, two parallel 16-bit additions/subtractions, two parallel MACs, 32-
or 64-bit accumulate, signed, unsigned, data with or without saturation. A Convolutional Neural
Network (CNN) unit is included in MAX7800x chip.

A more detailed architecture description of MAX 7800x and how the proposed implementation
uses the CNN accelerator, and ARM and RISC V cores is shown in a next section.

The above presented algorithm was written in C programming language, using as integrated
development environment Visual DSP ++ 5.1 and Maxim Eclipse SDK. The code was automatically
optimized for speed (hardware loops, interprocedural analysis) [12]. Some adaptations of the
algorithm were made to reduce the execution time: for S = 15, the method of determining the set S
has been changed (considering that the number of possible combinations is 16, a combination will be
chosen randomly and the number of iterations in the CS-RANSAC algorithm is limited to a maximum
of 16 iterations) and VSDP++ library functions were used for all matrix and vector operations [11,12]:
matrix multiplication - matmmlitf, matrix addition and subtraction - matsadd, matssub, matrix
transpose- transpm, maximum and minimum element in a vector- vecmax, vecmin, location of
maximum and minimum element in a vector, vecmaxloc, vecminloc. The code uses a 32 bits
representation for floating point algorithm variables and computations (multiplications and
additions) [11]. This approach will cause a slight decrease in precision and therefore the quality of
the reconstructed image, but the use of a 32-bits fixed-point representation would excessively
increase the execution time. The use of fixed-point representation keeps the processing time at
reasonable values with an acceptable decrease in performance. The execution time was measured, in
processor cycles, using the IDEs” code profiler.

5. The Performance Using 32-Bits Fixed Point Microcontrollers

This section describes the results obtained using the 32 bits processor. The execution time and
the effect of finite precision is shown in the Figures 5-7. One can observe, in these figures, that the
performance is good. For low and medium levels of mixed noise, the CS-RANSAC algorithm has a
PSNR greater with up to 4 dB and a SSIM greater up to 80%. The SSIM obtained with CS-RANSAC
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is better than that of DCT even the differences in PSNR are not so high for high level of mixed noise.
The CS-RANSAC algorithm responds better for impulsive noise, as is shown in Figure 7. Table 2
summarizes the performances and Table 3 compares the implementation in MATLAB with Blackfin
implementation.

denoised DCT denocised C5-RANSAC

PSNR=23.927 PSNR=26.0431

ESIH map demised DCT SS!M map denoised CS—RAHSAC

SSIM=0.4606 SSIM=059863

Figure 5. Performance evaluation for low noise (noised image PSNR 20 dB, SSIM 0.36). Mixed noise: gaussian

variance=0.001; salt and pepper density 2%; blur kernel window length =3; speckle variance=0.001.

denoised DCT denoised C5-RANSAC

PSNR=20.8 PSNR=24.185
S5IM map - denoised DCT SSIM map denoised C5-RANSAC

SSIM=0.29874 SSIM=0.54119

Figure 6. Performance evaluation for large noise (noised image PSNR 17 dB, SSIM 0.22). Mixed noise: gaussian
variance=0.001; salt and pepper density 5%; blur kernel window length =3; speckle variance=0.001.
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denoised C5-RANSAC

denoised DCT

PSNR=17.874

SSIM map - dencised DCT

55IM=0.21036

Figure 7. Performance evaluation for impulsive noise (noised image PSNR 14 dB, SSIM 0.15). Noise density
10%.

Table 4 illustrated the execution time considering a Blackfin processor at 750MHz. An improved
implementation using MAX7800x (with ARM core at 100MHz, RISC V core at 60 MHz and CNN
accelerator with 64 cores at 50 MHz) will be described in next sections.

Table 2. Performance comparison (32-bits fixed point implementation).

. DCT Reconstructed CS-RANSAC Execution Time CS-RANSAC
Noised Image .
Image Reconstructed Image Blackfin

PSNR SSIM PSNR SSIM PSNR SSIM Cycles Time
20.48 0.36 23.92 0.46 26.04 0.59 4,675,862,063 6.23

17.14 0.21 20.8 0.29 24.18 0.54 5,662,802,735 7.55

14.29 0.15 17.87 0.21 22.21 0.62 8,728,624,005 11.64
15.04 0.18 18.04 0.25 19.47 0.42 7,584,207,993 10.11
19.6 0.38 22.45 0.46 23.45 0.57 4,520,337,537 6.03

Table 3. Performance comparison (32-bits fixed point vs MATLAB implementation).

. DCT Reconstructed CS-RANSAC CS-RANSAC
Noised . . DCT Reconstructed
Image Image (Fixed Point Reconstructed Image Image (MATLAB) Reconstructed
8 32 Bits) (Fixed Point 32 Bits ) 5 Image (MATLAB)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM  PSNR SSIM
20.48 0.36 23.92 0.46 26.04 0.59 24.04 0.46 28.14 0.63
17.14 0.21 20.8 0.29 24.18 0.54 20.91 0.29 26.92 0.58
14.29 0.15 17.87 0.21 22.21 0.62 18.03 0.21 25.41 0.71

Table 4. Execution time — seconds (32 bits fixed point vs MATLAB implementation).

. Execution Time CS-RANSAC 32 Bits Execution Time CS-RANSAC
Noised Image

Fixed Point MATLAB
PSNR SSIM Cycles Time Time
20.48 0.36 4,675,862,063 6.23 2.49

17.14 0.21 5,662,802,735 7.55 4.79
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One can observe, for medium to high noise, that the execution time is reasonable (about
seconds). The execution time can be decrease by using a dual-core Blackfin processor. An
implementation based on an accelerator for convolutional neural networks (CNN) is possible by
implementing matrix multiplication using a 1x1 convolution performed with CNN.

6. The Improving of Processing Time Using CNN Accelerator

The multiplication of two matrices A = [aij] and B= [b,.j] with the result C=AB= [c,.j] and

i,j=1.N can be performed using a fully interconnected layer as in Figure 8:

an{-ann

N2 inputs N2 outputs

Figure 8. Neural network fully interconnected layer used for matrix multiplication.

The input layer consists of each row in matrix A and the output layer contains the elements of
product matrix. For each input elements, the weights are the corresponding elements of columns in
matrix B or zero elements. For clarity, only the weights for one output elements are shown.

Figure 9 details the weights for a simple example (N =2):

a, a b, b
A={ ! 12}and B={11 12}then

a21 a22 21 22

C = AB = |:Cll Clz :| — |:a11b11 + a12b21 a“blz + a12b22 :|

CZl 022 a21b11 + a22b21 a21b12 + a22b22

For more clarity, the weights have shown individually for each output element.
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b11
aq C11 an
bzq
a 0 C12 ag
0
az C21 az
axn C22 az
a C11 aq
0
aq 0 C12 an
b11
az C21 az
b2
an C22 az

Figure 9. Neural network fully interconnected layer used for matrix multiplication (detailed example for N =2

).

The implementation of fully interconnected layer can be done in CNN by enabling the flatten
mode (this mode supports a series of 1x1 convolution emulating a fully interconnected network with
up to 1024 inputs).

The matrix multiplication (fixed point) is shown in Figure 10.

Inputs:
- matrices order N

- matrices values a,, b, with i,j=1.N

Outputs:

- product of given matrices: c,with i,j=1.N
1. Define a neural network layer — full interconnected with N*inputs a,(read on rows), N’

outputs and weights initialized withb, for input a,and output c, and

with 0 otherwise

2. Enable mode flattened for CNN
3. Load CNN memory with the defined inputs and weights
4. Start CNN

5. Wait for CNN to complete the computation

6. Retrieve the results c,with i,j=1.N

Figure 10. Matrix multiplication CNN-based algorithm (fixed point).
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Using the above algorithm, a speedup about 30 times can be achieved for integer matrix
multiplication, comparing with the implementation on a 32 bits fixed-point microcontroller. This can
be useful for algorithms based on matrix computation that does not require large dynamic range.

In common CNNSs the values of neural network layers and weights are represented in fixed point
with 8 bits. There are certain applications that require more precision. For example, CS-RANSAC
algorithm, presented in previous sections, requires higher precision due the DCT coefficients of lower
order.

We proposed an approach that make possible the matrix multiplication with increased precision,
considering a floating-point representation of matrix elements.

We assume that the values of matrix elements are a, = 4, 2%, b, =B, 2% and ¢, =C; 2% with

eb.

4,,B,,C, - mantises and ea,,eb,,

> By ec, - exponents represented as fixed point integers with 8 bits. The

i

N N

output elements arec, =Y 4,2 B2 =Y 4,B,2“"" . The term O, = 4,B, will be computed
[ =

using a full interconnected layer as it has shown previously (with a slight modification of weights —

see Figure 11.) and the term ea, +eb; will be computed using the element-wise function (the

element-wise function must be enabled in CNN and the addition function must be selected).

B11
A A11B1
Bi2
B2y
Ar A12B2
Bz
Az A11Bs2
Az A12B2,

Az21B14

A2B2

) A21Bs2
Unshown wheights
are set to zero

Az2B2

Figure 11. The full interconnected layer for floating point implementation (N =2).

Then the maximum exponent is calculated as E, ., =max,_, ,(eq, +eb,)and all the terms O,

ij ,max

eay, +ebk/- —Ejj max

will multiplied with 2 in a second full interconnected layer. The results

eay teby —E; . . .
Xy =027 7 "™ are summed using the element wise CNN features. The sum is calculated

iteratively using the element wise addition in log, N* steps as in Figure 12.

|\ 1] X KXz |—

\
! K+ Xg+Xo+Ky
Xs | X \ X Xa

Y i_‘:::;\

Figure 12. Element wise addition (example for N =4).

Finally, in a third full interconnected layer the elements of matrix products ¢, = 2 x 5 are

calculated. We assume that in an image processing one matrix (image to process) has sub-unitary
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mantises and ea; =0,i,j =1..N . The other matrix’s exponents and mantises are constant, therefore

E

ij ,max

i +eby; —E; . . 1 . .
and 277%™ can be passed as parameters in the matrix multiplication function. The

complete algorithm is illustrated in Figure 13:

Inputs:

- matrices mantises and exponents A4;, (B,eb,),i,j=1.N
- the terms 2" and E, . =max,, ,(eb,), i,j=1.N
Outputs:

- matrix product elements c;, i,j=1.N
1. Define a neural network layer — full interconnected with N*inputs 4, (read on rows), N’

outputs and weights initialized with B, for input A, and output (i.k, ),

0 otherwise
2. Enable mode flattened for CNN
3. Load CNN memory with the defined inputs and weights

4. Start CNN - compute O, = 4,B,, i.k,j=1.N

5.. Load CNN memory with 0, and 2"

ikj

6.. Start CNN - compute X, =0, 2" ", ik j=1.N

ikj ikj

7. Partitioning the elements of X, in N’partitions P, ={X, }|[k=1.N

y

8 M=N’

9. Load CNN memory with P" =P |k=1.(M/2), P® =P |k=(M/2+1).M,
i,j=1.N

10. Enable mode element wise with addition function
11. For r=1.log, N’

12. M=M/2

13. Start CNN - compute sum P, =P + P,

¥

14. End For
15. Enable mode flattened for CNN

16. Load CNN memory with 2" and P,

17. Start CNN - compute c, = P, 2"

Figure 13. Matrix multiplication CNN-based algorithm (floating point).
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The algorithm illustrated in Figure 13 can be efficiently implemented using the MAX78000 chip
[19,20]. The block diagram of MAX7800 is illustrated in Figure 14. The CNN accelerator consists of
64 parallel processors with 512KB of SRAM-based storage. Each processor includes a pooling unit
and a convolutional engine with dedicated weight memory. Four processors share one data memory.
These are further organized into groups of 16 processors that share common controls. A group of 16
processors operates as a slave to another group or independently. Data is read from SRAM associated
with each processor and written to any data memory located within the accelerator. Any given
processor has visibility of its dedicated weight memory and to the data memory instance it shares
with the three others.

ARM Cortex M4 ;
: RISC V Serial Interfaces
with FPU (100MHz) ] (UART. SPI, 12C)
Memory | <] GPIO
(Flash, SRAM) DMA Channels j4—
Mested Vectar «» RTC and Timers

Interrupts Controller

=] ADC
CMNN Power Management
Accelerator
( AESS BECHUCF:};‘“DH L Camera interface
CRC)

Figure 14. The MAX7800x general architecture.

In general, an algorithm (or working task) with M instructions with # average execution
time per instruction can be divided in two parts: fM - running using one processor with ¢, average

execution time per instruction and (1—f)M - running using N processors with t; average

execution time per instruction, with f <1 . The speedup 1is calculated as
s= M = d . Considering ¢, =rt, and t; =qt, with r,q<1 the speedup
i+ DM~ =7
? N N
1 N N
becomes s =

f _ _ _
frt1+(1—zj\‘])qtl ﬁ,+(1—Ajf’)q Nfr+(1=f)q  f(Nr=q)+q

All the computations involved in matrix processing (multiplication, addition) can be
implemented using the CNN block in flattened or element wise modes. The above presented CS-
RANSAC algorithm illustrated above was implemented using MAX78000 and its CNN accelerator.
The numerical precision is similar with numerical precision obtained with previous implementation
on Blackfin (the ARM and RISC cores in MAX78000 also use 32 bits fixed point representation).

In the speedup relation we set N =64 (the number of cores in CNN), r=0.13 (the ratio
between ARM microcontroller speed and Blackfin microcontroller), g =0.06 (the ratio between CNN
cores speed and Blackfin microcontroller), and f =0.78 (the algorithm code that not contain matrix

operations that can be performed in CNN). With this value the theoretical speedup (between Blackfin
implementation and MAX7800 implementation) is s=9.84 . The effective speedup (obtained by
counting processor cycles by the IDE code profiler) is lower due the data transfers performed using
RISC V.

Figure 15 illustrated the execution time obtained with CNN implementation. In this case
(software floating point implementation) the speedup obtained is about 7 times for the CS-RANSAC
algorithm.
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Processingtime (seconds)

Image size (640,360)
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0 | ]

PSMNR=20.45  PiNR=17.14  PSMR=1429  PSHR=15.04 PSMR=15.6
S5IM=036 SEIM=021 SEIM=015 SEIM=015 SEIM=035

Btirme BF (sec)  Btime WMAX (sec)

Image size (224,400]
35

25
2
15
1
ns
0

PiMR=20.43  PiMR=1714  PSMNR=1423  PSMR=15.04 PEMNR=158
S5IM=036 S5IM=021 S5IM=0.15 SEIM=015 S5IM=0.33

Btirme BF (sec) B time WMAX (sec)

Figure 15. Processing time (various noised image sizes) for two 32-bits fixed point implementations (Blackfin
and Max78000 CNN).

The computing time of the algorithm can be improved modifying the way to calculate DCT
coefficients using original DCT or CS-RANSAC depends if the block is noisy or not, and using in
parallel the ARM and CNN

For the first improving method, the original CS-RANSAC algorithm was combined with a noise
estimator [21]. Each block is marked as light noised or heavy noised and is processed using simple
DCT or CS-RANSAC, respectively. The noise estimator can be implemented in fixed point using in
parallel the ARM and RISC-V microcontrollers in MC78000 chip. Figure 16(a) shows how the tasks
for such implementation can be scheduled.

rrv 77072 —A.

_’
NE_Task P_Task P_Task P_Task
RISC-V N R
COMM_Task COMM_Task COMM_Task
COMM_Task
CNN _
MP_Task MP_Task
(a) A
terminate B1 terminate B2
ARM [B17] [B1] [BT]| [B1] [B27] [B2] [B2] -/
CNN [B1] [B1] [B1] [B1] [B2] [B2] [B27] [B2]
terminate B1 terminate B2
ARM [B1 B2 |B1 |[B2|B1|[B2]B1|[B2

CNN [B1 B2 [B1 B2 [ B1 [ B2 | B1 | B2 |
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(b)

Figure 16. (a) Tasks scheduling for the algorithm (b) algorithm improving using parallel processing (RISC V is
not shown, for clarity).

The following tasks is defined: NE_Task - for noise estimate, P_Task — the processing task that
implement all the processing for DCT and CS-RANSAC noise removal and compression algorithms
excepts the matrix multiplications and matrix additions which are computed by the a matrix
processing task - MP_Task and COMM_task — a communication task that transfer using DMA
channels the information (matrix values) between CNN and ARM. The tasks : NE_Task and P_Task
are running in ARM core, the task COMM _task is running in ARM coprocessor (that acts as a direct
memory access - DMA controller). All the matrix manipulations are passed to CNN accelerator
(programmed in flatten mode for matrix multiplications or element wise mode for matrix additions
or subtractions) and are computed by MP_Task. All tasks are synchronized using global semaphores.

Depend on noise level, the execution time can be reduced as is illustrated in Figure 17 [22].

Computation time reduction ratio

70
al
50
(o) ©
30
20

10

01 0z 03 04 0s 0& o7 0 ns

noised block probability
Figure 17. Computing time reduction (in dot line — trendline of ratio).

For an average noise probability of 50% one can observe that the computation time reduction
ratio is about 35%. If the noise estimator is not used, the task NE_Tusk in the scheduling tasks from
Figure 16 is removed.

The second method ensures halving of computation time. This goal is achieved by partitioning
the computation in matrix operations (multiplications, addition)- performed in CNN and non-matrix
operations (all the remaining computations) — performed in ARM. Two blocks are processing in
parallel in ARM and CNN, alternatively, as it is shown in Figure 16 (b).

7. Conclusion

This paper focuses on the analysis of the possibility of accelerating the necessary processing in
algorithms based on matrix operations. Accelerating these operations can be achieved using neural
network processing units (NPUs) integrated into the architecture of today’s high-performance
microcontrollers. As an example, the paper presents implementations and performance analysis of
an image compression and noise removal algorithm based on compressive sensing and CS-RANSAC.

This algorithm was validated as good algorithm in terms of noise removal and image
compression using infinite precision implementation (e.g. MATLAB simulations). The main goal of
this work is to evaluate if a microcontroller implementation is feasible in terms of processing accuracy
and computation time to be used in IoT applications that involve hardware nodes with resources
constrains.

The obtained results show that a good quality of the reconstructed image can be obtained for
medium to high noise levels in a calculation time of the order of seconds or tenth of seconds.

Also, the paper proposes methods to improve the algorithm: (1) by selectively applying DCT or
the CS-RANSAC to each block in the image (without degrading the quality of the image), and (2) be
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using in parallel the ARM microcontroller and CNN cores or using a dual core Blackfin

microcontroller.
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