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Article
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Abstract: This research introduces the concept of harmonically m-convex set-valued functions, combining
harmonically m-convex functions and set-valued mappings. We establish fundamental properties and
derive a Hermite-Hadamard-type inequality for these functions, generalizing classical results in convex
analysis. The study provides a theoretical foundation with potential applications in optimization,
variational analysis, and mathematical economics, where set-valued mappings are essential. This work
advances the understanding of harmonic convexity in the context of set-valued analysis, offering new
insights for both theoretical and applied mathematics.

Keywords: set-valued convex functions; harmonically convex functions; harmonically m-convex
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1. Introduction
Convexity is a fundamental concept in mathematics with profound applications across various

fields of science and engineering. Over the past few decades, the study of convexity has expanded
significantly, leading to the development of new generalizations and variants that have enriched the
theory and its applications. Among these, harmonic convexity has emerged as a particularly interesting
extension, offering unique properties and applications. Harmonic convex functions, introduced by
Anderson et al. [1] and further explored by I. Iscan [5], exhibit properties analogous to those of
classical convex functions, making them a valuable tool in mathematical analysis. Building on these
foundations, Noor et al. [16] introduced the broader class of harmonic h-convex functions, which
generalizes many known classes of harmonic convex functions and provides a unified framework for
their study.

In parallel, the concept of m-convexity, introduced by G. Toader [19], has gained attention for its
ability to model intermediate convexity properties between classical convexity and star-shapedness.
This notion has been extended to set-valued functions, which have been a subject of intense research
since their introduction by C. Berge [3]. Set-valued functions, which map points to sets rather than
single values, have found applications in optimization, control theory, and economics, particularly in
problems involving set constraints and inclusions. Recent works, such as those by T. Lara et al. [7],
have explored m-convex set-valued functions, providing characterizations, algebraic properties, and
examples that highlight their theoretical and practical significance.

Integral inequalities, such as the Hermite-Hadamard inequality, have been a central focus in the
study of convex functions and their generalizations. For harmonically convex set-valued functions,
Santana et al. [18] established important results, including Hermite-Hadamard and Fejér inequalities,
as well as a Bernstein-Doetsch-type theorem. These results have opened new avenues for research and
applications in areas such as optimization and variational analysis.

This research introduces the novel concept of harmonically m-convex set-valued functions, which
combines the ideas of harmonic convexity, m-convexity, and set-valued mappings. We explore the
fundamental properties and characteristics of these functions, providing a comprehensive theoretical
framework. Additionally, we derive a new Hermite-Hadamard-type inequality for harmonically m-
convex set-valued functions, generalizing classical results and offering new insights into their behavior.
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This work not only advances the theoretical understanding of convexity and its generalizations but also
provides tools with potential applications in optimization, economics, and engineering. By bridging
the gap between harmonic convexity and set-valued analysis, this research contributes to the growing
body of knowledge in convex analysis and its interdisciplinary applications.

2. Preliminary
As part of our research it is necessary to provide the reader with some preliminary definitions

used throughout this investigation in order to lay the foundations for the development of this work.

Definition 1 (see [6]). Let X a linear space and m ∈ (0, 1]. A nonempty subset D of X is said to be harmonic
m-convex, if for all x, y ∈ D and t ∈ [0, 1], we have:

mxy
tmx + (1 − t)y

∈ D.

In this case İ. İscan in [6] generalized the harmonically convex function definition introduced in
[5] to harmonically (α, m)-convex function:

Definition 2 (see [6]). Let f : D ⊂ (0, ∞) → R a function. Then, f is said to be harmonically (α, m)-convex
function if for all α, t ∈ [0, 1], m ∈ (0, 1] and x, y ∈ D, we have:

f
(

mxy
tmx + (1 − t)y

)
≤ tα f (y) + m(1 − t)α f (x). (1)

Note that if we considered α = 1 in (1), f is said to be a harmonically m-convex function and satisfies the
following:

f
(

mxy
tmx + (1 − t)y

)
≤ t f (y) + m(1 − t) f (x).

For this kind of functions in [6] obtain the following result:

Theorem 1 (see [6]). Let f : (0, ∞) → R be a harmonically m-convex function with m ∈ (0, 1]. If
0 < a < b < ∞ and f ∈ L[a, b], then one has the inequality:

ab
b − a

∫ b

a

f (x)
x2 dx ≤ min

 f (a) + f
{

b
m

}
2

,
f (b) + f

{ a
m
}

2

.

In the other hand, G. Santana et al. [18] in 2018, introduced the definition of harmonically convex
set-valued functions, extending the definition given by İ. İscan for real functions (see [5]).

Definition 3 (see [18]). Let X and Y linear spaces, D a harmonically convex subset of X and F : D ⊂ X →
n(Y) a set-valued function. Then F is said harmonically convex function if for all x, y ∈ D and t ∈ [0, 1],
we have:

tF(y) + (1 − t)F(x) ⊆ F
(

xy
tx + (1 − t)y

)
Remark 1. Throughout this paper n(Y) will denote the family of nonempty subsets of Y.

For this kind of functions they obtain many results as algebraic properties, Hermite-Hadamard
and Fejer type inequalities and Bernstein-Doetsch type result.

To prove certain algebraic properties of the results in this research, we use two definitions
established by T. Lara et al. in 2014 [7].
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Definition 4 (see [7]). Let F1, F2 : D ⊆ X → n(Y) be two set-valued functions (or multifunctions) then:

• The union of F1 and F2 is a set-valued function F1 ∪ F2 : D → n(Y) given by (F1 ∪ F2)(x) = F1(x) ∪
F2(x) for each x ∈ D.

• The sum of F1 and F2 is the function F1 + F2 : D → n(Y) defined in its usual form (F1 + F2)(x) =

F1(x) + F2(x) for each x ∈ D.

Definition 5 (see [7]). Let X, Y, Z be linear spaces and D be a subset of X. Then:

• If F1 : D → n(Y) and F2 : D → n(Z), then the cartesian product function of F1 and F2 is the set-valued
function F1 × F2 : D → n(Y)× n(Z) given by (F1 × F2)(x) = F1(x)× F2(x) for each x ∈ D.

• If F1 : D → n(Y) and F2 : n(Y) → n(Z), then the composition function of F1 and F2 is the set-valued
function F2 ◦ F1 : D → n(Z) given by

(F2 ◦ F1)(x) = F2(F1(x)) =
⋃

y∈F1(x)

F2(y),

for each x ∈ D.

Following the idea establish in [18], in this paper we extend that definition and introduce a new
concept of convexity, combining the definitions of harmonically m-convex functions and set-valued
functions. Then we define the following:

Definition 6. Let X and Y be linear spaces, D a harmonically m-convex subset of X and F : D ⊂ X → n(Y) a
set-valued function. It said that F is said harmonically m-convex function if for all x, y ∈ D, t ∈ [0, 1], and
m ∈ (0, 1], we have:

tF(y) + m(1 − t)F(x) ⊆ F
(

mxy
tmx + (1 − t)y

)
. (2)

We have some examples of this kind of function.

Example 1. Let f1, (− f2) : [a, b] ⊂ R → R be harmonically m-convex functions with f1(x) ≤ f2(x) for all
x ∈ [a, b]. Then, the set-valued function F : D ⊂ X → n(Y) defined by F(x) = [ f1(x), f2(x)] is harmonically
m-convex.

In fact, since f1 and − f2 are harmonically m-convex functions, then for all x, y ∈ D, t ∈ [0, 1] and
m ∈ (0, 1], we have:

f1

(
mxy

tmx + (1 − t)y

)
≤ t f1(y) + m(1 − t) f1(x),

and

− f2

(
mxy

tmx + (1 − t)y

)
≤ −(t f2(y) + m(1 − t) f2(x)),

if we multiply (−1) to both sides of the last inequality, we have:

f2

(
mxy

tmx + (1 − t)y

)
≥ t f2(y) + m(1 − t) f2(x),

Then,

[t f1(y) + m(1 − t) f1(x), t f2(y) + m(1 − t) f2(x)] ⊂
[

f1

(
mxy

tmx + (1 − t)y

)
, f2

(
mxy

tmx + (1 − t)y

)]
(3)
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from (3) we obtain with a elementary calculus that

tF(y) + m(1 − t)F(x) ⊂ F
(

mxy
tmx + (1 − t)y

)
.

Example 2. Let H ∈ R3 a harmonically m-convex subset, F : R → n(R) a set-valued function defined by
F(x) = f (x)H, where f (x) = x2 is a harmonically m-convex function.

Then, since f (x) = x2 is a harmonically m-convex function by definition, we have for all x, y ∈ D,
t ∈ [0, 1] and m ∈ (0, 1] that (

mxy
tmx + (1 − t)y

)2
≤ t(y)2 + m(1 − t)(x)2,

using the harmonically m-convex properties of H we have to

(t(y)2 + m(1 − t)(x)2)H ⊆
(

mxy
tmx + (1 − t)y

)2
H,

then,

(t(y)2 + m(1 − t)(x)2)H = t(y)2H + m(1 − t)(x)2H

= tF(y) + m(1 − t)F(x)

⊆ F
(

mxy
tmx + (1 − t)y

)
.

Thus F is a harmonically m-convex set-valued function.

3. Main Results
The results obtained in this paper are based on the developments and ideas of İ. Iscan en [6] and

T. Lara et al. in [7]. The following proposition establishes a property over harmonic m-convex set.

Proposition 1. Let harmonic m-convex (m ̸= 1) subset D of X is said to be starshaped if, for all x in D and all
t in the interval (0, 1], the point tx also belongs to D. That is:

tD ⊆ D.

Proof. Let D be a harmonically m-convex subset of X. If D is an empty set, there is nothing to prove.
If, on the contrary, we consider D a nonempty set, let x ∈ D then the point x = mab

tma+(1−t)b ∈ D for
everything a, b ∈ D and t ∈ [0, 1]. Thus, [m, 1]x = {rx : m ≤ r ≤ 1} ⊂ D, in particular mx ∈ D. If
m = 0, then [0, 1]x ∈ D, we got the desired result.

In the case m > 0, we similarly repeat the previous argument for mx (instead of x), in this case we
have to [m2, m]x = [m, 1]mx ⊆ D.

Inductively, we have that [mn, mn−1]x ⊆ D for all n ∈ N. Therefore (0, 1]x =
⋃∞

n=1[m
n, mn−1]x ⊆

D. Thus D satisfies tD ⊆ D for t ∈ (0, 1].

For harmonically m-convex set-valued functions we obtain the following results:

Proposition 2. Let F1, F2 : D → n(Y) be harmonically m-convex set-valued functions with F1(x) ⊆ F2(x) (or
F2(x) ⊆ F1(x)) for each x ∈ D. Then the union of F1 and F2 (F1 ∪ F2) is a harmonically m-convex set-valued
function.

Proof. Let F1, F2 be harmonically m-convex set-valued function with x, y ∈ D, t ∈ [0, 1] and m ∈ (0, 1].
Let’s assume F1(x) ⊆ F2(x) (in the case F2(x) ⊆ F1(x) is analogous) for each x ∈ D, then:
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t(F1 ∪ F2)(y) + m(1 − t)(F1 ∪ F2)(x)

= t(F1(y) ∪ F2(y)) + m(1 − t)(F1(x) ∪ F2(x)

= tF2(y) + m(1 − t)F2(x)

⊆ F2

(
mxy

tmx + (1 − t)y

)
= F1

(
mxy

tmx + (1 − t)y

)
∪ F2

(
mxy

tmx + (1 − t)y

)
= (F1 ∪ F2)

(
mxy

tmx + (1 − t)y

)
.

Proposition 3. If F : D ⊂ X → n(Y) is a harmonically m-convex set-valued function, then the image of F of
any harmonically m-convex subset of D is a m-convex set of Y.

Proof. Let A be a harmonically m-convex subset of D ⊂ X and a, b ∈ F(A) = ∪z∈AF(z). Then
a ∈ F(x) and b ∈ F(y) for some x, y ∈ A. Thus, for all t ∈ [0, 1] and m ∈ (0, 1], we have to:

tb + m(1 − t)a ∈ tF(y) + m(1 − t)F(x) ⊆ F
(

mxy
tmx + (1 − t)y

)
.

Since A is harmonically m-convex set, we have mxy
tmx+(1−t)y ∈ A and tb + m(1 − t)a ∈ F(A) for all

t ∈ [0, 1]. Which implies that F(A) is a m-convex set of Y.

Corollary 1. If F : D ⊆ X → n(Y) is a harmonically m-convex set-valued function, then the range of F is a
m-convex set of Y.

Proof. If we consider A = D in Proposition 10 we get that Rang(F) = F(D).

Proposition 4. A set-valued function F : D → n(Y) is harmonically m-convex, if and only if,

tF(B) + m(1 − t)F(A) ⊆ F
(

mAB
tmA + (1 − t)B

)
, (4)

for each A, B ⊆ D, t ∈ [0, 1] and m ∈ (0, 1].

Proof. (⇒) Let A, B be arbitrary subsets of D, t ∈ [0, 1] and m ∈ (0, 1]. Let x ∈ t(F(B) = ∪b∈BF(b)) +
m(1 − t)F((A) = ∪a∈AF(a), that is to say x ∈ tF(b) + m(1 − t)F(a) for some a ∈ A and b ∈ B. Since F
is harmonically m-convex and a, b ∈ D, it follows that:

tF(b) + m(1 − t)F(a) ⊆ F
(

mab
tma + (1 − t)b

)
,

moreover, mab
tma+(1−t)b ∈ mAB

tmA+(1−t)B and, in consequence,

F
(

mab
tma + (1 − t)b

)
⊂ F

(
mAB

tmA + (1 − t)B

)
.

Therefore, x ∈ F
(

mAB
tmA+(1−t)B

)
.
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(⇐) For x, y ∈ D t ∈ [0, 1] and m ∈ (0, 1], the result is obtained by replacing A = {x} and
B = {y} in (7) and we obtain the desired result

tF({y}) + m(1 − t)F({x}) ⊆ F
(

m{x}{y}
tm{x}+ (1 − t){y}

)
.

Then, F is a harmonically m-convex set-valued function.

In the following, consider that for nonempty linear space subsets A, B, C, D and α a scalar, the
following properties are true:

• α(A × B) = αA × αB,
• (A × C) + (B × D) = (A + B)× (C + D),
• Si A ⊆ B y C ⊆ D then A × C ⊆ B × D.

Proposition 5. Let F1 : D → n(Y) and F2 : D → n(Z) harmonically m-convex set-valued functions. Then
the cartesian product F1 × F2 is a harmonically m-convex set-valued function.

Proof. Let x, y ∈ D and t ∈ [0, 1], then:

t(F1 × F2)(y) + m(1 − t)(F1 × F2)(x)

= [tF1(y)× tF2(y)] + [m(1 − t)F1(x)× m(1 − t)F2(x)]

= (tF1(y) + m(t − 1)F1(x))× (tF2(y) + m(t − 1)F2(x))

⊆ F1

(
mxy

tmx + (1 − t)y

)
× F2

(
mxy

tmx + (1 − t)y

)
= (F1 × F2)

(
mxy

tmx + (1 − t)y

)
.

The following proposition establishes that the harmonically m-convex set-valued function are
closed under the sum and the product by a scalar.

Proposition 6. Let X, Y be two linear spaces. If D is a harmonically m-convex subset of X and F, G : D ⊂
X → n(Y) two harmonically m-convex set-valued functions. Then λF + G is a harmonically m-convex
set-valued function, for all λ.

Proof. Let x, y ∈ D ⊂ X, t ∈ [0, 1] and m ∈ (0, 1]. Since F and G are harmonically m-convex set-valued
functions, we have:

tF(y) + m(1 − t)F(x) ⊆ F
(

mxy
tmx + (1 − t)y

)
,

and,

tG(y) + m(1 − t)G(x) ⊆ G
(

mxy
tmx + (1 − t)y

)
.

Thus,
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t(λF + G)(y) + m(1 − t)(λF + G)(x)

= [t(λF(y)) + m(1 − t)(λF(x))] + [tG(y) + m(1 − t)G(x)]

⊆ λF
(

mxy
tmx + (1 − t)y

)
+ G

(
mxy

tmx + (1 − t)y

)
= (λF + G)

(
mxy

tmx + (1 − t)y

)
.

Proposition 7. Let x, Y be two linear spaces. If D is a harmonically m-convex subset of X and F, G : D ⊂
X → n(Y) two harmonically m-convex set-valued functions then (F · G)(x) is also harmonically m-convex
set-valued function.

Proof. First, from [18], we have that.

F(x1)G(x2) + F(x2)G(x1) ⊂ F(x1)G(x1) + F(x2)G(x2).

Then, for t ∈ [0, 1] and x1, x2 ∈ D:

(F · G)

(
mx1x2

mtx1 + (1 − t)x2

)
= F

(
mx1x2

mtx1 + (1 − t)x2

)
· G
(

mx1x2
mtx1 + (1 − t)x2

)
⊇ [tF(x1) + m(1 − t)F(x2)][tG(x1) + m(1 − t)G(x2)]

= t2F(x1)G(x1) + mt(1 − t)F(x1)G(x2) + mt(1 − t)F(x2)G(x1)

+m2(1 − t)2F(x2)G(x2)

= t2F(x1)G(x1) + mt(1 − t)[F(x1)G(x2) + F(x2)G(x1)]

m2(1 − t)2F(x2)G(x2)

⊇ t2F(x1)G(x1) + mt(1 − t)[F(x1)G(x1) + F(x2)G(x2)]

+m2(1 − t)2F(x2)G(x2)

= t[t + m(1 − t)]F(x1)G(x1) + [m(1 − t)[t + m(1 − t)]F(x2)G(x2)]

⊇ tF(x1)G(x1) + m(1 − t)F(x2)G(x2).

This shows that the product of two harmonically m-convex set-valued functions is again harmonically
m-convex set-valued function.

The following result follows the idea of İ. İscan in [6]. To integrate set-valued functions we use
the definition given by R. J. Aumann, and if a function satisfies the requirements of being integrable
under this integral definition given, we say that a set-valued function F is Aumann integrable under a
certain domain (see [2]).

Theorem 2. Let X, Y linear spaces, D be a harmonically m-convex subset of X and F : D ⊂ X → n(Y) a
harmonically m-convex set-valued Aumann integrable function, then

min

inf

 F(a) + mF
(

b
m

)
2

, inf

(
mF
( a

m
)
+ F(b)

2

) ⊆ ab
b − a

∫ b

a

F(x)
x2 dx.

Proof. Let F : D ⊂ X → n(Y) be a harmonically m-convex set-valued function, for every x, y ∈ D we
have to

tF(y) + m(1 − t)F
( x

m

)
⊂ F

(
xy

tx + (1 − t)y

)
= F

(
m x

m y
tm x

m + (1 − t)y

)
,
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Then, we have the following:

tF(b) + m(1 − t)F
( a

m

)
⊂ F

(
ab

ta + (1 − t)b

)
, (5)

and

tF(a) + m(1 − t)F
(

b
m

)
⊂ F

(
ab

tb + (1 − t)a

)
,

for every t ∈ [0, 1], m ∈ (0, 1] and a, b ∈ D. Integrating both sides of (8) on [0, 1] with respect to t, we
get that

∫ 1

0
tF(b) + m(1 − t)F

( a
m

)
dt ⊂

∫ 1

0
F
(

ab
ta + (1 − t)b

)
dt. (6)

Integrating the left side of (9) we have:

∫ 1

0
tF(b) + m(1 − t)F

( a
m

)
dt =

F(b) + mF
( a

m
)

2
.

By the Aumann integral definition we get, that integral on the right hand of (9) is defined as:

∫ 1

0
F
(

ab
ta + (1 − t)b

)
dt =

{∫ 1

0
f
(

ab
ta + (1 − t)b

)
dt : f (x) ∈ F(x) ∧ t ∈ [0, 1]

}
.

But, ∫ 1

0
f
(

ab
ta + (1 − t)b

)
dt =

ab
b − a

∫ b

a

f (x)
x2 dx,

then {
ab

b − a

∫ b

a

f (x)
x2 dx : f (x) ∈ F(x) ∧ x ∈ [a, b]

}
=

ab
b − a

∫ b

a

F(x)
x2 dx.

In consecuense:
F(b) + mF

( a
m
)

2
⊆ ab

b − a

∫ b

a

F(x)
x2 dx.

Similarly, we have that:
F(a) + mF

(
b
m

)
2

⊆ ab
b − a

∫ b

a

F(x)
x2 dx,

so the required result is obtained.

min

inf

 F(a) + mF
(

b
m

)
2

, inf

(
mF
( a

m
)
+ F(b)

2

) ⊆ ab
b − a

∫ b

a

F(x)
x2 dx.

4. Results
The results obtained in this paper are based on the developments and ideas of İ. Iscan en [6] and

T. Lara et al. in [7]. The following proposition establishes a property over harmonic m-convex set.

Proposition 8. Let harmonic m-convex (m ̸= 1) subset D of X is said to be starshaped if, for all x in D and all
t in the interval (0, 1], the point tx also belongs to D. That is:

tD ⊆ D.

Proof. Let D be a harmonically m-convex subset of X. If D is an empty set, there is nothing to prove.
If, on the contrary, we consider D a nonempty set, let x ∈ D then the point x = mab

tma+(1−t)b ∈ D for
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everything a, b ∈ D and t ∈ [0, 1]. Thus, [m, 1]x = {rx : m ≤ r ≤ 1} ⊂ D, in particular mx ∈ D. If
m = 0, then [0, 1]x ∈ D, we got the desired result.

In the case m > 0, we similarly repeat the previous argument for mx (instead of x), in this case we
have to [m2, m]x = [m, 1]mx ⊆ D.

Inductively, we have that [mn, mn−1]x ⊆ D for all n ∈ N. Therefore (0, 1]x =
⋃∞

n=1[m
n, mn−1]x ⊆

D. Thus D satisfies tD ⊆ D for t ∈ (0, 1].

For harmonically m-convex set-valued functions we obtain the following results:

Proposition 9. Let F1, F2 : D → n(Y) be harmonically m-convex set-valued functions with F1(x) ⊆ F2(x) (or
F2(x) ⊆ F1(x)) for each x ∈ D. Then the union of F1 and F2 (F1 ∪ F2) is a harmonically m-convex set-valued
function.

Proof. Let F1, F2 be harmonically m-convex set-valued function with x, y ∈ D, t ∈ [0, 1] and m ∈ (0, 1].
Let’s assume F1(x) ⊆ F2(x) (in the case F2(x) ⊆ F1(x) is analogous) for each x ∈ D, then:

t(F1 ∪ F2)(y) + m(1 − t)(F1 ∪ F2)(x)

= t(F1(y) ∪ F2(y)) + m(1 − t)(F1(x) ∪ F2(x)

= tF2(y) + m(1 − t)F2(x)

⊆ F2

(
mxy

tmx + (1 − t)y

)
= F1

(
mxy

tmx + (1 − t)y

)
∪ F2

(
mxy

tmx + (1 − t)y

)
= (F1 ∪ F2)

(
mxy

tmx + (1 − t)y

)
.

Proposition 10. If F : D ⊂ X → n(Y) is a harmonically m-convex set-valued function, then the image of F of
any harmonically m-convex subset of D is a m-convex set of Y.

Proof. Let A be a harmonically m-convex subset of D ⊂ X and a, b ∈ F(A) = ∪z∈AF(z). Then
a ∈ F(x) and b ∈ F(y) for some x, y ∈ A. Thus, for all t ∈ [0, 1] and m ∈ (0, 1], we have to:

tb + m(1 − t)a ∈ tF(y) + m(1 − t)F(x) ⊆ F
(

mxy
tmx + (1 − t)y

)
.

Since A is harmonically m-convex set, we have mxy
tmx+(1−t)y ∈ A and tb + m(1 − t)a ∈ F(A) for all

t ∈ [0, 1]. Which implies that F(A) is a m-convex set of Y.

Corollary 2. If F : D ⊆ X → n(Y) is a harmonically m-convex set-valued function, then the range of F is a
m-convex set of Y.

Proof. If we consider A = D in Proposition 10 we get that Rang(F) = F(D).

Proposition 11. A set-valued function F : D → n(Y) is harmonically m-convex, if and only if,

tF(B) + m(1 − t)F(A) ⊆ F
(

mAB
tmA + (1 − t)B

)
, (7)

for each A, B ⊆ D, t ∈ [0, 1] and m ∈ (0, 1].
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Proof. (⇒) Let A, B be arbitrary subsets of D, t ∈ [0, 1] and m ∈ (0, 1]. Let x ∈ t(F(B) = ∪b∈BF(b)) +
m(1 − t)F((A) = ∪a∈AF(a), that is to say x ∈ tF(b) + m(1 − t)F(a) for some a ∈ A and b ∈ B. Since F
is harmonically m-convex and a, b ∈ D, it follows that:

tF(b) + m(1 − t)F(a) ⊆ F
(

mab
tma + (1 − t)b

)
,

moreover, mab
tma+(1−t)b ∈ mAB

tmA+(1−t)B and, in consequence,

F
(

mab
tma + (1 − t)b

)
⊂ F

(
mAB

tmA + (1 − t)B

)
.

Therefore, x ∈ F
(

mAB
tmA+(1−t)B

)
.

(⇐) For x, y ∈ D t ∈ [0, 1] and m ∈ (0, 1], the result is obtained by replacing A = {x} and
B = {y} in (7) and we obtain the desired result

tF({y}) + m(1 − t)F({x}) ⊆ F
(

m{x}{y}
tm{x}+ (1 − t){y}

)
.

Then, F is a harmonically m-convex set-valued function.

In the following, consider that for nonempty linear space subsets A, B, C, D and α a scalar, the
following properties are true:

• α(A × B) = αA × αB,
• (A × C) + (B × D) = (A + B)× (C + D),
• Si A ⊆ B y C ⊆ D then A × C ⊆ B × D.

Proposition 12. Let F1 : D → n(Y) and F2 : D → n(Z) harmonically m-convex set-valued functions. Then
the cartesian product F1 × F2 is a harmonically m-convex set-valued function.

Proof. Let x, y ∈ D and t ∈ [0, 1], then:

t(F1 × F2)(y) + m(1 − t)(F1 × F2)(x)

= [tF1(y)× tF2(y)] + [m(1 − t)F1(x)× m(1 − t)F2(x)]

= (tF1(y) + m(t − 1)F1(x))× (tF2(y) + m(t − 1)F2(x))

⊆ F1

(
mxy

tmx + (1 − t)y

)
× F2

(
mxy

tmx + (1 − t)y

)
= (F1 × F2)

(
mxy

tmx + (1 − t)y

)
.

The following proposition establishes that the harmonically m-convex set-valued function are
closed under the sum and the product by a scalar.

Proposition 13. Let X, Y be two linear spaces. If D is a harmonically m-convex subset of X and F, G :
D ⊂ X → n(Y) two harmonically m-convex set-valued functions. Then λF + G is a harmonically m-convex
set-valued function, for all λ.

Proof. Let x, y ∈ D ⊂ X, t ∈ [0, 1] and m ∈ (0, 1]. Since F and G are harmonically m-convex set-valued
functions, we have:

tF(y) + m(1 − t)F(x) ⊆ F
(

mxy
tmx + (1 − t)y

)
,
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and,

tG(y) + m(1 − t)G(x) ⊆ G
(

mxy
tmx + (1 − t)y

)
.

Thus,

t(λF + G)(y) + m(1 − t)(λF + G)(x)

= [t(λF(y)) + m(1 − t)(λF(x))] + [tG(y) + m(1 − t)G(x)]

⊆ λF
(

mxy
tmx + (1 − t)y

)
+ G

(
mxy

tmx + (1 − t)y

)
= (λF + G)

(
mxy

tmx + (1 − t)y

)
.

Proposition 14. Let x, Y be two linear spaces. If D is a harmonically m-convex subset of X and F, G : D ⊂
X → n(Y) two harmonically m-convex set-valued functions then (F · G)(x) is also harmonically m-convex
set-valued function.

Proof. First, from [18], we have that.

F(x1)G(x2) + F(x2)G(x1) ⊂ F(x1)G(x1) + F(x2)G(x2).

Then, for t ∈ [0, 1] and x1, x2 ∈ D:

(F · G)

(
mx1x2

mtx1 + (1 − t)x2

)
= F

(
mx1x2

mtx1 + (1 − t)x2

)
· G
(

mx1x2
mtx1 + (1 − t)x2

)
⊇ [tF(x1) + m(1 − t)F(x2)][tG(x1) + m(1 − t)G(x2)]

= t2F(x1)G(x1) + mt(1 − t)F(x1)G(x2) + mt(1 − t)F(x2)G(x1)

+m2(1 − t)2F(x2)G(x2)

= t2F(x1)G(x1) + mt(1 − t)[F(x1)G(x2) + F(x2)G(x1)]

m2(1 − t)2F(x2)G(x2)

⊇ t2F(x1)G(x1) + mt(1 − t)[F(x1)G(x1) + F(x2)G(x2)]

+m2(1 − t)2F(x2)G(x2)

= t[t + m(1 − t)]F(x1)G(x1) + [m(1 − t)[t + m(1 − t)]F(x2)G(x2)]

⊇ tF(x1)G(x1) + m(1 − t)F(x2)G(x2).

This shows that the product of two harmonically m-convex set-valued functions is again harmonically
m-convex set-valued function.

The following result follows the idea of İ. İscan in [6]. To integrate set-valued functions we use
the definition given by R. J. Aumann, and if a function satisfies the requirements of being integrable
under this integral definition given, we say that a set-valued function F is Aumann integrable under a
certain domain (see [2]).

Theorem 3. Let X, Y linear spaces, D be a harmonically m-convex subset of X and F : D ⊂ X → n(Y) a
harmonically m-convex set-valued Aumann integrable function, then

min

inf

 F(a) + mF
(

b
m

)
2

, inf

(
mF
( a

m
)
+ F(b)

2

) ⊆ ab
b − a

∫ b

a

F(x)
x2 dx.
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Proof. Let F : D ⊂ X → n(Y) be a harmonically m-convex set-valued function, for every x, y ∈ D we
have to

tF(y) + m(1 − t)F
( x

m

)
⊂ F

(
xy

tx + (1 − t)y

)
= F

(
m x

m y
tm x

m + (1 − t)y

)
,

Then, we have the following:

tF(b) + m(1 − t)F
( a

m

)
⊂ F

(
ab

ta + (1 − t)b

)
, (8)

and

tF(a) + m(1 − t)F
(

b
m

)
⊂ F

(
ab

tb + (1 − t)a

)
,

for every t ∈ [0, 1], m ∈ (0, 1] and a, b ∈ D. Integrating both sides of (8) on [0, 1] with respect to t, we
get that

∫ 1

0
tF(b) + m(1 − t)F

( a
m

)
dt ⊂

∫ 1

0
F
(

ab
ta + (1 − t)b

)
dt. (9)

Integrating the left side of (9) we have:

∫ 1

0
tF(b) + m(1 − t)F

( a
m

)
dt =

F(b) + mF
( a

m
)

2
.

By the Aumann integral definition we get, that integral on the right hand of (9) is defined as:

∫ 1

0
F
(

ab
ta + (1 − t)b

)
dt =

{∫ 1

0
f
(

ab
ta + (1 − t)b

)
dt : f (x) ∈ F(x) ∧ t ∈ [0, 1]

}
.

But, ∫ 1

0
f
(

ab
ta + (1 − t)b

)
dt =

ab
b − a

∫ b

a

f (x)
x2 dx,

then {
ab

b − a

∫ b

a

f (x)
x2 dx : f (x) ∈ F(x) ∧ x ∈ [a, b]

}
=

ab
b − a

∫ b

a

F(x)
x2 dx.

In consecuense:
F(b) + mF

( a
m
)

2
⊆ ab

b − a

∫ b

a

F(x)
x2 dx.

Similarly, we have that:
F(a) + mF

(
b
m

)
2

⊆ ab
b − a

∫ b

a

F(x)
x2 dx,

so the required result is obtained.

min

inf

 F(a) + mF
(

b
m

)
2

, inf

(
mF
( a

m
)
+ F(b)

2

) ⊆ ab
b − a

∫ b

a

F(x)
x2 dx.

Acknowledgments: Special thanks to Dr. Nelson Merentes for his invaluable guidance on the problem and his
contributions of articles for review.

References
1. Anderson, G. D., Vamanamurthy, M. K. and Vuorinen, M. (2007). Generalized convexity and inequalities.

Journal of Mathematical Analysis and Applications, 335(2), 1294-1308.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202504.0422.v1

https://doi.org/10.20944/preprints202504.0422.v1


13 of 13

2. Aumann, R. J. (1965). Integrals of set-valued functions. Journal of mathematical analysis and applications,
12(1), 1-12.

3. Berge, C. (1963). Topological Space: Including a treatment of Multi-Valued functions, vector spaces and convexity.
Dover Publications, INC. Mineola, New York.

4. Geletu, A. (2006). Introduction to topological spaces and set-valued maps (Lecture notes). Department of
Operations Research & Stochastics Ilmenau University of Technology. August 25.
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