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Abstract: Multi-key homomorphic encryption is widely applied into outsourced computing and 

privacy-preserving applications in multi-user scenarios. However, the existence of CRS weakens the 

ability of users to independently generate public keys, and it is difficult to implement in decentralized 

systems or scenarios with low trust requirements. In order to reduce excessive reliance on public 

parameters, a multi-key homomorphic encryption scheme without pre-setting CRS is proposed based 

on a distributed key generation protocol. The proposed scheme does not require the pre-generation 

and distribution of CRS, which enhances the security and decentralization of the scheme. 

Furthermore, in order to further protect the plaintext privacy from each user, by embedding the 

specified target user into the ciphertext, this paper proposes an enhanced multi-key homomorphic 

encryption scheme that only allows only the target user to decrypt. Finally, this paper applies the 

proposed lattice-based multi-key homomorphic encryption scheme into the data submission stage of 

the perceived users, and thereby proposes a crowd-sensing scheme with privacy preservation. 

Keywords: multi-key homomorphic encryption; lattice; CRS model; crowd intelligence perception 

 

1. Introduction 

With the continuous advancement of technologies such as the Internet, the Internet of Things, 

big data, and artificial intelligence, the demand for computing power and storage resources by 

enterprises and individuals has increased exponentially. Traditional local computing and storage 

methods can no longer meet the needs of modern society for data processing speed and capacity [1]. 

Outsourcing computing allows users to entrust complex computing tasks or data processing work to 

a third party (such as a cloud service provider) to perform computing tasks through a cloud platform 

or distributed computing resources, saving users a lot of time and computing costs[2]. 

Although outsourced computing provides flexibility and efficiency, it is also accompanied by 

some potential risks. In outsourced computing, users usually need to upload data to cloud service 

providers for processing. These outsourced data may contain some sensitive user information, such 

as personal privacy, commercial secrets or key business data[3–5]. Homomorphic encryption 

technology allows specific operations (such as addition or multiplication) to be performed directly 

on encrypted data without decrypting the data. The decrypted result is consistent with the result of 

performing the same operation on the plaintext[6]. User data remains encrypted during the 

calculation process, ensuring the privacy of the data throughout the calculation process, and users 

do not need to trust the cloud service provider. 

Multi-key homomorphic encryption solves the above problem by allowing each user to encrypt 

data with his or her own key, while still supporting joint computing of encrypted data. The 

computing results can be obtained by collaborative decryption of the private keys of multiple 

users[7–9]. 

In a multi-key homomorphic encryption scheme, in order to enable multiple users to jointly 

perform homomorphic operations on ciphertext (for example, perform homomorphic operations 
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such as addition and multiplication) and collaboratively decrypt the ciphertext after homomorphic 

operations, a mechanism is needed to coordinate and combine the public keys of different users[10]. 

The Common Random String (CRS) provides a shared public parameter based on which all users can 

generate their own public keys. Through the public parameters provided by the CRS, multiple public 

keys with the same parameters are integrated into an aggregate public key. Multiple users can 

perform homomorphic operations on ciphertext under the aggregate public key and collaboratively 

decrypt through a distributed decryption protocol. 

CRS can simplify the scheme design and key generation process, but it also brings some 

problems: On the one hand, the existence of CRS means that the system relies on a public, predefined 

random string. This assumption may affect the independence and flexibility of the encryption 

scheme, which is difficult to meet in decentralized systems or scenarios with low trust requirements. 

On the other hand, the security and correctness of the scheme directly depend on the integrity and 

reliability of CRS. Dependence on CRS seriously affects the credibility of the scheme and even causes 

security vulnerabilities[12]. 

In order to avoid excessive reliance on public parameters, a multi-key homomorphic encryption 

scheme without pre-setting CRS is proposed based on a distributed key generation protocol. 

Furthermore, based on ciphertext expansion technology, a distributed ciphertext decryption method 

is proposed. In order to further protect the plaintext messages of each user, this paper proposes an 

enhanced multi-key homomorphic encryption scheme that only allows the target user to decrypt, by 

embedding the specified target user into the ciphertext. 

Finally, by applying the proposed the lattice-based multi-key homomorphic encryption scheme 

into crowd sensing scenario, a crowd sensing scheme is proposed to protect the privacy of crowd 

sensing data. 

The contributions of this paper are as follows: 

1. In order to avoid excessive reliance on public parameters, this paper proposes a multi-key 

homomorphic encryption scheme based on a distributed key generation protocol. Each user 

independently generates his or her own public and private key pair, and enhances the security 

and decentralization of the scheme. Based on ciphertext expansion technology, this paper 

proposes a distributed ciphertext decryption method suitable for multi-key scenarios. By 

expanding the ciphertext structure, multiple users can collaboratively participate in the 

decryption process. 

2. In order to further protect the plaintext privacy from each user, by embedding the specified 

target user into the ciphertext, this paper proposes an enhanced multi-key homomorphic 

encryption scheme that only allows only the target user to decrypt. 

3. By applying the proposed lattice-based multi-key homomorphic encryption scheme into the 

data submission stage, a crowd-sensing scheme is proposed, protecting the privacy of the users. 

This ensures that the data is not leaked during transmission and processing, and all entities 

except the data requester cannot obtain the perception results. 

2. Materials and Methods 

2.1. Symbols and Definitions 

In this paper, 𝜆 is used to denote the security parameter, and the dot product of two vectors u 

and v is denoted by < 𝑢, 𝑣 >. Let Ω denote a finite field and 𝛸 be a probability distribution defined 

on Ω, then 𝜔 ← 𝛸  denotes that an element 𝜔  is randomly selected from the distribution 𝛸[13]. 

𝑅𝑞 = 𝑍𝑞[𝑋]/𝛷𝑀(𝑋)  denotes a cyclotomic polynomial ring, where 𝑍𝑞[𝑋]  is a ring of polynomials 

whose coefficients are taken from 𝑍𝑞 , and 𝛷𝑀(𝑋) = 𝑋𝑀/2 + 1 denotes a cyclotomic polynomial of 

order 𝑀[14]. 

Definition 1. 𝐵-bounded distribution. Let 𝐷 be a random distribution. If any 𝑥 sampled from 𝐷 satisfies 

𝑃𝑟𝑥←𝐷[‖𝑥‖ > 𝐵] = 𝑛𝑒𝑔𝑙(𝜆), then 𝐷 is called a 𝐵-bounded distribution[15]. 
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Definition 2. RLWE Problem. RLWE is a generalization of the LWE problem, which extends the vector 

operations in LWE to polynomial ring[16]. Given a polynomial ring 𝑅 = 𝑍[𝑋]/𝑓(𝑥), where 𝑓(𝑥) is an 

irreducible polynomial, define a ring 𝑅𝑞 = 𝑅/𝑞𝑅 = 𝑍𝑞[𝑋]/𝑓(𝑥) modulo 𝑞. Select a secret vector 𝑠 ∈ 𝑅𝑞, and 

give a RLWE sample pair (𝑎, 𝑏) ∈ 𝑅𝑞 × 𝑅𝑞, where 𝑏 = 𝑎 ∙ 𝑠 + 𝑒 (𝑚𝑜𝑑 𝑞), and 𝑒 is a random noise sampled 

from the noise distribution 𝜒[17]. Depending on the goal, the RLWE problem is divided into two types: search 

RLWE problem and decision RLWE problem[18]. 

Definition 3. Decision RLWE Problem. The goal of the decision RLWE problem is to distinguish between two 

distributions: distribution 1 is an RLWE distribution, where the sample pair (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝑞 × 𝑅𝑞 satisfies 𝑏𝑖 =

𝑎𝑖 ∙ 𝑠 + 𝑒𝑖  (𝑚𝑜𝑑 𝑞), where 𝑠 ∈ 𝑅𝑞 is the secret vector and 𝑒 ∈ 𝜒 is the random error term; distribution 2 is 

a uniform distribution, where 𝑎𝑖  and 𝑏𝑖  in the sample pair (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝑞 × 𝑅𝑞  are independently and 

uniformly randomly sampled from 𝑅𝑞[8]. The RLWE assumption means that there is no effective polynomial 

algorithm that can distinguish between these two distributions, that is, for a probabilistic polynomial time 

algorithm ℬ and security parameter 𝜆, we have 

𝐴𝑑𝑣(ℬ) ≔ |𝑃𝑟[ℬ𝐴𝑠,𝜒(1𝜆) = 1] − 𝑃𝑟[ℬ𝑅𝑞×𝑅𝑞(1𝜆) = 1]| = 𝑛𝑒𝑔𝑙(𝜆) (1) 

2.2. Multi-Key Homomorphic Encryption 

Multi-key homomorphic encryption allows users to encrypt their data using their own public 

keys and perform homomorphic operations on the ciphertext. At the same time, the calculation 

results are decrypted by all users collaboratively, which is more suitable for multi-user collaborative 

scenarios[19,20]. A multi-key homomorphic encryption scheme usually consists of six polynomial 

time algorithms, namely 𝑀𝐹𝐻𝐸. 𝑆𝑒𝑡𝑢𝑝, 𝑀𝐹𝐻𝐸. 𝐾𝑒𝑦𝑔𝑒𝑛, 𝑀𝐹𝐻𝐸. 𝐸𝑛𝑐, 𝑀𝐹𝐻𝐸. 𝐸𝑥𝑝𝑎𝑛𝑑, 𝑀𝐹𝐻𝐸. 𝐸𝑣𝑎𝑙, 

and 𝑀𝐹𝐻𝐸. 𝐷𝑒𝑐. The specific descriptions are as follows: 

- 𝑀𝐹𝐻𝐸. 𝑆𝑒𝑡𝑢𝑝(1𝜆): Input security parameter 𝜆 and output public parameter 𝑝𝑎𝑟𝑎𝑚𝑠. 

- 𝑀𝐹𝐻𝐸. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠): Input public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 and output the user's public key 

and private key (𝑝𝑘, 𝑠𝑘). 

- 𝑀𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑝𝑘, 𝑚): For the plaintext 𝑚 that needs to be encrypted, input the public key 𝑝𝑘 and 

output a ciphertext 𝑐𝑡. 

- 𝑀𝐹𝐻𝐸. 𝐸𝑥𝑝𝑎𝑛𝑑((𝑝𝑘1, ⋯ , 𝑝𝑘𝑁), 𝑖, 𝑐𝑡𝑖) : Input the public keys of 𝑁  users 𝑝𝑘1, ⋯ 𝑝𝑘𝑁  and the 

ciphertext 𝑐𝑡𝑖 encrypted by the 𝑖-th public key 𝑝𝑘𝑖, and output the expanded ciphertext 𝑐𝑡𝑖̂. 

- 𝑀𝐹𝐻𝐸. 𝐸𝑣𝑎𝑙(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑓, (𝑐𝑡1̂, ⋯ , 𝑐𝑡𝑙̂)) ： Given a function 𝑓 , input 𝑙  extended ciphertexts 

𝑐𝑡1̂, ⋯ , 𝑐𝑡𝑙̂, and output the ciphertext 𝑐𝑡̂ after homomorphic operation. 

- 𝑀𝐹𝐻𝐸. 𝐷𝑒𝑐(𝑝𝑎𝑟𝑎𝑚𝑠, (𝑠𝑘1, ⋯ , 𝑠𝑘𝑁), 𝑐𝑡̂): Input the private keys of 𝑁  users 𝑠𝑘1, ⋯ , 𝑠𝑘𝑁  and the 

homomorphic operation ciphertext 𝑐𝑡̂, and output the plaintext 𝑚. The decryption process is 

divided into two steps, as follows: 

• 𝑀𝐹𝐻𝐸. 𝑃𝑎𝑟𝑡𝐷𝑒𝑐(𝑖, 𝑠𝑘𝑖 , 𝑐𝑡̂): Input the private key 𝑠𝑘𝑖 of the 𝑖-th user and the 

homomorphic operation ciphertext 𝑐𝑡̂, and output the partial decryption result 𝑝𝑖 . 

• 𝑀𝐹𝐻𝐸. 𝐹𝑖𝑛𝐷𝑒𝑐(𝑝1, ⋯ , 𝑝𝑁): Input the partial decryption results 𝑝1, ⋯ , 𝑝𝑁 of 𝑁 users and 

output the plaintext 𝑚. 

3. Lattice-Based Multi-Key Homomorphic Encryption Scheme Without CRS 

In order to reduce the dependence on public parameters and enhance the ability of users to 

independently generate public keys, this section proposes a lattice-based multi-key homomorphic 

encryption scheme without CRS. Through a distributed key generation protocol, all users 

independently generate their keys. Based on the ciphertext expansion technology, a distributed 

ciphertext decryption method in a multi-key scenario is proposed, thereby realizing cross-user 

homomorphic addition operations without public parameters. In order to further protect the 

plaintext messages of each user, this section embeds the target user's information in the ciphertext, 
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so that the encryption process supports the designated target user as the only decryptor, providing 

more flexible privacy preservation. 

3.1. Securrity Model 

IND-CPA security requirement: For any probabilistic polynomial time adversary 𝒜 , its 

advantage under the "chosen plaintext attack" is negligible. IND-CPA security is defined by the 

interactive game 𝐺𝑎𝑚𝑒𝒜  between challenger 𝒞 and adversary 𝒜. The specific steps are as follows. 

1. Initialization phase: Input security parameter 𝜆, 𝒞 runs 𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝑆𝑒𝑡𝑢𝑝(1𝜆 , 1𝐿) algorithm to 

generate system public parameter 𝑝𝑎𝑟𝑎𝑚𝑠. 𝒞 runs ((𝑝𝑘𝑖 , 𝑠𝑘𝑖), (𝑝𝑘𝑇 , 𝑠𝑘𝑇)) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) 

algorithm to generate key pairs {(𝑝𝑘𝑖 , 𝑠𝑘𝑖)}𝑖=1
𝑁  for 𝑁 users and key pair (𝑝𝑘𝑇 , 𝑠𝑘𝑇) for target 

user 𝑇, and sends {𝑝𝑘𝑖}𝑖=1
𝑁 , 𝑝𝑘𝑇 to 𝒜. 

2. Query phase: 𝒞 maintains a query record table 𝑄, which is empty at initialization and records 

all ciphertext query indexes initiated by 𝒜 during the entire query process. 𝒜 can adaptively 

select any plaintext 𝑚𝑖  and initiate a query request. 𝒞  runs the {𝑐𝑖 ← 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝑇 , 𝑚𝑖)}𝑖∈𝑆 

algorithm to generate the ciphertext 𝑐𝑖 and returns it to 𝒜. This phase allows 𝒜 to perform a 

polynomial number of queries. 

3. Challenge phase: After 𝒜 finishes the query, it requests the challenge ciphertext. 𝒜 selects 

two plaintexts 𝑚0, 𝑚1 of equal length and the target public key set 𝑆∗ ∈ {1,2, ⋯ , 𝑘}, and sends 

them to 𝒞 . 𝒞  randomly selects a bit 𝑏 ← {0,1} , calculates the challenge ciphertext 𝑐∗ =

𝐸𝑛𝑐({𝑝𝑘𝑖}𝑖∈𝑆∗ , 𝑝𝑘𝑇 , 𝑚𝑏), and returns 𝑐∗ to 𝒜. 

4. Guessing stage: 𝒜  outputs a guess bit 𝑏∗ ∈ {0,1} based on 𝑐∗ . If 𝑏∗ = 𝑏 , 𝒜  wins and the 

game output is 1; otherwise, the output is 0. 

If and only if for all PPT adversaries 𝒜, there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that: 

|𝑃𝑟[𝐺𝑎𝑚𝑒𝒜 = 1] −
1

2
| ≤ 𝑛𝑒𝑔𝑙(𝜆) (2) 

Where 𝜆 is a security parameter, the multi-key homomorphic encryption scheme without CRS is 

IND-CPA secure, that is, it satisfies semantic security. 

3.2. Scheme Construction 

The lattice-based multi-key homomorphic encryption scheme without CRS includes nine 

algorithms, namely: 𝑆𝑒𝑡𝑢𝑝  algorithm, 𝐾𝑒𝑦𝐺𝑒𝑛  algorithm, 𝐸𝑛𝑐𝑜𝑑𝑒  algorithm, 𝐸𝑛𝑐  algorithm, 

𝐸𝑥𝑝𝑎𝑛𝑑  algorithm, 𝐴𝑑𝑑𝐸𝑣𝑎𝑙  algorithm, 𝑃𝑎𝑟𝑡𝐷𝑒𝑐  algorithm, 𝐹𝑖𝑛𝐷𝑒𝑐  algorithm, and 𝐷𝑒𝑐𝑜𝑑𝑒 

algorithm. The specific description of each algorithm is as follows. 

1. System Initialization 𝑆𝑒𝑡𝑢𝑝(1𝜆, 1𝐿) 

Step 1. Let the security parameter be 𝜆, the circuit depth be 𝐿, and the number of users be 𝑁. 

Let the dimension of the polynomial ring 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝐾 + 1) be 𝐾, and the ciphertext modulus be 

𝑞. Let 𝜒 = 𝜒(𝜆) be the key distribution on 𝑅𝑞, and 𝜓 = 𝜓(𝜆) be the error distribution on 𝑅. 

Step 2. Returns the system common parameters 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝐾, 𝑞, 𝜒, 𝜓). 

2. Key generation algorithm 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) 

Step 1. 𝑈𝑖 selects 𝑠𝑖 ← 𝜒 and sets its private key to 𝑠𝑘𝑖 = (1, 𝑠𝑖). 𝑈𝑖 randomly samples 𝑒𝑖 ← 𝜓, 

𝑎𝑖 ← 𝑅𝑞, calculates 𝑏𝑖 = −𝑎𝑖 ∙ 𝑠𝑖 + 𝑒𝑖 𝑚𝑜𝑑 𝑞 ∈ 𝑅𝑞, and sets its public key to 𝑝𝑘𝑖 = (𝑏𝑖 , 𝑎𝑖). 

Step 2. 𝑈𝑇 selects 𝑠𝑇 ← 𝜒 and sets its private key to 𝑠𝑘𝑇 = (1, 𝑠𝑇). 𝑈𝑇 randomly samples 𝑒𝑇 ←

𝜓, 𝑎𝑇 ← 𝑅𝑞, calculates 𝑏𝑇 = −𝑎𝑇 ∙ 𝑠𝑇 + 𝑒𝑇 𝑚𝑜𝑑 𝑞 ∈ 𝑅𝑞, and sets its public key to 𝑝𝑘𝑇 = (𝑏𝑇 , 𝑎𝑇). 

3. Coding 𝐸𝑛𝑐𝑜𝑑𝑒(𝑧𝑖 , Δ) 

Step 1. The message of user 𝑈𝑖  is a complex vector 𝑧𝑖 = (𝑧𝑖,1, 𝑧𝑖,2, ⋯ , 𝑧𝑖,𝐾/2), where 𝐾  is the 

dimension of the polynomial ring. The complex vector 𝑧𝑖 is scaled to retain decimal precision, and 

𝑧𝑖 = 𝛥 ∙ 𝑧𝑖 is calculated, where 𝛥 is the scaling factor. 

Step 2. The complex vector 𝑧𝑖 is mapped to the polynomial ring 𝑅 = ℤ[𝑋]/(𝑋𝑁 + 1) through 𝜏 

mapping, that is, 𝑚 = ⌊𝜏−1(⌊𝑧𝑖⌉)⌉. 
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Step 3. Output integer coefficient plaintext polynomial 𝑚𝑖. 

4. Encryption algorithm 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝑇 , 𝑚𝑖) 

Step 1. 𝑈𝑖  randomly samples 𝑣𝑖 ← 𝜒，𝑒0
𝑖 , 𝑒1

𝑖 , 𝑒2
𝑖 ← 𝜓 , and sets 𝑎𝑖 = 𝑎𝑖[1] , 𝑎𝑇 = 𝑎𝑇[1] , 𝑏𝑖 =

𝑏𝑖[1], 𝑏𝑇 = 𝑏𝑇[1]. 

Step 2. 𝑈𝑖  uses public keys 𝑝𝑘𝑖  and 𝑝𝑘𝑇  to encrypt its plaintext 𝑚𝑖  and do the following 

calculation. 

𝑐0
𝑖 = 𝑣𝑖 ∙ (𝑏𝑖 + 𝑏𝑇) + 𝑚𝑖 + 𝑒0

𝑖 (𝑚𝑜𝑑 𝑞) (3) 

𝑐1
𝑖 = 𝑣𝑖 ∙ 𝑎𝑖 + 𝑒1

𝑖(𝑚𝑜𝑑 𝑞) (4) 

𝑐2
𝑖 = 𝑣𝑖 ∙ 𝑎𝑇 + 𝑒2

𝑖 (𝑚𝑜𝑑 𝑞) (5) 

The output ciphertext is 𝑐𝑖 = (𝑐0
𝑖 , 𝑐1

𝑖 , 𝑐2
𝑖 )  ∈ 𝑅𝑞

3. 

5. Ciphertext expansion algorithm 𝐸𝑥𝑝𝑎𝑛𝑑(𝑐𝑖 , 𝑖) 

Step 1. User 𝑈𝑖 expands its ciphertext 𝑐𝑖 ∈ 𝑅𝑞
3 to a higher dimension and outputs the expanded 

ciphertext 𝑐̂𝑖 = (𝑐0
𝑖 , 0, ⋯⏟

𝑖−1

, 𝑐1
𝑖 , 0, ⋯ , 𝑐2

𝑖 ) ∈ 𝑅𝑞
𝑁+2. 

Step 2. 𝑈𝑖 sends its extended ciphertext 𝑐̂𝑖 to CSP for homomorphic operation. 

6. Homomorphic operation algorithm 𝐴𝑑𝑑𝐸𝑣𝑎𝑙(𝑐̂1, 𝑐̂2, ⋯ 𝑐̂𝑁) 

Step 1. After CSP collects the extended ciphertexts 𝑐̂1, 𝑐̂2, ⋯ 𝑐̂𝑁 of all users 𝑈𝑖{𝑖 = 1,2, ⋯ , 𝑁}, it 

performs homomorphic computation as follows. 𝐶𝑠𝑢𝑚0
= ∑ 𝑐0

𝑖𝑁
𝑖=1 , 𝐶𝑠𝑢𝑚1

= (𝑐1
1, ⋯ , 𝑐1

𝑁) , 𝐶𝑠𝑢𝑚2
=

∑ 𝑐2
𝑖𝑁

𝑖=1 , and outputs the aggregated ciphertext 𝐶𝑠𝑢𝑚 = (𝐶𝑠𝑢𝑚0
, 𝑐1

1, ⋯ , 𝑐1
𝑁 , 𝐶𝑠𝑢𝑚2

). 

Step 2. CSP sends the aggregate ciphertext 𝐶𝑠𝑢𝑚 to the target user 𝑈𝑇 for decryption. 

7. Partial decryption algorithm 𝑃𝑎𝑟𝑡𝐷𝑒𝑐(𝑖, 𝑠𝑘𝑖 , 𝑐𝑖) 

Step 1. User 𝑈𝑖 uses his private key 𝑠𝑘𝑖 to partially decrypt his ciphertext 𝑐𝑖 and calculates his 

decryption share 𝑝𝑖 = 𝑠𝑖 ∙ 𝑐1
𝑖 + 𝑒𝑖

∗(𝑚𝑜𝑑 𝑞), where 𝑒𝑖
∗ ← 𝜓. 

Step 2. 𝑈𝑖 sends its decrypted share 𝑝𝑖  to 𝑈𝑇 for final decryption. 

8. Final decryption algorithm 𝐹𝑖𝑛𝐷𝑒𝑐(𝐶𝑠𝑢𝑚, 𝑝1, 𝑝2, ⋯ , 𝑝𝑁) 

Step 1. After receiving the aggregate ciphertext 𝐶𝑠𝑢𝑚 and the decryption shares 𝑝1 , 𝑝2, ⋯ , 𝑝𝑁, 

𝑈𝑇 uses its own private key 𝑠𝑘𝑇 to perform the final decryption, calculate and output the aggregate 

plaintext value as follows. 

𝑚∗ = 𝐶𝑠𝑢𝑚0
+ ∑ 𝑝𝑖

𝑁

𝑖=1
+ 𝑠𝑇 ∙ 𝐶𝑠𝑢𝑚2

(𝑚𝑜𝑑 𝑞) (6) 

9. Decoding 𝐷𝑒𝑐𝑜𝑑𝑒(𝑚∗) 

Step 1. Use mapping 𝜏 to map 𝑚∗ and calculate 𝑚 = ⌊𝜏(𝑚∗)⌉. 

Step 2. Perform an inverse scaling operation on m to restore the accuracy of the original data, 

that is, 𝑚 = ⌊𝛥−1(𝑚)⌉, where Δ is the scaling factor used during encoding. 

Step 3. Output the aggregate plaintext value 𝑚 in the form of a complex vector. 

3.3. Correctness Analysis 

Given security parameter 𝜆 and circuit depth 𝐿, set modulus 𝑞 = 2𝜆𝐿∙𝜔(𝑙𝑜𝑔 𝜆+𝑙𝑜𝑔 𝐿), 𝐵 = 𝜔(𝜆𝐿), 

and 𝜓 is a 𝐵-bounded distribution on 𝑅. Given the ciphertext 𝑐𝑠𝑢𝑚 = (∑ 𝑐0
𝑖𝑁

𝑖=1 , 𝑐1
1, 𝑐1

2, ⋯ , 𝑐1
𝑁) under 

𝑁 user public keys and the private keys 𝑠𝑘 = (1, 𝑠1, 𝑠2, ⋯ , 𝑠𝑁) of 𝑁 user connections, we have 

〈𝑠𝑘, 𝑐𝑠𝑢𝑚〉 = (1, 𝑠1, 𝑠2, ⋯ , 𝑠𝑁) ∙ (∑ 𝑐0
𝑖

𝑁

𝑖=1
, 𝑐1

1, 𝑐1
2, ⋯ , 𝑐1

𝑁) 

= ∑ 𝑐0
𝑖

𝑁

𝑖=1
+ ∑ 𝑠𝑖 ∙ 𝑐1

𝑖
𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

= ∑ 𝑚𝑖

𝑁

𝑖=1
+ 𝑒′(𝑚𝑜𝑑 𝑞) 
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Among them, 𝑒′ = ∑ (𝑣𝑖 ∙ 𝑒𝑖 + 𝑒0
𝑖 + 𝑠𝑖 ∙ 𝑒1

𝑖)𝑁
𝑖=1 , and ‖𝑒′‖∞ ≤ 2𝐿∙𝑂(𝑙𝑜𝑔 𝜆+𝑙𝑜𝑔 𝐿). Therefore, given the 

plaintext aggregation value 𝑚𝑠𝑢𝑚 and the corresponding aggregation ciphertext 𝐶𝑠𝑢𝑚, according to 

the definition of 𝑃𝑎𝑟𝑡𝐷𝑒𝑐 algorithm and 𝐹𝑖𝑛𝐷𝑒𝑐 algorithm, we can calculate 

𝐶𝑠𝑢𝑚0
+ ∑ 𝑝𝑖

𝑁

𝑖=1
+ 𝑠𝑇 ∙ 𝐶𝑠𝑢𝑚2

(𝑚𝑜𝑑 𝑞) 

= ∑ 𝑐0
𝑖

𝑁

𝑖=1
+ ∑ (𝑠𝑖𝑐1

𝑖 + 𝑒𝑖
∗)

𝑁

𝑖=1
+ 𝑠𝑇 ∑ 𝑐2

𝑖
𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

= ∑ (𝑣𝑖(𝑏𝑖 + 𝑏𝑇) + 𝑚𝑖 + 𝑒0
𝑖 )

𝑁

𝑖=1
+ ∑ (𝑠𝑖(𝑣𝑖𝑎𝑖 + 𝑒1

𝑖 ) + 𝑒𝑖
∗)

𝑁

𝑖=1

+ 𝑠𝑇 ∑ (𝑣𝑖 ∙ 𝑎𝑇 + 𝑒2
𝑖 )

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

= ∑ (𝑣𝑖𝑏𝑖 + 𝑚𝑖 + 𝑒0
𝑖 + 𝑠𝑖(𝑣𝑖 ∙ 𝑎𝑖 + 𝑒1

𝑖 ) + 𝑒𝑖
∗)

𝑁

𝑖=1

+ ∑ (𝑣𝑖𝑏𝑇 + 𝑠𝑇(𝑣𝑖𝑎𝑇 + 𝑒2
𝑖 ))

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

= ∑ (𝑣𝑖 ∙ 𝑒𝑖 + 𝑚𝑖 + 𝑒0
𝑖 + 𝑠𝑖 ∙ 𝑒1

𝑖 + 𝑒𝑖
∗)

𝑁

𝑖=1

+ ∑ (𝑣𝑖 ∙ 𝑒𝑇 + 𝑠𝑇 ∙ 𝑒2
𝑖 )(𝑚𝑜𝑑 𝑞)

𝑁

𝑖=1
 

= 𝑚𝑠𝑢𝑚 +  𝑒′ + 𝑒′′(𝑚𝑜𝑑 𝑞) 

where 𝑒′′ = ∑ (𝑒𝑖
∗ + 𝑣𝑖 ∙ 𝑒𝑇 + 𝑠𝑇 ∙ 𝑒2

𝑖 )𝑁
𝑖=1  and ‖𝑒′′‖∞ ≤ 2𝜆𝐿∙𝑂(𝑙𝑜𝑔 𝜆+𝑙𝑜𝑔 𝐿). Therefore, if ‖𝑒′ + 𝑒′′‖∞ < 𝑞/

4 , the lattice-based multi-key homomorphic encryption scheme without CRS can be correctly 

decrypted. 

3.4. Security Analysis 

Theorem 3.1. Assuming that the RLWE problem is difficult, if there is no adversary 𝒜 that can win the 

following security game 𝐺𝑎𝑚𝑒𝒜  with non-negligible probability, then the lattice-based multi-key 

homomorphic encryption scheme without CRS is IND-CPA secure, that is, it satisfies semantic security. 

Proof of Theorem 3.1. Given an adversary 𝒜 and a challenger 𝒞, the theorem is proved by defining 

the following game sequence. 

Game 0. Given public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝐾, 𝑞, 𝜒, 𝜓) and vector 𝑎𝑖 ← 𝑅𝑞, challenger 𝒞 runs 

𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) algorithm to generate public key 𝑝𝑘𝑖 = (𝑏𝑖 , 𝑎𝑖), and sends 𝑝𝑘𝑖 to adversary 𝒜, 

where 𝑏𝑖 = −𝑎𝑖 ∙ 𝑠𝑖 + 𝑒𝑖  𝑚𝑜𝑑 𝑞 . The distribution of 𝑝𝑘  at this stage is the same as that of MFHE 

scheme. 

Game 1. Except for the key generation phase, the steps of other phases are the same as Game 0. 

The distribution of public keys is redefined in Game 1. Given public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝑛, 𝑞, 𝜒, 𝜓) 

and vector 𝑎𝑖 ← 𝑅𝑞, generate public key 𝑝𝑘𝑖 ′ = (𝑏𝑖 ′, 𝑎𝑖), where 𝑏𝑖′ ← 𝑅𝑞. According to the difficulty 

and cyclic security assumed by RLWE, the computational difference between 𝑝𝑘𝐺𝑎𝑚𝑒 0 and 𝑝𝑘𝐺𝑎𝑚𝑒 1 

cannot be distinguished, so 𝑏𝑖 and 𝑏𝑖′ are also computationally indistinguishable, so the advantage 

of the attacker distinguishing Game 0 from Game 1 can be ignored. 

𝐴𝑑𝑣(𝒜) = |𝑃𝑟𝐺𝑎𝑚𝑒 0[𝒜(1𝜆, 𝑝𝑘𝑖) = 1] − 𝑃𝑟𝐺𝑎𝑚𝑒 1[𝒜(1𝜆, 𝑝𝑘𝑖 ′) = 1]| = 𝑛𝑒𝑔𝑙(𝜆) (7) 

Within a certain period of time, 𝒜  challenges 𝒞  and sends the challenge plaintext 𝜇1, 𝜇2 ∈

{0,1}. 𝒞 randomly selects 𝑘 ∈ {0, 1}, runs the 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝑇 , 𝑚𝑖) algorithm to output the challenge 

ciphertext 𝑐𝑖, and then sends the ciphertext 𝑐𝑖 to 𝒜. 𝒜 outputs the guess result of the scheme and 

outputs 𝑘′ ∈ {0,1}. If 𝑘′ = 𝑘, output 1, otherwise output 0. Protection Since the probability of 𝒜 

distinguishing 𝑏𝑖 and 𝑏𝑖 ′ can be ignored, the multi-key homomorphic encryption scheme without 

CRS proposed in this paper is IND-CPA secure, that is, it satisfies semantic security. □ 

4. Crowd-sensing Scheme with privacy preservation 
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Crowd sensing refers to a mode in which a large number of sensing devices (usually personal 

smartphones, wearable devices, sensors, etc.) distributed in different geographical locations work 

together to collect, process and share information[22]. This mode usually involves multiple 

participants collaborating to complete a task without central control, especially in the fields of 

environmental monitoring, urban management, intelligent transportation, etc.[23]. 

In a crowd sensing system, the task issued by the data requester requires multiple sensing users 

to upload sensing data to the sensing platform, and the platform aggregates and calculates these data 

to obtain the sensing results. However, the data uploaded by users may contain personal sensitive 

information, such as location information, health data, etc. On the other hand, the sensing platform 

cannot be fully trusted, that is, users are worried that the platform may abuse or leak the sensing 

result data. Multi-key homomorphic encryption allows the data of multiple users to be calculated in 

an encrypted state, which can achieve secure data calculation under the premise of protecting user 

privacy data. In order to solve the data privacy problem of sensing users, this section applies the 

lattice-based multi-key homomorphic encryption scheme without CRS to the data submission stage 

of sensing users, thereby designing a crowd sensing scheme with privacy protection. Specifically, 

users encrypt data before uploading it, and the perception platform only aggregates multiple data 

ciphertexts. The perception results are obtained by decryption by the data requester, ensuring that 

the data is not leaked during transmission and processing. At the same time, no other entity except 

the data requester can obtain the perception results. 

4.1. System Model 

This section proposes a crowd sensing scheme based on multi-key homomorphic encryption. 

The entities involved in this scheme are sensing users, sensing platforms, and data receivers. 

1. Sensing users 

Sensing users are data providers in the crowd sensing system, responsible for collecting data 

using their own devices (such as smartphones, wearable devices, environmental sensors, etc.). For 

example, smartphone users can provide data such as location, acceleration, and temperature; health 

monitoring device users can provide physiological data such as steps, heart rate, and sleep quality. 

Their data usually contains personal privacy information, so the data needs to be encrypted before 

uploading to the sensing platform. 

2. Sensing platform 

Sensing platform is an intermediary platform between sensing users and data requesters in the 

crowd sensing system, responsible for receiving encrypted data from multiple sensing users and 

performing homomorphic operations, and feeding the results back to the data requester. 

3. Data requester 

Data requester is the subject that uses the crowd sensing results, usually a government 

department, enterprise, or individual. According to their own needs (such as traffic management, 

environmental monitoring, health management, etc.), they publish data request tasks, receive 

aggregated ciphertext from the perception platform and decrypt it, and then analyze the perception 

data to make decisions, provide services or optimize operations. 

The crowd intelligence perception scheme based on multi-key homomorphic encryption 

proposed in this section is divided into four stages: initialization, perception data submission, 

ciphertext aggregation, and perception result decryption. Figure 1 shows the four stages of the 

scheme and the interaction process between perception users, perception platforms, and data 

requesters. 
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Figure 1. Flowchart of crowd-sensing scheme based on multi-key homomorphic encryption. 

The crowd-sensing solution based on multi-key homomorphic encryption proposed in this 

section contains five core functional modules, namely task management module, data collection 

module, encryption module, ciphertext aggregation module, and access control module. The 

introduction of each functional module is as follows. 

Task management module is responsible for allocating and coordinating user tasks to ensure the 

effectiveness of data collection. In crowd-sensing, different tasks need to be assigned to different 

perception users, and tasks need to be dynamically allocated, taking into full consideration factors 

such as user location and device capabilities. 

Data collection module is responsible for the collection of environmental information or data by 

crowd-sensing terminals (such as smartphones and IoT devices). Data may need to be pre-processed 

such as denoising, format conversion, and data compression to reduce communication overhead and 

computing burden. 

Encryption module is responsible for encrypting the collected data to ensure privacy 

preservation during data transmission and calculation. The perception user encrypts the data with 

his own public key and then submits the ciphertext. 

Ciphertext aggregation module is the perception platform performs homomorphic calculations 

on the ciphertexts of multiple perception users without decrypting the data. 

Access control module allows the perception user embeds the public key information of the data 

requester in the ciphertext to ensure that only the data requester has the right to decrypt the 

aggregated ciphertext and thus access the perception results to ensure privacy protection and 

security. 

4.2. Construction of Crowd-sensing Scheme Based on Multi-key Homomorphic Encryption 

4.2.1. Initialization Phase 

Define data requester 𝐷  and 𝐿  perception users 𝑈1, ⋯ , 𝑈𝐿 . Perception user 𝑈𝑖  runs 

(𝑝𝑘𝑖 , 𝑠𝑘𝑖) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) algorithm to generate its key pair (𝑝𝑘𝑖 , 𝑠𝑘𝑖), and data requester 𝐷 

runs (𝑝𝑘𝐷 , 𝑠𝑘𝐷) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) algorithm to generate its key pair (𝑝𝑘𝐷 , 𝑠𝑘𝐷). 

Data requesters publish perception tasks to the perception platform according to their needs. 

The perception platform is responsible for organizing appropriate users to collect and upload data 
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according to the tasks. The perception platform selects perception users 𝑈1, ⋯ , 𝑈𝑁 that meet the task 

requirements and sends task invitations to the selected perception users 𝑈𝑖 . Users can choose to 

accept or reject. 

4.2.2. Perception Data Submission Phase 

The perceptual user 𝑈𝑖 who receives the task collects data through its perceptual device and 

runs the 𝑚𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝑖, 𝑧𝑖 , 𝛥)  algorithm to encode the collected data into 𝑚𝑖 . 𝑈𝑖  uses its own 

public key 𝑝𝑘𝑖 and the public key 𝑝𝑘𝐷 of the data requester 𝐷 to encrypt 𝑚𝑖, and runs the 𝑐𝑖 ←

𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝐷 , 𝑚𝑖) algorithm to obtain the ciphertext 𝑐𝑖 = (𝑐0
𝑖 , 𝑐1

𝑖 , 𝑐2
𝑖 )  = (𝑣𝑖 ∙ (𝑝𝑘𝑖 + 𝑝𝑘𝐷) + 𝑚𝑖 + 𝑒0

𝑖 , 𝑣𝑖 ∙

𝑎𝑖 + 𝑒1
𝑖 , 𝑣𝑖 ∙ 𝑎𝐷 + 𝑒2

𝑖 )(𝑚𝑜𝑑 𝑞) , where 𝑣𝑖 ← 𝜒 , 𝑒0
𝑖 , 𝑒1

𝑖 , 𝑒2
𝑖 ← 𝜓 , 𝑎𝑖 = 𝑎𝑖[0] , 𝑎𝐷 = 𝑎𝐷[0] , 𝑝𝑘𝑖 = 𝑝𝑘𝑖[0] , 

𝑝𝑘𝐷 = 𝑝𝑘𝐷[0]. 

The perceptual user 𝑈𝑖 sends the ciphertext 𝑐𝑖 to the perceptual platform. The platform can 

only store and homomorphically compute encrypted data and cannot view the user's plaintext data 

𝑚𝑖. 

4.2.3. Ciphertext Aggregation Phase 

The perception platform receives the ciphertext 𝑐1, ⋯ , 𝑐𝑁 from the perception users 𝑈1, ⋯ , 𝑈𝑁 

and performs homomorphic computation without decryption. The perception platform runs the 

𝐶𝑠𝑢𝑚 ← 𝐴𝑑𝑑𝐸𝑣𝑎𝑙(𝑐1, 𝑐2, ⋯ , 𝑐𝑁)  algorithm to calculate the aggregated ciphertext 𝐶𝑠𝑢𝑚 = ∑ 𝑐𝑖
𝑁
𝑖=1 =

(𝐶𝑠𝑢𝑚0
, 𝐶𝑠𝑢𝑚1

, 𝐶𝑠𝑢𝑚2
) = (∑ 𝑐0

𝑖𝑁
𝑖=1 , ∑ 𝑐1

𝑖𝑁
𝑖=1 , ∑ 𝑐2

𝑖𝑁
𝑖=1 ). The aggregated ciphertext is still encrypted, and the 

perception platform cannot decrypt it to obtain the perception result. The perception platform sends 

𝐶𝑠𝑢𝑚 to the data requester 𝐷 for result decryption. 

4.2.4. Perception Result Decryption Phase 

The decryption phase of the perception result is divided into two steps: partial decryption and 

final decryption. In the partial decryption step, the perception user 𝑈𝑖  runs the 𝑝𝑖 ←

𝑃𝑎𝑟𝑡𝐷𝑒𝑐(𝑖, 𝑐𝑖 , 𝑠𝑘𝑖) algorithm to calculate the decryption share 𝑝𝑖 = 𝑠𝑖 ∙ 𝑐1
𝑖 + 𝑒𝑖

∗, where 𝑒𝑖
∗ ← 𝜓, and 

then sends 𝑝𝑖  to the data requester 𝐷. In the final decryption step, after receiving the decryption 

shares 𝑝1, ⋯ , 𝑝𝑁  of all perception users, the data requester 𝐷  uses its own private key 𝑠𝑘𝐷  to 

decrypt the aggregated ciphertext, runs the 𝑚∗ ← 𝐹𝑖𝑛𝐷𝑒𝑐(𝐶𝑠𝑢𝑚, 𝑝1, 𝑝2, ⋯ , 𝑝𝑁)  algorithm for final 

decryption, and obtains the perception result𝑚∗ . The data 𝑚 obtained after decoding 𝑚∗  is the 

perception result required by the data requester 𝐷 . The perception result is the aggregated 

perception data, not the data of a single perception user, to ensure user privacy. 

5. Security Analysis of Crowd-sensing Scheme Based on Multi-key 

Homomorphic Encryption 

In the crowd sensing scheme based on multi-key homomorphic encryption, the entire sensing 

process is completed through information transmission between three entities: the sensing user, the 

sensing platform, and the data requester. Therefore, the security of the scheme will be discussed from 

two aspects: the sensing user and the sensing platform. 

Theorem 5.1. In the crowd sensing scheme based on multi-key homomorphic encryption, no entity can obtain 

the plaintext data of a single sensing user, that is, the privacy data of the sensing user is safe. 

Proof of Theorem 5.1. In the crowd sensing scheme based on multi-key homomorphic encryption, 

the sensing user does not need to trust the sensing platform or other users, and generates its key 

independently according to the distributed key generation protocol, and the data is encrypted locally. 

The plaintext data 𝑚𝑖  of the sensing user 𝑈𝑖  is encrypted locally into the ciphertext 𝑐𝑖 =

𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝐷 , 𝑚𝑖), and 𝑐𝑖 is uploaded to the sensing platform through the network. 𝑈𝑖 's data remains 

encrypted during transmission. According to Theorem 3.1, the ciphertext 𝑐𝑖 ← 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝐷 , 𝑚𝑖) is 
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computationally indistinguishable from the uniform distribution on 𝑅𝑞. The security of IND-CPA 

based on the RLWE problem ensures that the ciphertext 𝑐𝑖 cannot be cracked, that is, the plaintext 

data 𝑚𝑖 cannot be recovered from 𝑐𝑖. Therefore, even if an attacker or data requester intercepts the 

ciphertext of the perceived user 𝑈𝑖, no information related to 𝑚𝑖 can be inferred from it. □ 

Theorem 5.2. In the crowd-sensing scheme based on multi-key homomorphic encryption, no entity other than 

the data requester can decrypt the aggregated ciphertext to obtain the perception result, that is, the perception 

result is secure. 

Proof of Theorem 5.2. In the crowd-sensing scheme based on multi-key homomorphic encryption, 

the perception platform only stores and homomorphically calculates the ciphertext 𝑐1, 𝑐2, ⋯ , 𝑐𝑁, but 

does not hold any user's private key 𝑠𝑘𝑖, so it is impossible to decrypt the ciphertext of a single user. 

The result 𝐶𝑠𝑢𝑚 after homomorphic calculation is still encrypted, and the perception platform cannot 

deduce the plaintext data through calculation. The decryption of the aggregated ciphertext 𝐶𝑠𝑢𝑚 

requires the decryption shares 𝑝𝑖  of all users and the private key 𝑠𝑘𝐷 of the data requester. Only 

the data requester can decrypt and obtain the perception result. Even if the perception platform 

obtains the aggregated ciphertext 𝐶𝑠𝑢𝑚 and the decryption shares 𝑝1, 𝑝2, ⋯ , 𝑝𝑁, its calculation 

𝐶𝑠𝑢𝑚0
+ ∑ 𝑝𝑖

𝑁

𝑖=1

(𝑚𝑜𝑑 𝑞) = ∑ 𝑐0
𝑖

𝑁

𝑖=1
+ ∑ (𝑠𝑖 ∙ 𝑐1

𝑖 + 𝑒𝑖
∗)

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

= ∑ (𝑣𝑖 ∙ (𝑝𝑘𝑖 + 𝑝𝑘𝐷) + 𝑚𝑖 + 𝑒0
𝑖 )

𝑁

𝑖=1

+ ∑ (𝑠𝑖 ∙ (𝑣𝑖 ∙ 𝑎𝑖 + 𝑒1
𝑖) + 𝑒𝑖

∗)
𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

≈ ∑ 𝑚𝑖

𝑁

𝑖=1
+ ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞) 

In addition to the aggregated plaintext ∑ 𝑚𝑖
𝑁
𝑖=1  , the calculation result also contains the partial 

ciphertext ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷
𝑁
𝑖=1 (𝑚𝑜𝑑 𝑞) encrypted by 𝑝𝑘𝐷. Since the perception platform does not have the 

private key ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷
𝑁
𝑖=1 (𝑚𝑜𝑑 𝑞) of the data requester, it cannot eliminate ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷

𝑁
𝑖=1 (𝑚𝑜𝑑 𝑞) in 

the calculation result, so it is impossible to obtain the aggregated plaintext data through calculation. 

□ 

6. Conclusion 

In multi-user scenarios, CRS, as a centralized public information, not only provides a basis for 

collaboration for participating users, but also simplifies the process of key generation and 

management, so that the encrypted data of multiple users can be effectively operated in the same 

computing environment. However, the existence of CRS weakens the ability of users to 

independently generate public keys, and it is difficult to achieve in decentralized systems or scenarios 

with low trust requirements. This section proposes a lattice-based multi-key homomorphic 

encryption scheme without CRS, aiming to eliminate the dependence on public parameters and 

improve the system's anti-attack capability. The proposed scheme not only solves the problems of 

privacy preservation and data security, but also maintains high efficiency and scalability in large-

scale distributed systems. Multi-key full homomorphic encryption scheme will be our research 

direction in future for more wide application. 
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