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Article 

Efficient Implementation of Matrix-Based Image 
Processing Algorithms for IoT Applications 
Sorin Zoican * and Roxana Zoican 

POLITEHNICA Bucharest National University for Science and Technology; sorin@elcom.pub.ro 

Abstract: This paper analyses an implementation approaches of matrix-based image processing 
algorithms. As an example, an image processing algorithm that provides both image compression 
and image denoising using random sample consensus and discrete cosine transform is analyzed. Two 
implementations are illustrated: one using Blackfin processor with 32 bits fixed point representation 
and the second using the Convolutional Neural Network (CNN) accelerator in MAX78000 
microcontroller. A comparison of these two implementations and the validation using MATLAB with 
64 bits floating point representation are conducted. The obtained performance is good both in terms 
of quality of reconstructed image and execution time and the performance differences between the 
infinite precision implementation and the finite precision implementation are small. The CNN 
accelerator implementation, based of matrix multiplication implemented using CNN, has a better 
performance suitable for Internet of Things applications. 

Keywords: discrete cosine transform; random sample consensus; Visual DSP++, Blackfin processor; 
CNN accelerator; Internet of Things 
 

1. Introduction and Related Work 

In Internet of Things (IoT) application, both reducing a transmission bandwidth and removing 
noise are necessary. The image compression can involve algorithm such, MPEG, but this algorithm 
is not able to remove the noise in the signal. Removing noise from images is quite a difficult task 
considering the content of the images and the possible types of noise. 

An image is created by reflected light into the camera lens and captures by the sensor, that 
convert the variable levels of the light into digital signals for each image element (pixel). In the most 
common sensor, an amplifier is attached to each pixel and adjusts the output making the image 
darker or brighter, respectively. The output voltage is converted using an analog-to-digital converter 
where the variance in voltage to each pixel gets a binary value. 

Noise represents unwanted content in an image caused by the condition existing when the image 
is captured: low light, slow shutter, sensor issues [1]. Sharp and sudden disturbances could be 
appeared in the image, as well as uniform or constant disturbances. There are several noise sources. 
Most of the noise comes from the sensor or analog-to-digital conversion. For example, gaussian noise 
is a type of sensor noise as an effect of sensor heat. Another example, the salt and pepper noise 
manifests as pixels erroneously bright values in dark parts of the image or dark values in bright parts. 
It is similar with dead pixels, except salt and pepper noise will produce this effect randomly. Usually, 
analog-to-digital conversion cause this kind of noise or in transmitting images over noisy digital 
links. One class of denoising methods are based on filtering. Various filters are used to remove the 
noise in image. However, that filters produce approximations, and the noise characteristics and the 
unknown positions of noised pixels may cause errors in reconstructed image. This aspect represents 
motivation to develop non-filtering denoising techniques, based on detection and reconstruction of 
affected pixels [1]. There are many methods to remove noise (median filtering, discrete cosine 
transform, wavelet transform, etc.) but each method can lead to blurring of the image or the removal 
of fine details from the image. On the other hand, the implementation of the noise elimination 
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algorithm on microcontrollers with relatively limited resources and lower precision are aspects that 
must be studied. 

This paper considers an image processing algorithm that involve compressive sensing and 
random sample consensus. It involves the discrete cosine transform (DCT) and can be used both to 
compress the image and to denoise it. This approach could remove efficiently different types of noise 
combined. The algorithm intensively uses the matrix multiplications. 

In the literature is shown that sparse signals can be reconstructed from a reduced number of 
measurements. Digital images can be represented (for example in a discrete cosine transform – DCT) 
by a small number of coefficients with significant values and can be considered as sparse or 
approximately sparse in this domain. Other methods have been developed in the noise elimination 
from images which employ sparsity [2–6]: 

- weighted encoding with sparse nonlocal regularization (WESNR) based on soft impulse pixel 
detection, weighted encoding, and an integration of the sparsity and non-local self-similarity 

- block-matching 3D (BM3D) algorithm based on the grouping of similar blocks, a collaborative 
filtering (an adaptive filter and a two-stage average adaptive filter) by shrinkage in the 
transform domain, and then combine back the blocks into a two-dimensional signal 

- total-variation (TV) L1 methodology based on solving a minimization problem, considering 
that the image has a high total variation 

- hyperspectral denoising, using the spatio-spectral total variation 
- denoising algorithms based on deep learning and convolutional neural networks 
- variants of the traditional mean and median filters 

The compressive sensing idea is based on the sparsity of the sampled signal. Sparsity means that 
a discrete-time signal depends on several degrees of freedom much smaller than its finite length [7,8]. 
Many natural signals are sparse or compressible in the sense that they have concise representations 
when expressed in the proper basis or transformation Ψ . There is a duality between time and 
transformation domain (frequency) that expresses the idea that samples having a sparse 
representation in transformation domain (frequency) must be spread out in the domain in which they 
are acquired (time). We consider =x ψC  where x  is an image with size ( , )W H  pixels 
represented as a vector, with N WH= , ψ  is a matrix of size ( , )N N  and C  is a vector of size 
( ,1)N . The small coefficients iC may be discard in the representation of ( )x n without much loss. 

The right choice of coefficients can lead both to the elimination of noise and to the compression of the 
image. Let y be a vector of size ( ,1)N  with S random chosen elements of x  in the set S and the 
rest zero elements and Φ  a matrix of size ( , )N N with rows of the inverse of matrix ψ selected by 
elements in set S . The coefficients can be chosen using the compressive sensing principle. The 
coefficients are computing as 1 yC =Φ  and then the signal is reconstructed as 1 1=x ΨC . The 

vector y  will be selected so that 1 −x x  to be minimum. The vector y can be chosen using 

random sampling consensus (CS-RANSAC) algorithm that works well in presence of relatively large 
number of disrupted pixels that will be considered as outliers. The other pixels, undisturbed or 
disturbed by weak noise will be considered as inliers and will be selected by CS-RANSAC algorithm 
as consensus set. The consensus set is the vector y and will be used in compressive sensing 

reconstruction as explain above. 
The paper analyzes a noise elimination algorithm (CS-RANSAC) based on compressing sense 

and RANSAC combined with the DCT transform [8–10]. It is focused on the implementation on 
microcontrollers (for the IoT applications) and performance analysis (execution time and precision) 
to reduce the calculation time. The following sections will describe the algorithm in detail, its 
performance with infinite precision, the implementation of proposed algorithm using 
microcontrollers and the performances obtained using finite precision. To improve the execution 
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time, a modified algorithm that involve DCT denoising for image’s regions less affected by noise and 
CS-RANSAC algorithm for the image’s regions more affected by noise can be used. To do this, a 
simplified algorithm to estimate the noise power can be used [18]. Finally, the results are shown and 
commented. The conclusion is that such non-filtering denoising techniques can be applied with good 
performance to eliminate or reduce the noise in images, and to compress the image, and suitable for 
IoT applications. 

2. The Algorithm Description 

The above-mentioned algorithm is based on sparsity of discrete cosine transform. 
The CS-RANSAC algorithm is used to choose the non-noisy pixels. The DCT coefficients are 

determined using the compressive sensing method. The image to be processed is divided into blocks 
of smaller size ( , )B B  (chosen according to the size of the two-dimensional DCT transform) and 
each block is processed separately. The two-dimensional DCT transforms (direct and inverse) will be 
calculated as matrix multiplications, considering that the block to be processed is transformed into a 
column vector, bx  of dimensions ( ,1)N with 2N B=  which will be multiplied by a matrix Wof 

dimensions 2 2, )(B B  determined by the DCT transformation matrix T with ⊗W=T Twhere ⊗
is the Kronecker product. The DCT transform will be X=Wx and the inverse DCT transform is 
determined as -1 TX = Xx=W W . For each of the blocks, a subset by  of the set bx with 2S B<  

pixels is randomly chosen. A matrix A  is then determined which contains the lines of transpose of 
W  corresponding to the indices of the elements chosen from the bx . Using the matrix, A  and the 

vector by , the first k  coefficients of the two-dimensional DCT transform are determined. Using 

these coefficients, the rbx  vector is reconstructed and the error between bx and rbx  is 

determined. These steps are repeated until the error is small enough or the number of iterations 
exceeds a maximum imposed number. The last determined DCT coefficients will be the coefficients 
used to restore the pixels from the processed block. 

The algorithm uses two functions: 

- the CSrec function which receives as parameters the set of randomly chosen elements for 
determining non-noisy pixels, the modified transformation matrix and the number of DCT 
coefficients (sparsity factor) and returns the DCT coefficients that will be used to reconstruct 
the elements in the block.[9] 

- the pseudoinv function, which calculates the inverse of a matrix using an iterative method [17]. 

The algorithm is designed so that it can be implemented as efficiently as possible (both on a 
computer with infinite precision and on a microcontroller with fewer resources and lower precision). 
The critical elements for a microcontroller implementation are matrix multiplication and calculation 
precision, especially when implementing the inverse matrix function. These aspects will be discussed 
in the microcontrollers’ implementation section. The algorithm is illustrated in Figure 1. It was 
implemented in MATLAB (on a computer with an Intel I5-10210U processor at 1.60GHz, 4 cores, 6MB 
cache memory, 16 GB memory RAM and operating system Windows 10 Pro 64-bit) in order to 
validate the its functionality and to evaluate the performances obtained with infinite precision. Two 
implementations in C language were made using the Visual DSP++ development environment for 
Blackfin microcontrollers and a Maxim Eclipse SDK for MAX78000 microcontroller, including ARM 
, RISC V and CNN cores, with 32 bits finite precision fixed point. 
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c) Pseudo-inverse function 

Figure 1. The CS-RANSAC algorithm. 

The following sections describe the performance obtained for the MATLAB implementation, the 
specific implementation for microcontrollers and compare the performance obtained in the two 
implementations. 

3. The Algorithm Performance Evaluation 

This section describes the performance of above described algorithm in terms of quality of the 
reconstructed image. Selected parameters of the algorithm are: 4, 15, 3B S k= = = . The image size 
is set to 512 pixels in height and 512 pixels in width [16] (for both type of implementations – MATLAB 
and microcontrollers). Gaussian noise, salt, and pepper noise (impulsive) and multiplicative noise 
(speckle) were successively added to the test images. Also, the image was blurred. 

The performance of the algorithm was evaluated using peak signal to noise ratio 
2
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=  with xμ , yμ , 2
xσ , 2

yσ , and xyσ  are the mean, the 

variance and the covariance of pixels in windows x and y . The constant coefficients 1C  and 2C
are used to stabilize the division with weak denominator. The SSIM quantifies image quality 
degradation caused by data compression or by losses in data transmission. Unlike PSNR, SSIM is 
based on visible structures in the image and perhaps represents a more reliable indicator of image 
quality degradation. PSNR is an alternative measurement of quality of reconstructed image [15]. The 
Figures 2–4 illustrate the performance of denoising algorithm with infinite precision (MATLAB 
implementation – 64 bits floating point). The noise is mixed noise. The results show an image quality 
improvement in both PSNR (up to 6 dB) and SSIM (up to 3 times) when using the CS-RANSAC 
algorithm. 
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Figure 2. Performance evaluation for low noise (noised image PSNR 20 dB, SSIM 0.36). Mixed noise : gaussian 
variance=0.001; salt and pepper density 2%; blur kernel window length =3; speckle variance=0.001. 

 

Figure 3. Performance evaluation for large noise (noised image PSNR 17 dB, SSIM 0.22). Mixed noise : gaussian 
variance=0.001; salt and pepper density 5%; blur kernel window length =3; speckle variance=0.001. 

 

Figure 4. Performance evaluation for impulsive noise. Noise density 10% (noised image PSNR 14 dB, SSIM 
0.15). 

The Table 1 summarizes the performance of CS-RANSAC algorithm comparing with DCT 
denoising at the same level of sparsity. One can observe that the performance is netter for CS-
RANSAC algorithm both for PSNR and SSIM criteria. 

Table 1. DCT denoising vs CS-RANSAC denoising. 

Noised Image DCT Reconstructed Image CS-RANSAC Reconstructed Image 
PSNR SSIM PSNR SSIM PSNR SSIM 
20.48 0.36 24.04 0.46 28.14 0.63 
17.14 0.21 20.91 0.29 26.92 0.58 
14.29 0.15 18.03 0.21 25.41 0.71 
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A more detailed performance evaluation is given in [9]. In this paper, we evaluate the algorithm 
performance, in various implementation, to give a performance comparison between these 
implementations and to prove the possibility to implement, with good performance, relative complex 
image processing algorithms using microcontrollers in IoT applications. 

4. The Microcontrollers’ Implementations 

Two 32 bits fixed point microcontroller (e.g. Blackfin BF5xx, and MAX7800x, Analog Device) 
implementations are proposed in this section. 

The Blackfin architecture is designed for multimedia applications, the accessible memory is up 
to hundreds of Mbytes and the processor clock frequency is up to 750 MHz The instruction set is 
powerful (arithmetic instructions, multiplications with accumulation, dual and quad instructions, 
hardware loops, multifunction instructions) [13,14]. 

The MAX7800x chip is a dual core ultra-low power microcontroller with an ARM Cortex M4 
processor with FPU up to 100 MHz with 16KB instruction cache, 512KB flash memory and 128KB 
SRAM, and a RISC-V Coprocessor up to 60MHz for digital signal processing instructions. There are 
many interfaces (general purpose IO pins – GPIO, serial ports , analog to digital convertor (10 bit, 8 
channels), neural network accelerator optimized for deep convolutional neural networks (442k 8-bit 
weight capacity, network depth up to 64 layers with up to 1024 channels per layer), power 
management for battery operations, real time clock, timers, AES 128/192/256 and CRC hardware 
acceleration engine. The ARM Cortex-M4 with FPU processor CM4 is well suited for the neural 
networks system control and combines high-efficiency signal processing functionality with low 
energy consumption. The 32-bit RISC-V coprocessor is dedicated for ultra-low power consumption 
signal processing. The instructions set include: four parallel 8-bit additions/subtractions, floating 
point single precision operations, two parallel 16-bit additions/subtractions, two parallel MACs, 32- 
or 64-bit accumulate, signed, unsigned, data with or without saturation. A Convolutional Neural 
Network (CNN) unit is included in MAX7800x chip. 

A more detailed architecture description of MAX 7800x and how the proposed implementation 
uses the CNN accelerator, and ARM and RISC V cores is shown in a next section. 

The above presented algorithm was written in C programming language, using as integrated 
development environment Visual DSP ++ 5.1 and Maxim Eclipse SDK. The code was automatically 
optimized for speed (hardware loops, interprocedural analysis) [12]. Some adaptations of the 
algorithm were made to reduce the execution time: for S = 15, the method of determining the set S 
has been changed (considering that the number of possible combinations is 16, a combination will be 
chosen randomly and the number of iterations in the CS-RANSAC algorithm is limited to a maximum 
of 16 iterations) and VSDP++ library functions were used for all matrix and vector operations [11,12]: 
matrix multiplication - matmmltf, matrix addition and subtraction - matsadd, matssub, matrix 
transpose- transpm, maximum and minimum element in a vector- vecmax, vecmin, location of 
maximum and minimum element in a vector, vecmaxloc, vecminloc. The code uses a 32 bits 
representation for floating point algorithm variables and computations (multiplications and 
additions) [11]. This approach will cause a slight decrease in precision and therefore the quality of 
the reconstructed image, but the use of a 32-bits fixed-point representation would excessively 
increase the execution time. The use of fixed-point representation keeps the processing time at 
reasonable values with an acceptable decrease in performance. The execution time was measured, in 
processor cycles, using the IDEs’ code profiler. 

5. The Performance Using 32-Bits Fixed Point Microcontrollers 

This section describes the results obtained using the 32 bits processor. The execution time and 
the effect of finite precision is shown in the Figures 5–7. One can observe, in these figures, that the 
performance is good. For low and medium levels of mixed noise, the CS-RANSAC algorithm has a 
PSNR greater with up to 4 dB and a SSIM greater up to 80%. The SSIM obtained with CS-RANSAC 
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is better than that of DCT even the differences in PSNR are not so high for high level of mixed noise. 
The CS-RANSAC algorithm responds better for impulsive noise, as is shown in Figure 7. Table 2 
summarizes the performances and Table 3 compares the implementation in MATLAB with Blackfin 
implementation. 

 

Figure 5. Performance evaluation for low noise (noised image PSNR 20 dB, SSIM 0.36). Mixed noise: gaussian 
variance=0.001; salt and pepper density 2%; blur kernel window length =3; speckle variance=0.001. 

 

 

Figure 6. Performance evaluation for large noise (noised image PSNR 17 dB, SSIM 0.22). Mixed noise: gaussian 
variance=0.001; salt and pepper density 5%; blur kernel window length =3; speckle variance=0.001. 
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Figure 7. Performance evaluation for impulsive noise (noised image PSNR 14 dB, SSIM 0.15). Noise density 
10%. 

Table 4 illustrated the execution time considering a Blackfin processor at 750MHz. An improved 
implementation using MAX7800x (with ARM core at 100MHz, RISC V core at 60 MHz and CNN 
accelerator with 64 cores at 50 MHz) will be described in next sections. 

Table 2. Performance comparison (32-bits fixed point implementation). 

Noised Image 
DCT Reconstructed 

Image 
CS-RANSAC 

Reconstructed Image 
Execution Time CS-RANSAC 

Blackfin 
PSNR SSIM PSNR SSIM PSNR SSIM Cycles Time 
20.48 0.36 23.92 0.46 26.04 0.59 4,675,862,063 6.23 
17.14 0.21 20.8 0.29 24.18 0.54 5,662,802,735 7.55 
14.29 0.15 17.87 0.21 22.21 0.62 8,728,624,005 11.64 
15.04 0.18 18.04 0.25 19.47 0.42 7,584,207,993 10.11 
19.6 0.38 22.45 0.46 23.45 0.57 4,520,337,537 6.03 

Table 3. Performance comparison (32-bits fixed point vs MATLAB implementation). 

Noised  
Image 

DCT Reconstructed 
Image (Fixed Point 

32 Bits) 

CS-RANSAC 
Reconstructed Image 
(Fixed Point 32 Bits ) 

DCT Reconstructed 
Image (MATLAB) 

CS-RANSAC 
Reconstructed 

Image (MATLAB) 
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
20.48 0.36 23.92 0.46 26.04 0.59 24.04 0.46 28.14 0.63 
17.14 0.21 20.8 0.29 24.18 0.54 20.91 0.29 26.92 0.58 
14.29 0.15 17.87 0.21 22.21 0.62 18.03 0.21 25.41 0.71 

Table 4. Execution time – seconds (32 bits fixed point vs MATLAB implementation). 

Noised Image Execution Time CS-RANSAC 32 Bits 
Fixed Point 

Execution Time CS-RANSAC 
MATLAB 

PSNR SSIM Cycles Time Time 
20.48 0.36 4,675,862,063 6.23 2.49 
17.14 0.21 5,662,802,735 7.55 4.79 
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One can observe, for medium to high noise, that the execution time is reasonable (about 
seconds). The execution time can be decrease by using a dual-core Blackfin processor. An 
implementation based on an accelerator for convolutional neural networks (CNN) is possible by 
implementing matrix multiplication using a 1x1 convolution performed with CNN.

6. The Improving of Processing Time Using CNN Accelerator

The multiplication of two matrices ija =  A and ijb =  B with the result ijc = =  C AB and 

, 1..i j N= can be performed using a fully interconnected layer as in Figure 8:

Figure 8. Neural network fully interconnected layer used for matrix multiplication.

The input layer consists of each row in matrixA and the output layer contains the elements of 
product matrix. For each input elements, the weights are the corresponding elements of columns in 
matrix B or zero elements. For clarity, only the weights for one output elements are shown.

Figure 9 details the weights for a simple example ( 2N = ):

11 12

21 22

a a
a a
 

=  
 

A and 11 12

21 22

b b
b b
 

=  
 

B then 

11 12 11 11 12 21 11 12 12 22

21 22 21 11 22 21 21 12 22 22

c c a b a b a b a b
c c a b a b a b a b

+ +   
= = =   + +   

C AB

For more clarity, the weights have shown individually for each output element.
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Figure 9. Neural network fully interconnected layer used for matrix multiplication (detailed example for 2N =
).

The implementation of fully interconnected layer can be done in CNN by enabling the flatten 
mode (this mode supports a series of 1×1 convolution emulating a fully interconnected network with 
up to 1024 inputs).

The matrix multiplication (fixed point) is shown in Figure 10.

Inputs:
- matrices order N

- matrices values ija , ijb with , 1..i j N=

Outputs:

- product of given matrices: ijc with , 1..i j N=

1. Define a neural network layer – full interconnected with 2N inputs ija (read on rows), 2N

outputs and weights initialized with jib for input ija and output ijc and

with 0 otherwise
2. Enable mode flattened for CNN
3. Load CNN memory with the defined inputs and weights
4. Start CNN
5. Wait for CNN to complete the computation

6. Retrieve the results ijc with , 1..i j N=

Figure 10. Matrix multiplication CNN-based algorithm (fixed point).
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Using the above algorithm, a speedup about 30 times can be achieved for integer matrix 
multiplication, comparing with the implementation on a 32 bits fixed-point microcontroller. This can 
be useful for algorithms based on matrix computation that does not require large dynamic range.

In common CNNs the values of neural network layers and weights are represented in fixed point 
with 8 bits. There are certain applications that require more precision. For example, CS-RANSAC 
algorithm, presented in previous sections, requires higher precision due the DCT coefficients of lower 
order.

We proposed an approach that make possible the matrix multiplication with increased precision, 
considering a floating-point representation of matrix elements.

We assume that the values of matrix elements are 2 ijea
ij ija A= , 2 ijeb

ij ijb B= and 2 ijec
ij ijc C= with 

, ,ij ij ijA B C - mantises and , ,ij ij ijea eb ec - exponents represented as fixed point integers with 8 bits. The 

output elements are
1 1

2 2 2kj ik kjik

N N
eb ea ebea

ij ik kj ik kj
k k

c A B A B +

= =

= =  . The term ikj ik kjO A B= will be computed 

using a full interconnected layer as it has shown previously (with a slight modification of weights –
see Figure 11.) and the term ik kjea eb+ will be computed using the element-wise function (the 

element-wise function must be enabled in CNN and the addition function must be selected).

Figure 11. The full interconnected layer for floating point implementation ( 2N = ).

Then the maximum exponent is calculated as ,max 1..max ( )ij k N ik kjE ea eb== + and all the terms ikjO

will multiplied with ,max2 ik kj ijea eb E+ −
in a second full interconnected layer. The results 

,max2 ik kj ijea eb E
ikj ikjX O + −= are summed using the element wise CNN features. The sum is calculated 

iteratively using the element wise addition in 2
2log N steps as in Figure 12.

Figure 12. Element wise addition (example for 4N = ).

Finally, in a third full interconnected layer the elements of matrix products ,max2 ijE
ij ikjc X= are 

calculated. We assume that in an image processing one matrix (image to process) has sub-unitary 
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mantises and 0, , 1..ijea i j N= = . The other matrix’s exponents and mantises are constant, therefore 

,maxijE  and ,max2 ik kj ijea eb E+ −  can be passed as parameters in the matrix multiplication function. The 

complete algorithm is illustrated in Figure 13: 

Inputs: 

- matrices mantises and exponents ijA , ( , )ij ijB eb , , 1..i j N=  

- the terms ,max2 kj ijeb E−  and ,max 1..max ( ), , 1..ij k N kjE eb i j N== =  

Outputs: 

- matrix product elements ijc , , 1..i j N=  

1. Define a neural network layer – full interconnected with 2N inputs ijA (read on rows), 3N  

outputs and weights initialized with kjB  for input ikA and output ( , , )i k j , 

       0 otherwise 
2. Enable mode flattened for CNN 
3. Load CNN memory with the defined inputs and weights 

4. Start CNN - compute ikj ik kjO A B= , , , 1..i k j N=  

5.. Load CNN memory with ikjO and ,max2 kj ijeb E−  

6.. Start CNN - compute ,max2 kj ijeb E
ikj ikjX O −= , , , 1..i k j N=  

7. Partitioning the elements of ikjX in 2N partitions { } 1..ij ikjP X k N= =  

8. 2M N=  

9. Load CNN memory with (1) 1..( / 2)ij ijP P k M= = , (2) ( / 2 1)..ij ijP P k M M= = + ,    

   , 1..i j N=  
10. Enable mode element wise with addition function 
11. For 2

21..logr N=  
12. / 2M M=  

13. Start CNN - compute sum (1) (2)
ij ij ijP P P= +  

14. End For 
15. Enable mode flattened for CNN 

16. Load CNN memory with ,max2 ijE and ijP  

17. Start CNN - compute ,max2 ijE
ij ijc P=  

Figure 13. Matrix multiplication CNN-based algorithm (floating point). 
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The algorithm illustrated in Figure 13 can be efficiently implemented using the MAX78000 chip 
[19,20]. The block diagram of MAX7800 is illustrated in Figure 14. The CNN accelerator consists of 
64 parallel processors with 512KB of SRAM-based storage. Each processor includes a pooling unit 
and a convolutional engine with dedicated weight memory. Four processors share one data memory. 
These are further organized into groups of 16 processors that share common controls. A group of 16 
processors operates as a slave to another group or independently. Data is read from SRAM associated 
with each processor and written to any data memory located within the accelerator. Any given 
processor has visibility of its dedicated weight memory and to the data memory instance it shares 
with the three others. 

 

Figure 14. The MAX7800x general architecture. 

In general, an algorithm (or working task) with M  instructions with 1t  average execution 
time per instruction can be divided in two parts: fM - running using one processor with 2t  average 
execution time per instruction and (1 )f M− - running using N  processors with 3t  average 
execution time per instruction, with 1f < . The speedup is calculated as 

1 1

3 3
2 2

(1 ) (1 )
Mt ts f Mt f tfMt ft

N N

= =− −+ +
. Considering 2 1t rt= and 3 1t qt= with , 1r q <  the speedup 

becomes 1

1
1

1
(1 ) (1 ) (1 ) ( )
t N Ns f qt f q Nfr f q f Nr q qfrfrt NN

= = = =− − + − − +++
 

All the computations involved in matrix processing (multiplication, addition) can be 
implemented using the CNN block in flattened or element wise modes. The above presented CS-
RANSAC algorithm illustrated above was implemented using MAX78000 and its CNN accelerator. 
The numerical precision is similar with numerical precision obtained with previous implementation 
on Blackfin (the ARM and RISC cores in MAX78000 also use 32 bits fixed point representation). 

In the speedup relation we set 64N =  (the number of cores in CNN), 0.13r = (the ratio 
between ARM microcontroller speed and Blackfin microcontroller), 0.06q = (the ratio between CNN 
cores speed and Blackfin microcontroller), and 0.78f = (the algorithm code that not contain matrix 
operations that can be performed in CNN). With this value the theoretical speedup (between Blackfin 
implementation and MAX7800 implementation) is 9.84s = . The effective speedup (obtained by 
counting processor cycles by the IDE code profiler) is lower due the data transfers performed using 
RISC V. 

Figure 15 illustrated the execution time obtained with CNN implementation. In this case 
(software floating point implementation) the speedup obtained is about 7 times for the CS-RANSAC 
algorithm. 
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Figure 15. Processing time (various noised image sizes) for two 32-bits fixed point implementations (Blackfin 
and Max78000 CNN).

The computing time of the algorithm can be improved modifying the way to calculate DCT 
coefficients using original DCT or CS-RANSAC depends if the block is noisy or not, and using in 
parallel the ARM and CNN

For the first improving method, the original CS-RANSAC algorithm was combined with a noise 
estimator [21]. Each block is marked as light noised or heavy noised and is processed using simple 
DCT or CS-RANSAC, respectively. The noise estimator can be implemented in fixed point using in 
parallel the ARM and RISC-V microcontrollers in MC78000 chip. Figure 16(a) shows how the tasks 
for such implementation can be scheduled.

(a)
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(b) 

Figure 16. (a) Tasks scheduling for the algorithm (b) algorithm improving using parallel processing (RISC V is 
not shown, for clarity). 

The following tasks is defined: NE_Task - for noise estimate, P_Task – the processing task that 
implement all the processing for DCT and CS-RANSAC noise removal and compression algorithms 
excepts the matrix multiplications and matrix additions which are computed by the a matrix 
processing task - MP_Task and COMM_task – a communication task that transfer using DMA 
channels the information (matrix values) between CNN and ARM. The tasks : NE_Task and P_Task 
are running in ARM core, the task COMM_task is running in ARM coprocessor (that acts as a direct 
memory access - DMA controller). All the matrix manipulations are passed to CNN accelerator 
(programmed in flatten mode for matrix multiplications or element wise mode for matrix additions 
or subtractions) and are computed by MP_Task. All tasks are synchronized using global semaphores. 

Depend on noise level, the execution time can be reduced as is illustrated in Figure 17 [22]. 

 

Figure 17. Computing time reduction (in dot line – trendline of ratio). 

For an average noise probability of 50% one can observe that the computation time reduction 
ratio is about 35%. If the noise estimator is not used, the task NE_Task in the scheduling tasks from 
Figure 16 is removed. 

The second method ensures halving of computation time. This goal is achieved by partitioning 
the computation in matrix operations (multiplications, addition)- performed in CNN and non-matrix 
operations (all the remaining computations) – performed in ARM. Two blocks are processing in 
parallel in ARM and CNN, alternatively, as it is shown in Figure 16 (b). 

7. Conclusion 

This paper focuses on the analysis of the possibility of accelerating the necessary processing in 
algorithms based on matrix operations. Accelerating these operations can be achieved using neural 
network processing units (NPUs) integrated into the architecture of today’s high-performance 
microcontrollers. As an example, the paper presents implementations and performance analysis of 
an image compression and noise removal algorithm based on compressive sensing and CS-RANSAC. 

This algorithm was validated as good algorithm in terms of noise removal and image 
compression using infinite precision implementation (e.g. MATLAB simulations). The main goal of 
this work is to evaluate if a microcontroller implementation is feasible in terms of processing accuracy 
and computation time to be used in IoT applications that involve hardware nodes with resources 
constrains. 

The obtained results show that a good quality of the reconstructed image can be obtained for 
medium to high noise levels in a calculation time of the order of seconds or tenth of seconds. 

Also, the paper proposes methods to improve the algorithm: (1) by selectively applying DCT or 
the CS-RANSAC to each block in the image (without degrading the quality of the image), and (2) be 
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using in parallel the ARM microcontroller and CNN cores or using a dual core Blackfin 
microcontroller. 
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