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Abstract: Multi-key homomorphic encryption is widely applied into outsourced computing and
privacy-preserving applications in multi-user scenarios. However, the existence of CRS weakens the
ability of users to independently generate public keys, and it is difficult to implement in decentralized
systems or scenarios with low trust requirements. In order to reduce excessive reliance on public
parameters, a multi-key homomorphic encryption scheme without pre-setting CRS is proposed based
on a distributed key generation protocol. The proposed scheme does not require the pre-generation
and distribution of CRS, which enhances the security and decentralization of the scheme.
Furthermore, in order to further protect the plaintext privacy from each user, by embedding the
specified target user into the ciphertext, this paper proposes an enhanced multi-key homomorphic
encryption scheme that only allows only the target user to decrypt. Finally, this paper applies the
proposed lattice-based multi-key homomorphic encryption scheme into the data submission stage of
the perceived users, and thereby proposes a crowd-sensing scheme with privacy preservation.

Keywords: multi-key homomorphic encryption; lattice; CRS model; crowd intelligence perception

1. Introduction

With the continuous advancement of technologies such as the Internet, the Internet of Things,
big data, and artificial intelligence, the demand for computing power and storage resources by
enterprises and individuals has increased exponentially. Traditional local computing and storage
methods can no longer meet the needs of modern society for data processing speed and capacity [1].
Outsourcing computing allows users to entrust complex computing tasks or data processing work to
a third party (such as a cloud service provider) to perform computing tasks through a cloud platform
or distributed computing resources, saving users a lot of time and computing costs[2].

Although outsourced computing provides flexibility and efficiency, it is also accompanied by
some potential risks. In outsourced computing, users usually need to upload data to cloud service
providers for processing. These outsourced data may contain some sensitive user information, such
as personal privacy, commercial secrets or key business data[3-5]. Homomorphic encryption
technology allows specific operations (such as addition or multiplication) to be performed directly
on encrypted data without decrypting the data. The decrypted result is consistent with the result of
performing the same operation on the plaintext[6]. User data remains encrypted during the
calculation process, ensuring the privacy of the data throughout the calculation process, and users
do not need to trust the cloud service provider.

Multi-key homomorphic encryption solves the above problem by allowing each user to encrypt
data with his or her own key, while still supporting joint computing of encrypted data. The
computing results can be obtained by collaborative decryption of the private keys of multiple
users[7-9].

In a multi-key homomorphic encryption scheme, in order to enable multiple users to jointly
perform homomorphic operations on ciphertext (for example, perform homomorphic operations
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such as addition and multiplication) and collaboratively decrypt the ciphertext after homomorphic
operations, a mechanism is needed to coordinate and combine the public keys of different users[10].
The Common Random String (CRS) provides a shared public parameter based on which all users can
generate their own public keys. Through the public parameters provided by the CRS, multiple public
keys with the same parameters are integrated into an aggregate public key. Multiple users can
perform homomorphic operations on ciphertext under the aggregate public key and collaboratively
decrypt through a distributed decryption protocol.

CRS can simplify the scheme design and key generation process, but it also brings some
problems: On the one hand, the existence of CRS means that the system relies on a public, predefined
random string. This assumption may affect the independence and flexibility of the encryption
scheme, which is difficult to meet in decentralized systems or scenarios with low trust requirements.
On the other hand, the security and correctness of the scheme directly depend on the integrity and
reliability of CRS. Dependence on CRS seriously affects the credibility of the scheme and even causes
security vulnerabilities[12].

In order to avoid excessive reliance on public parameters, a multi-key homomorphic encryption
scheme without pre-setting CRS is proposed based on a distributed key generation protocol.
Furthermore, based on ciphertext expansion technology, a distributed ciphertext decryption method
is proposed. In order to further protect the plaintext messages of each user, this paper proposes an
enhanced multi-key homomorphic encryption scheme that only allows the target user to decrypt, by
embedding the specified target user into the ciphertext.

Finally, by applying the proposed the lattice-based multi-key homomorphic encryption scheme
into crowd sensing scenario, a crowd sensing scheme is proposed to protect the privacy of crowd
sensing data.

The contributions of this paper are as follows:

1. In order to avoid excessive reliance on public parameters, this paper proposes a multi-key
homomorphic encryption scheme based on a distributed key generation protocol. Each user
independently generates his or her own public and private key pair, and enhances the security
and decentralization of the scheme. Based on ciphertext expansion technology, this paper
proposes a distributed ciphertext decryption method suitable for multi-key scenarios. By
expanding the ciphertext structure, multiple users can collaboratively participate in the
decryption process.

2. In order to further protect the plaintext privacy from each user, by embedding the specified
target user into the ciphertext, this paper proposes an enhanced multi-key homomorphic
encryption scheme that only allows only the target user to decrypt.

3. By applying the proposed lattice-based multi-key homomorphic encryption scheme into the
data submission stage, a crowd-sensing scheme is proposed, protecting the privacy of the users.
This ensures that the data is not leaked during transmission and processing, and all entities
except the data requester cannot obtain the perception results.

2. Materials and Methods

2.1. Symbols and Definitions

In this paper, 4 is used to denote the security parameter, and the dot product of two vectors u
and v is denoted by < u,v >.Let Q denote a finite field and X be a probability distribution defined
on , then w « X denotes that an element w is randomly selected from the distribution X[13].
Rq = Z4[X]/®y(X) denotes a cyclotomic polynomial ring, where Z,[X] is a ring of polynomials
whose coefficients are taken from Z,, and @, (X) = X/ + 1 denotes a cyclotomic polynomial of
order M[14].

Definition 1. B-bounded distribution. Let D be a random distribution. If any x sampled from D satisfies
Procplllx|l > B] = negl(A), then D is called a B-bounded distribution[15].
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Definition 2. RLWE Problem. RLWE is a generalization of the LWE problem, which extends the vector
operations in LWE to polynomial ring[16]. Given a polynomial ring R = Z[X]/f(x), where f(x) is an
irreducible polynomial, define aring Ry = R/qR = Z4[X]/f (x) modulo q. Select a secret vector s € Ry, and
give a RLWE sample pair (a,b) € Rqy X Ry, where b = a-s + e (mod q), and e is a random noise sampled
from the noise distribution x[17]. Depending on the goal, the RLWE problem is divided into two types: search
RLWE problem and decision RLWE problem[18].

Definition 3. Decision RLWE Problem. The goal of the decision RLWE problem is to distinguish between two
distributions: distribution 1 is an RLWE distribution, where the sample pair (a;, b;) € Ry X R, satisfies b; =
a;*s +e; (mod q), where s € Ry is the secret vector and e € x is the random error term; distribution 2 is
a uniform distribution, where a; and b; in the sample pair (a; b;) € Ry X R, are independently and
uniformly randomly sampled from R,[8]. The RLWE assumption means that there is no effective polynomial
algorithm that can distinguish between these two distributions, that is, for a probabilistic polynomial time
algorithm B and security parameter A, we have

Adv(B) = |Pr[B4sx(1%*) = 1] — Pr[BRe*Fa(1%) = 1]| = negl(1) 1)

2.2. Multi-Key Homomorphic Encryption

Multi-key homomorphic encryption allows users to encrypt their data using their own public
keys and perform homomorphic operations on the ciphertext. At the same time, the calculation
results are decrypted by all users collaboratively, which is more suitable for multi-user collaborative
scenarios[19,20]. A multi-key homomorphic encryption scheme usually consists of six polynomial
time algorithms, namely MFHE.Setup, MFHE.Keygen, MFHE.Enc, MFHE.Expand, MFHE.Eval,
and MFHE.Dec. The specific descriptions are as follows:

- MFHE.Setup(1*): Input security parameter A and output public parameter params.

- MFHE.KeyGen(params): Input public parameters params and output the user's public key
and private key (pk, sk).

- MFHE.Enc(pk, m): For the plaintext m that needs to be encrypted, input the publickey pk and
output a ciphertext ct.

- MFHE.Expand((pky,---,pky),i,ct;): Input the public keys of N users pky,--pky and the
ciphertext ct; encrypted by the i-th public key pk;, and output the expanded ciphertext ct;.

- MFHE.Eval(params,f,(ct;,--,ct;)) : Given a function f, input | extended ciphertexts
cty, -+, ct;, and output the ciphertext ¢t after homomorphic operation.

- MFHE.Dec(params, (skq, -, sky), ct): Input the private keys of N users sky,---,sky and the
homomorphic operation ciphertext ct, and output the plaintext m. The decryption process is
divided into two steps, as follows:

e MFHE.PartDec(i, sk;, ct): Input the private key sk; of the i-th user and the
homomorphic operation ciphertext ¢t, and output the partial decryption result p;.
e  MFHE.FinDec(py,*,py): Input the partial decryption results py,--,py of N users and

output the plaintext m.

3. Lattice-Based Multi-Key Homomorphic Encryption Scheme Without CRS

In order to reduce the dependence on public parameters and enhance the ability of users to
independently generate public keys, this section proposes a lattice-based multi-key homomorphic
encryption scheme without CRS. Through a distributed key generation protocol, all users
independently generate their keys. Based on the ciphertext expansion technology, a distributed
ciphertext decryption method in a multi-key scenario is proposed, thereby realizing cross-user
homomorphic addition operations without public parameters. In order to further protect the
plaintext messages of each user, this section embeds the target user's information in the ciphertext,
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so that the encryption process supports the designated target user as the only decryptor, providing
more flexible privacy preservation.

3.1. Securrity Model

IND-CPA security requirement: For any probabilistic polynomial time adversary A, its
advantage under the "chosen plaintext attack" is negligible. IND-CPA security is defined by the
interactive game Game, between challenger C and adversary A. The specific steps are as follows.

1. Initialization phase: Input security parameter A, C runs params « Setup(1%,1%) algorithm to
generate system public parameter params. C runs ((pk;, sk;), (pkr,skr)) « KeyGen(params)
algorithm to generate key pairs {(pk;, sk;)}\=; for N users and key pair (pky, sky) for target
user T, and sends {pk;}},, pkr to A.

2. Query phase: C maintains a query record table @, which is empty at initialization and records
all ciphertext query indexes initiated by <A during the entire query process. A can adaptively
select any plaintext m; and initiate a query request. C runs the {c; « Enc(pk;, pkr, m;)}ics
algorithm to generate the ciphertext c; and returns it to A. This phase allows A to perform a
polynomial number of queries.

3. Challenge phase: After A finishes the query, it requests the challenge ciphertext. A selects
two plaintexts my,, m; of equal length and the target public key set S* € {1,2, -+, k}, and sends
them to C. C randomly selects a bit b « {0,1}, calculates the challenge ciphertext c* =
Enc({pk;}ics, ks, mp), and returns c* to A.

4. Guessing stage: A outputs a guess bit b* € {0,1} based on c*. If b* =b, A wins and the
game output is 1; otherwise, the output is 0.

If and only if for all PPT adversaries <A, there exists a negligible function negl(4) such that:
1
Pr[Game, = 1] — 3 < negl(d) (2)

Where 1 is a security parameter, the multi-key homomorphic encryption scheme without CRS is
IND-CPA secure, that is, it satisfies semantic security.

3.2. Scheme Construction

The lattice-based multi-key homomorphic encryption scheme without CRS includes nine
algorithms, namely: Setup algorithm, KeyGen algorithm, Encode algorithm, Enc algorithm,
Expand algorithm, AddEval algorithm, PartDec algorithm, FinDec algorithm, and Decode
algorithm. The specific description of each algorithm is as follows.

1. System Initialization Setup(1%,1%)

Step 1. Let the security parameter be 4, the circuit depth be L, and the number of users be N.
Let the dimension of the polynomial ring R, = Z,[X]/(X* + 1) be K, and the ciphertext modulus be
q.Let y = x(4) be the key distribution on R,, and ¥ = (1) be the error distribution on R.

Step 2. Returns the system common parameters params = (K, q, x, ¥).

2. Key generation algorithm KeyGen(params)

Step 1. U; selects s; « x and setsits private key to sk; = (1,s;). U; randomly samples e; « 1,
a; < R,, calculates b; = —a; - s; + e; mod q € Ry, and sets its public key to pk; = (b;, a;).

Step 2. Uy selects s; < y and setsits private key to sky = (1,s7). Ur randomly samples e «
Y, ar < Ry, calculates by = —ar * sy + er mod q € R, and sets its public key to pkr = (br,ar).

3. Coding Encode(z;, A)

Step 1. The message of user U; is a complex vector z; = (2;1,%;, ", Zik/2), where K is the
dimension of the polynomial ring. The complex vector z; is scaled to retain decimal precision, and
z; = A+ z; is calculated, where 4 is the scaling factor.

Step 2. The complex vector z; is mapped to the polynomial ring R = Z[X]/(X" + 1) through 7
mapping, thatis, m = [t71(|z]].
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Step 3. Output integer coefficient plaintext polynomial m,.
4.  Encryption algorithm Enc(pk;, pky, m;)

Step 1. U; randomly samples v; « y, el el el <, and sets a; = a;[1], ar = ar[1], b; =
bi[1], by = br[1].

Step 2. U; uses public keys pk; and pk; to encrypt its plaintext m; and do the following

calculation.
c5 = v;* (b + by) + m; + ef(mod q) ©)
Ci =v;ra + eli(mOd Q) (4)
¢ =v;-ar + es(mod q) ©)

The output ciphertextis ¢; = (cj, ci,c}) € R3.
5. Ciphertext expansion algorithm Expand(c;, i)
Step 1. User U; expands its ciphertext ¢; € R} to a higher dimension and outputs the expanded
ciphertext & = (¢4, 0,-,¢i,0,-+,c5) € RY*2.
i1
Step 2. U; sends its extended ciphertext ¢; to CSP for homomorphic operation.

6. Homomorphic operation algorithm AddEval(¢y,¢,, - Cy)

Step 1. After CSP collects the extended ciphertexts &, ¢,,---éy of all users U;{i = 1,2,---,N}, it
performs homomorphic computation as follows. Cgm, = N.cl, Coum =t e, Coum, =

I, ¢}, and outputs the aggregated ciphertext Csym = (Csumgr €1r €, Coum,)-

Step 2. CSP sends the aggregate ciphertext C,,, to the target user Uy for decryption.
7.  Partial decryption algorithm PartDec(i, sk;, c;)

Step 1. User U; uses his private key sk; to partially decrypt his ciphertext c¢; and calculates his
decryption share p; = s; - ¢; + e (mod q), where e/ « .

Step 2. U; sends its decrypted share p; to Ur for final decryption.
8.  Final decryption algorithm FinDec(Cgym, D1, P2, """ PN)

Step 1. After receiving the aggregate ciphertext Cg,,, and the decryption shares p;,p,, ", pn,

Ur uses its own private key sk; to perform the final decryption, calculate and output the aggregate
plaintext value as follows.

N
m’ = Coumg + ) 1pi + 57 Csum, (mod q) (6)
i=
9. Decoding Decode(m")

Step 1. Use mapping 7 to map m" and calculate m = [t(m")].

Step 2. Perform an inverse scaling operation on m to restore the accuracy of the original data,
thatis, m = |47*(m)], where A is the scaling factor used during encoding.

Step 3. Output the aggregate plaintext value m in the form of a complex vector.

3.3. Correctness Analysis

Given security parameter 1 and circuit depth L, set modulus q = 24L@(0ga+logl) g = (AL),
and ¥ isa B-bounded distribution on R. Given the ciphertext cg, = (TN, ¢b, ¢, c?, -+, cl) under
N user public keys and the private keys sk = (1,sy,S,,+,sy) of N user connections, we have

N
— i 1 .2 N
<Sk, Csum) - (1vslr52;"';SN) ' ( g Co,C1,C1 0 )
i=1

N . N .
=Z c5+z s; - ¢; (mod q)
i=1 i=1

N
= Z m; + e'(mod q)
i=1
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Among them, ' =Y (v, e; + el +s;-e}), and |le'||, < 2L0UW0gA+logl) Therefore, given the
plaintext aggregation value mg,,, and the corresponding aggregation ciphertext Cg,,,, according to

the definition of PartDec algorithm and FinDec algorithm, we can calculate
N

Csumo + ) lpi +s7° Csumz (mod q)
i=

N i N . N .
= Z co +Z (sic{ + eL-*) +STZ cs (mod q)
5\1:1 i=1 I\;’=1
= Z (vi(bl- +br)+m; + e(‘;) + Z (si(viai + eli) + el-*)
i=1 i=1
N
+ STZ (vi-ar + k) (mod q)
i=1
N
= Z (vibj +mi+ el +s(vi-a; +ef) +¢)
i=1
N
+ Z (vibT + sr(viar + eﬁ')) (mod q)
i=1
N
=z (vi-es+my+el+s;-el+e)
i=1

N
+ Z (v,- “er+ S eé)(mod q)
i=1
= Mgy, + €' +e''(mod q)
where e” =YX (e +v;-er +sr-el) and |le”||, < 240U0gA+0g L) Therefore, if |le' + €”|le < q/
4, the lattice-based multi-key homomorphic encryption scheme without CRS can be correctly
decrypted.

3.4. Security Analysis

Theorem 3.1. Assuming that the RLWE problem is difficult, if there is no adversary A that can win the
following security game Game, with non-negligible probability, then the lattice-based multi-key
homomorphic encryption scheme without CRS is IND-CPA secure, that is, it satisfies semantic security.

Proof of Theorem 3.1. Given an adversary A and a challenger C, the theorem is proved by defining
the following game sequence.

Game 0. Given public parameters params = (K, q, x,¥) and vector a; «< R, challenger C runs
KeyGen(params) algorithm to generate public key pk; = (b;, a;), and sends pk; to adversary A,
where b; = —a; - s; + e; mod q. The distribution of pk at this stage is the same as that of MFHE
scheme.

Game 1. Except for the key generation phase, the steps of other phases are the same as Game 0.
The distribution of public keys is redefined in Game 1. Given public parameters params = (n,q, x,¥)
and vector a; < R,, generate public key pk;" = (b, a;), where b;," « R,. According to the difficulty
and cyclic security assumed by RLWE, the computational difference between pkgame o and pkeame 1
cannot be distinguished, so b; and b;" are also computationally indistinguishable, so the advantage
of the attacker distinguishing Game 0 from Game 1 can be ignored.

Adv(A) = |Proame o[ A(1% ki) = 1] — Prgame1[A(1% pk") = 1]| = negl(d)  (7)

Within a certain period of time, A challenges C and sends the challenge plaintext p,,u, €
{0,1}. ¢ randomly selects k € {0,1}, runs the Enc(pk;, pkr,m;) algorithm to output the challenge
ciphertext c;, and then sends the ciphertext ¢; to A. A outputs the guess result of the scheme and
outputs k' € {0,1}. If k' =k, output 1, otherwise output 0. Protection Since the probability of A
distinguishing b; and b;" can be ignored, the multi-key homomorphic encryption scheme without
CRS proposed in this paper is IND-CPA secure, that is, it satisfies semantic security. o

4. Crowd-sensing Scheme with privacy preservation
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Crowd sensing refers to a mode in which a large number of sensing devices (usually personal
smartphones, wearable devices, sensors, etc.) distributed in different geographical locations work
together to collect, process and share information[22]. This mode usually involves multiple
participants collaborating to complete a task without central control, especially in the fields of
environmental monitoring, urban management, intelligent transportation, etc.[23].

In a crowd sensing system, the task issued by the data requester requires multiple sensing users
to upload sensing data to the sensing platform, and the platform aggregates and calculates these data
to obtain the sensing results. However, the data uploaded by users may contain personal sensitive
information, such as location information, health data, etc. On the other hand, the sensing platform
cannot be fully trusted, that is, users are worried that the platform may abuse or leak the sensing
result data. Multi-key homomorphic encryption allows the data of multiple users to be calculated in
an encrypted state, which can achieve secure data calculation under the premise of protecting user
privacy data. In order to solve the data privacy problem of sensing users, this section applies the
lattice-based multi-key homomorphic encryption scheme without CRS to the data submission stage
of sensing users, thereby designing a crowd sensing scheme with privacy protection. Specifically,
users encrypt data before uploading it, and the perception platform only aggregates multiple data
ciphertexts. The perception results are obtained by decryption by the data requester, ensuring that
the data is not leaked during transmission and processing. At the same time, no other entity except
the data requester can obtain the perception results.

4.1. System Model

This section proposes a crowd sensing scheme based on multi-key homomorphic encryption.
The entities involved in this scheme are sensing users, sensing platforms, and data receivers.

1.  Sensing users

Sensing users are data providers in the crowd sensing system, responsible for collecting data
using their own devices (such as smartphones, wearable devices, environmental sensors, etc.). For
example, smartphone users can provide data such as location, acceleration, and temperature; health
monitoring device users can provide physiological data such as steps, heart rate, and sleep quality.
Their data usually contains personal privacy information, so the data needs to be encrypted before
uploading to the sensing platform.

2. Sensing platform

Sensing platform is an intermediary platform between sensing users and data requesters in the
crowd sensing system, responsible for receiving encrypted data from multiple sensing users and
performing homomorphic operations, and feeding the results back to the data requester.

3. Data requester

Data requester is the subject that uses the crowd sensing results, usually a government
department, enterprise, or individual. According to their own needs (such as traffic management,
environmental monitoring, health management, etc.), they publish data request tasks, receive
aggregated ciphertext from the perception platform and decrypt it, and then analyze the perception
data to make decisions, provide services or optimize operations.

The crowd intelligence perception scheme based on multi-key homomorphic encryption
proposed in this section is divided into four stages: initialization, perception data submission,
ciphertext aggregation, and perception result decryption. Figure 1 shows the four stages of the
scheme and the interaction process between perception users, perception platforms, and data
requesters.
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Figure 1. Flowchart of crowd-sensing scheme based on multi-key homomorphic encryption.

The crowd-sensing solution based on multi-key homomorphic encryption proposed in this
section contains five core functional modules, namely task management module, data collection
module, encryption module, ciphertext aggregation module, and access control module. The
introduction of each functional module is as follows.

Task management module is responsible for allocating and coordinating user tasks to ensure the
effectiveness of data collection. In crowd-sensing, different tasks need to be assigned to different
perception users, and tasks need to be dynamically allocated, taking into full consideration factors
such as user location and device capabilities.

Data collection module is responsible for the collection of environmental information or data by
crowd-sensing terminals (such as smartphones and IoT devices). Data may need to be pre-processed
such as denoising, format conversion, and data compression to reduce communication overhead and
computing burden.

Encryption module is responsible for encrypting the collected data to ensure privacy
preservation during data transmission and calculation. The perception user encrypts the data with
his own public key and then submits the ciphertext.

Ciphertext aggregation module is the perception platform performs homomorphic calculations
on the ciphertexts of multiple perception users without decrypting the data.

Access control module allows the perception user embeds the public key information of the data
requester in the ciphertext to ensure that only the data requester has the right to decrypt the
aggregated ciphertext and thus access the perception results to ensure privacy protection and
security.

4.2. Construction of Crowd-sensing Scheme Based on Multi-key Homomorphic Encryption

4.2.1. Initialization Phase

Define data requester D and L perception users Uy, -+,U, . Perception user U; runs
(pki, sk;) < KeyGen(params) algorithm to generate its key pair (pk;, sk;), and data requester D
runs (pkp,skp) < KeyGen(params) algorithm to generate its key pair (pkp, skp).

Data requesters publish perception tasks to the perception platform according to their needs.
The perception platform is responsible for organizing appropriate users to collect and upload data
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according to the tasks. The perception platform selects perception users Uy, -+, Uy that meet the task
requirements and sends task invitations to the selected perception users U;. Users can choose to
accept or reject.

4.2.2. Perception Data Submission Phase

The perceptual user U; who receives the task collects data through its perceptual device and
runs the m; « Encode(i, z;, 4) algorithm to encode the collected data into m;. U; uses its own
public key pk; and the public key pk, of the data requester D to encrypt m;, and runs the c; «
Enc(pk;, pkp, m;) algorithm to obtain the ciphertext ¢; = (ck,cl,cd) = (v; - (pk; + pkp) + m; + eb, v; -
a; +ei,v;-ap +ep)(mod q), where v; « x, ef,eie; « ¥, a;=a[0], ap=ap[0], pk;=pk]0],
pkp = pkp[0].

The perceptual user U; sends the ciphertext c; to the perceptual platform. The platform can
only store and homomorphically compute encrypted data and cannot view the user's plaintext data
m;.

4.2.3. Ciphertext Aggregation Phase

The perception platform receives the ciphertext cy,+,cy from the perception users Uy, -+, Uy
and performs homomorphic computation without decryption. The perception platform runs the
Coum < AddEval(cy, ¢y, -+, cy) algorithm to calculate the aggregated ciphertext Cgypm = Y, ¢ =
(Csumyg» Csumy» Csum,) = (Bieq ¢b, XiLy ci, 2L, cb). The aggregated ciphertext is still encrypted, and the
perception platform cannot decrypt it to obtain the perception result. The perception platform sends
Csum to the data requester D for result decryption.

4.2.4. Perception Result Decryption Phase

The decryption phase of the perception result is divided into two steps: partial decryption and
final decryption. In the partial decryption step, the perception user U; runs the p; <
PartDec(i, c;, sk;) algorithm to calculate the decryption share p; =s; ¢! + e, where e; < 1), and
then sends p; to the data requester D. In the final decryption step, after receiving the decryption
shares p,,---,py of all perception users, the data requester D uses its own private key sk, to
decrypt the aggregated ciphertext, runs the m” « FinDec(Csym, P1, P2, -+, Py) algorithm for final
decryption, and obtains the perception resultm”. The data m obtained after decoding m” is the
perception result required by the data requester D. The perception result is the aggregated
perception data, not the data of a single perception user, to ensure user privacy.

5. Security Analysis of Crowd-sensing Scheme Based on Multi-key
Homomorphic Encryption

In the crowd sensing scheme based on multi-key homomorphic encryption, the entire sensing
process is completed through information transmission between three entities: the sensing user, the
sensing platform, and the data requester. Therefore, the security of the scheme will be discussed from
two aspects: the sensing user and the sensing platform.

Theorem 5.1. In the crowd sensing scheme based on multi-key homomorphic encryption, no entity can obtain
the plaintext data of a single sensing user, that is, the privacy data of the sensing user is safe.

Proof of Theorem 5.1. In the crowd sensing scheme based on multi-key homomorphic encryption,
the sensing user does not need to trust the sensing platform or other users, and generates its key
independently according to the distributed key generation protocol, and the data is encrypted locally.
The plaintext data m; of the sensing user U; is encrypted locally into the ciphertext c; =
Enc(pk;, pkp,m;), and ¢; is uploaded to the sensing platform through the network. U;'s data remains
encrypted during transmission. According to Theorem 3.1, the ciphertext c; « Enc(pk;, pkp, m;) is
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computationally indistinguishable from the uniform distribution on R,. The security of IND-CPA
based on the RLWE problem ensures that the ciphertext ¢; cannot be cracked, that is, the plaintext
data m; cannot be recovered from c;. Therefore, even if an attacker or data requester intercepts the
ciphertext of the perceived user U;, no information related to m; can be inferred from it. o

Theorem 5.2. In the crowd-sensing scheme based on multi-key homomorphic encryption, no entity other than
the data requester can decrypt the aggregated ciphertext to obtain the perception result, that is, the perception
result is secure.

Proof of Theorem 5.2. In the crowd-sensing scheme based on multi-key homomorphic encryption,
the perception platform only stores and homomorphically calculates the ciphertext ¢y, c;, -, cy, but
does not hold any user's private key sk;, so it is impossible to decrypt the ciphertext of a single user.
Theresult Cg, after homomorphic calculation is still encrypted, and the perception platform cannot
deduce the plaintext data through calculation. The decryption of the aggregated ciphertext Cg,;,
requires the decryption shares p; of all users and the private key sk, of the data requester. Only
the data requester can decrypt and obtain the perception result. Even if the perception platform
obtains the aggregated ciphertext Cg,,, and the decryption shares p;,p,, -, py, its calculation
N

N N ,
Coumy + ) Pi(mod @)= " ch+ D" (s-ci+e;) (mod )
y =1 i=1 | i=1
= Z l(vi - (pk; + pkp) +m; + ef)
i=

N
+Z (si-(vi-a; +el) +e) (mod q)
i=1

N N
~ Z m; + Z v; - pkp (mod q)
i=1 i=1

In addition to the aggregated plaintext Y,i~; m; , the calculation result also contains the partial
ciphertext YL, v; - pkp (mod q) encrypted by pk,. Since the perception platform does not have the
private key YL, v; - pkp (mod q) of the data requester, it cannot eliminate Y., v; - pkp (mod q) in
the calculation result, so it is impossible to obtain the aggregated plaintext data through calculation.
O

6. Conclusion

In multi-user scenarios, CRS, as a centralized public information, not only provides a basis for
collaboration for participating users, but also simplifies the process of key generation and
management, so that the encrypted data of multiple users can be effectively operated in the same
computing environment. However, the existence of CRS weakens the ability of users to
independently generate public keys, and it is difficult to achieve in decentralized systems or scenarios
with low trust requirements. This section proposes a lattice-based multi-key homomorphic
encryption scheme without CRS, aiming to eliminate the dependence on public parameters and
improve the system's anti-attack capability. The proposed scheme not only solves the problems of
privacy preservation and data security, but also maintains high efficiency and scalability in large-
scale distributed systems. Multi-key full homomorphic encryption scheme will be our research
direction in future for more wide application.
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