
Article Not peer-reviewed version

Lattice-Based Multi-Key Homomorphic

Encryption Scheme Without CRS

Hongyi Zhang , Mengxue Shang , Hanzhuo Liu * , Dandan Zhang

Posted Date: 3 April 2025

doi: 10.20944/preprints202504.0302.v1

Keywords: multi-key homomorphic encryption; lattice; CRS model;

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early

versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in

Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which

permit the free download, distribution, and reuse, provided that the author and preprint are cited in any

reuse.

https://sciprofiles.com/profile/4303821
https://sciprofiles.com/profile/4356660
https://sciprofiles.com/profile/4303825
https://sciprofiles.com/profile/4356561

Article

Lattice-Based Multi-Key Homomorphic Encryption

Scheme Without CRS

Hongyi Zhang 1, Mengxue Shang 2, Hanzhuo Liu 1,* and Dandan Zhang 2

1 Mineral Resources Information Center, Metallurgical Geology Bureau, Beijing, 100025, China

2 School of Computer Science, Qufu Normal University, Rizhao, China

* Correspondence: liuhanzhuo@cmgb.cn

Abstract: Multi-key homomorphic encryption is widely applied into outsourced computing and

privacy-preserving applications in multi-user scenarios. However, the existence of CRS weakens the

ability of users to independently generate public keys, and it is difficult to implement in decentralized

systems or scenarios with low trust requirements. In order to reduce excessive reliance on public

parameters, a multi-key homomorphic encryption scheme without pre-setting CRS is proposed based

on a distributed key generation protocol. The proposed scheme does not require the pre-generation

and distribution of CRS, which enhances the security and decentralization of the scheme.

Furthermore, in order to further protect the plaintext privacy from each user, by embedding the

specified target user into the ciphertext, this paper proposes an enhanced multi-key homomorphic

encryption scheme that only allows only the target user to decrypt. Finally, this paper applies the

proposed lattice-based multi-key homomorphic encryption scheme into the data submission stage of

the perceived users, and thereby proposes a crowd-sensing scheme with privacy preservation.

Keywords: multi-key homomorphic encryption; lattice; CRS model; crowd intelligence perception

1. Introduction

With the continuous advancement of technologies such as the Internet, the Internet of Things,

big data, and artificial intelligence, the demand for computing power and storage resources by

enterprises and individuals has increased exponentially. Traditional local computing and storage

methods can no longer meet the needs of modern society for data processing speed and capacity [1].

Outsourcing computing allows users to entrust complex computing tasks or data processing work to

a third party (such as a cloud service provider) to perform computing tasks through a cloud platform

or distributed computing resources, saving users a lot of time and computing costs[2].

Although outsourced computing provides flexibility and efficiency, it is also accompanied by

some potential risks. In outsourced computing, users usually need to upload data to cloud service

providers for processing. These outsourced data may contain some sensitive user information, such

as personal privacy, commercial secrets or key business data[3–5]. Homomorphic encryption

technology allows specific operations (such as addition or multiplication) to be performed directly

on encrypted data without decrypting the data. The decrypted result is consistent with the result of

performing the same operation on the plaintext[6]. User data remains encrypted during the

calculation process, ensuring the privacy of the data throughout the calculation process, and users

do not need to trust the cloud service provider.

Multi-key homomorphic encryption solves the above problem by allowing each user to encrypt

data with his or her own key, while still supporting joint computing of encrypted data. The

computing results can be obtained by collaborative decryption of the private keys of multiple

users[7–9].

In a multi-key homomorphic encryption scheme, in order to enable multiple users to jointly

perform homomorphic operations on ciphertext (for example, perform homomorphic operations

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.0302.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 12

such as addition and multiplication) and collaboratively decrypt the ciphertext after homomorphic

operations, a mechanism is needed to coordinate and combine the public keys of different users[10].

The Common Random String (CRS) provides a shared public parameter based on which all users can

generate their own public keys. Through the public parameters provided by the CRS, multiple public

keys with the same parameters are integrated into an aggregate public key. Multiple users can

perform homomorphic operations on ciphertext under the aggregate public key and collaboratively

decrypt through a distributed decryption protocol.

CRS can simplify the scheme design and key generation process, but it also brings some

problems: On the one hand, the existence of CRS means that the system relies on a public, predefined

random string. This assumption may affect the independence and flexibility of the encryption

scheme, which is difficult to meet in decentralized systems or scenarios with low trust requirements.

On the other hand, the security and correctness of the scheme directly depend on the integrity and

reliability of CRS. Dependence on CRS seriously affects the credibility of the scheme and even causes

security vulnerabilities[12].

In order to avoid excessive reliance on public parameters, a multi-key homomorphic encryption

scheme without pre-setting CRS is proposed based on a distributed key generation protocol.

Furthermore, based on ciphertext expansion technology, a distributed ciphertext decryption method

is proposed. In order to further protect the plaintext messages of each user, this paper proposes an

enhanced multi-key homomorphic encryption scheme that only allows the target user to decrypt, by

embedding the specified target user into the ciphertext.

Finally, by applying the proposed the lattice-based multi-key homomorphic encryption scheme

into crowd sensing scenario, a crowd sensing scheme is proposed to protect the privacy of crowd

sensing data.

The contributions of this paper are as follows:

1. In order to avoid excessive reliance on public parameters, this paper proposes a multi-key

homomorphic encryption scheme based on a distributed key generation protocol. Each user

independently generates his or her own public and private key pair, and enhances the security

and decentralization of the scheme. Based on ciphertext expansion technology, this paper

proposes a distributed ciphertext decryption method suitable for multi-key scenarios. By

expanding the ciphertext structure, multiple users can collaboratively participate in the

decryption process.

2. In order to further protect the plaintext privacy from each user, by embedding the specified

target user into the ciphertext, this paper proposes an enhanced multi-key homomorphic

encryption scheme that only allows only the target user to decrypt.

3. By applying the proposed lattice-based multi-key homomorphic encryption scheme into the

data submission stage, a crowd-sensing scheme is proposed, protecting the privacy of the users.

This ensures that the data is not leaked during transmission and processing, and all entities

except the data requester cannot obtain the perception results.

2. Materials and Methods

2.1. Symbols and Definitions

In this paper, 𝜆 is used to denote the security parameter, and the dot product of two vectors u

and v is denoted by < 𝑢, 𝑣 >. Let Ω denote a finite field and 𝛸 be a probability distribution defined

on Ω, then 𝜔 ← 𝛸 denotes that an element 𝜔 is randomly selected from the distribution 𝛸[13].

𝑅𝑞 = 𝑍𝑞[𝑋]/𝛷𝑀(𝑋) denotes a cyclotomic polynomial ring, where 𝑍𝑞[𝑋] is a ring of polynomials

whose coefficients are taken from 𝑍𝑞 , and 𝛷𝑀(𝑋) = 𝑋𝑀/2 + 1 denotes a cyclotomic polynomial of

order 𝑀[14].

Definition 1. 𝐵-bounded distribution. Let 𝐷 be a random distribution. If any 𝑥 sampled from 𝐷 satisfies

𝑃𝑟𝑥←𝐷[‖𝑥‖ > 𝐵] = 𝑛𝑒𝑔𝑙(𝜆), then 𝐷 is called a 𝐵-bounded distribution[15].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 3 of 12

Definition 2. RLWE Problem. RLWE is a generalization of the LWE problem, which extends the vector

operations in LWE to polynomial ring[16]. Given a polynomial ring 𝑅 = 𝑍[𝑋]/𝑓(𝑥), where 𝑓(𝑥) is an

irreducible polynomial, define a ring 𝑅𝑞 = 𝑅/𝑞𝑅 = 𝑍𝑞[𝑋]/𝑓(𝑥) modulo 𝑞. Select a secret vector 𝑠 ∈ 𝑅𝑞, and

give a RLWE sample pair (𝑎, 𝑏) ∈ 𝑅𝑞 × 𝑅𝑞, where 𝑏 = 𝑎 ∙ 𝑠 + 𝑒 (𝑚𝑜𝑑 𝑞), and 𝑒 is a random noise sampled

from the noise distribution 𝜒[17]. Depending on the goal, the RLWE problem is divided into two types: search

RLWE problem and decision RLWE problem[18].

Definition 3. Decision RLWE Problem. The goal of the decision RLWE problem is to distinguish between two

distributions: distribution 1 is an RLWE distribution, where the sample pair (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝑞 × 𝑅𝑞 satisfies 𝑏𝑖 =

𝑎𝑖 ∙ 𝑠 + 𝑒𝑖 (𝑚𝑜𝑑 𝑞), where 𝑠 ∈ 𝑅𝑞 is the secret vector and 𝑒 ∈ 𝜒 is the random error term; distribution 2 is

a uniform distribution, where 𝑎𝑖 and 𝑏𝑖 in the sample pair (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅𝑞 × 𝑅𝑞 are independently and

uniformly randomly sampled from 𝑅𝑞[8]. The RLWE assumption means that there is no effective polynomial

algorithm that can distinguish between these two distributions, that is, for a probabilistic polynomial time

algorithm ℬ and security parameter 𝜆, we have

𝐴𝑑𝑣(ℬ) ≔ |𝑃𝑟[ℬ𝐴𝑠,𝜒(1𝜆) = 1] − 𝑃𝑟[ℬ𝑅𝑞×𝑅𝑞(1𝜆) = 1]| = 𝑛𝑒𝑔𝑙(𝜆) (1)

2.2. Multi-Key Homomorphic Encryption

Multi-key homomorphic encryption allows users to encrypt their data using their own public

keys and perform homomorphic operations on the ciphertext. At the same time, the calculation

results are decrypted by all users collaboratively, which is more suitable for multi-user collaborative

scenarios[19,20]. A multi-key homomorphic encryption scheme usually consists of six polynomial

time algorithms, namely 𝑀𝐹𝐻𝐸. 𝑆𝑒𝑡𝑢𝑝, 𝑀𝐹𝐻𝐸. 𝐾𝑒𝑦𝑔𝑒𝑛, 𝑀𝐹𝐻𝐸. 𝐸𝑛𝑐, 𝑀𝐹𝐻𝐸. 𝐸𝑥𝑝𝑎𝑛𝑑, 𝑀𝐹𝐻𝐸. 𝐸𝑣𝑎𝑙,

and 𝑀𝐹𝐻𝐸. 𝐷𝑒𝑐. The specific descriptions are as follows:

- 𝑀𝐹𝐻𝐸. 𝑆𝑒𝑡𝑢𝑝(1𝜆): Input security parameter 𝜆 and output public parameter 𝑝𝑎𝑟𝑎𝑚𝑠.

- 𝑀𝐹𝐻𝐸. 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠): Input public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 and output the user's public key

and private key (𝑝𝑘, 𝑠𝑘).

- 𝑀𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑝𝑘, 𝑚): For the plaintext 𝑚 that needs to be encrypted, input the public key 𝑝𝑘 and

output a ciphertext 𝑐𝑡.

- 𝑀𝐹𝐻𝐸. 𝐸𝑥𝑝𝑎𝑛𝑑((𝑝𝑘1, ⋯ , 𝑝𝑘𝑁), 𝑖, 𝑐𝑡𝑖) : Input the public keys of 𝑁 users 𝑝𝑘1, ⋯ 𝑝𝑘𝑁 and the

ciphertext 𝑐𝑡𝑖 encrypted by the 𝑖-th public key 𝑝𝑘𝑖, and output the expanded ciphertext 𝑐𝑡𝑖̂.

- 𝑀𝐹𝐻𝐸. 𝐸𝑣𝑎𝑙(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑓, (𝑐𝑡1̂, ⋯ , 𝑐𝑡𝑙̂)) ： Given a function 𝑓 , input 𝑙 extended ciphertexts

𝑐𝑡1̂, ⋯ , 𝑐𝑡𝑙̂, and output the ciphertext 𝑐𝑡̂ after homomorphic operation.

- 𝑀𝐹𝐻𝐸. 𝐷𝑒𝑐(𝑝𝑎𝑟𝑎𝑚𝑠, (𝑠𝑘1, ⋯ , 𝑠𝑘𝑁), 𝑐𝑡̂): Input the private keys of 𝑁 users 𝑠𝑘1, ⋯ , 𝑠𝑘𝑁 and the

homomorphic operation ciphertext 𝑐𝑡̂, and output the plaintext 𝑚. The decryption process is

divided into two steps, as follows:

• 𝑀𝐹𝐻𝐸. 𝑃𝑎𝑟𝑡𝐷𝑒𝑐(𝑖, 𝑠𝑘𝑖 , 𝑐𝑡̂): Input the private key 𝑠𝑘𝑖 of the 𝑖-th user and the

homomorphic operation ciphertext 𝑐𝑡̂, and output the partial decryption result 𝑝𝑖 .

• 𝑀𝐹𝐻𝐸. 𝐹𝑖𝑛𝐷𝑒𝑐(𝑝1, ⋯ , 𝑝𝑁): Input the partial decryption results 𝑝1, ⋯ , 𝑝𝑁 of 𝑁 users and

output the plaintext 𝑚.

3. Lattice-Based Multi-Key Homomorphic Encryption Scheme Without CRS

In order to reduce the dependence on public parameters and enhance the ability of users to

independently generate public keys, this section proposes a lattice-based multi-key homomorphic

encryption scheme without CRS. Through a distributed key generation protocol, all users

independently generate their keys. Based on the ciphertext expansion technology, a distributed

ciphertext decryption method in a multi-key scenario is proposed, thereby realizing cross-user

homomorphic addition operations without public parameters. In order to further protect the

plaintext messages of each user, this section embeds the target user's information in the ciphertext,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 4 of 12

so that the encryption process supports the designated target user as the only decryptor, providing

more flexible privacy preservation.

3.1. Securrity Model

IND-CPA security requirement: For any probabilistic polynomial time adversary 𝒜 , its

advantage under the "chosen plaintext attack" is negligible. IND-CPA security is defined by the

interactive game 𝐺𝑎𝑚𝑒𝒜 between challenger 𝒞 and adversary 𝒜. The specific steps are as follows.

1. Initialization phase: Input security parameter 𝜆, 𝒞 runs 𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝑆𝑒𝑡𝑢𝑝(1𝜆 , 1𝐿) algorithm to

generate system public parameter 𝑝𝑎𝑟𝑎𝑚𝑠. 𝒞 runs ((𝑝𝑘𝑖 , 𝑠𝑘𝑖), (𝑝𝑘𝑇 , 𝑠𝑘𝑇)) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠)

algorithm to generate key pairs {(𝑝𝑘𝑖 , 𝑠𝑘𝑖)}𝑖=1
𝑁 for 𝑁 users and key pair (𝑝𝑘𝑇 , 𝑠𝑘𝑇) for target

user 𝑇, and sends {𝑝𝑘𝑖}𝑖=1
𝑁 , 𝑝𝑘𝑇 to 𝒜.

2. Query phase: 𝒞 maintains a query record table 𝑄, which is empty at initialization and records

all ciphertext query indexes initiated by 𝒜 during the entire query process. 𝒜 can adaptively

select any plaintext 𝑚𝑖 and initiate a query request. 𝒞 runs the {𝑐𝑖 ← 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝑇 , 𝑚𝑖)}𝑖∈𝑆

algorithm to generate the ciphertext 𝑐𝑖 and returns it to 𝒜. This phase allows 𝒜 to perform a

polynomial number of queries.

3. Challenge phase: After 𝒜 finishes the query, it requests the challenge ciphertext. 𝒜 selects

two plaintexts 𝑚0, 𝑚1 of equal length and the target public key set 𝑆∗ ∈ {1,2, ⋯ , 𝑘}, and sends

them to 𝒞 . 𝒞 randomly selects a bit 𝑏 ← {0,1} , calculates the challenge ciphertext 𝑐∗ =

𝐸𝑛𝑐({𝑝𝑘𝑖}𝑖∈𝑆∗ , 𝑝𝑘𝑇 , 𝑚𝑏), and returns 𝑐∗ to 𝒜.

4. Guessing stage: 𝒜 outputs a guess bit 𝑏∗ ∈ {0,1} based on 𝑐∗ . If 𝑏∗ = 𝑏 , 𝒜 wins and the

game output is 1; otherwise, the output is 0.

If and only if for all PPT adversaries 𝒜, there exists a negligible function 𝑛𝑒𝑔𝑙(𝜆) such that:

|𝑃𝑟[𝐺𝑎𝑚𝑒𝒜 = 1] −
1

2
| ≤ 𝑛𝑒𝑔𝑙(𝜆) (2)

Where 𝜆 is a security parameter, the multi-key homomorphic encryption scheme without CRS is

IND-CPA secure, that is, it satisfies semantic security.

3.2. Scheme Construction

The lattice-based multi-key homomorphic encryption scheme without CRS includes nine

algorithms, namely: 𝑆𝑒𝑡𝑢𝑝 algorithm, 𝐾𝑒𝑦𝐺𝑒𝑛 algorithm, 𝐸𝑛𝑐𝑜𝑑𝑒 algorithm, 𝐸𝑛𝑐 algorithm,

𝐸𝑥𝑝𝑎𝑛𝑑 algorithm, 𝐴𝑑𝑑𝐸𝑣𝑎𝑙 algorithm, 𝑃𝑎𝑟𝑡𝐷𝑒𝑐 algorithm, 𝐹𝑖𝑛𝐷𝑒𝑐 algorithm, and 𝐷𝑒𝑐𝑜𝑑𝑒

algorithm. The specific description of each algorithm is as follows.

1. System Initialization 𝑆𝑒𝑡𝑢𝑝(1𝜆, 1𝐿)

Step 1. Let the security parameter be 𝜆, the circuit depth be 𝐿, and the number of users be 𝑁.

Let the dimension of the polynomial ring 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝐾 + 1) be 𝐾, and the ciphertext modulus be

𝑞. Let 𝜒 = 𝜒(𝜆) be the key distribution on 𝑅𝑞, and 𝜓 = 𝜓(𝜆) be the error distribution on 𝑅.

Step 2. Returns the system common parameters 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝐾, 𝑞, 𝜒, 𝜓).

2. Key generation algorithm 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠)

Step 1. 𝑈𝑖 selects 𝑠𝑖 ← 𝜒 and sets its private key to 𝑠𝑘𝑖 = (1, 𝑠𝑖). 𝑈𝑖 randomly samples 𝑒𝑖 ← 𝜓,

𝑎𝑖 ← 𝑅𝑞, calculates 𝑏𝑖 = −𝑎𝑖 ∙ 𝑠𝑖 + 𝑒𝑖 𝑚𝑜𝑑 𝑞 ∈ 𝑅𝑞, and sets its public key to 𝑝𝑘𝑖 = (𝑏𝑖 , 𝑎𝑖).

Step 2. 𝑈𝑇 selects 𝑠𝑇 ← 𝜒 and sets its private key to 𝑠𝑘𝑇 = (1, 𝑠𝑇). 𝑈𝑇 randomly samples 𝑒𝑇 ←

𝜓, 𝑎𝑇 ← 𝑅𝑞, calculates 𝑏𝑇 = −𝑎𝑇 ∙ 𝑠𝑇 + 𝑒𝑇 𝑚𝑜𝑑 𝑞 ∈ 𝑅𝑞, and sets its public key to 𝑝𝑘𝑇 = (𝑏𝑇 , 𝑎𝑇).

3. Coding 𝐸𝑛𝑐𝑜𝑑𝑒(𝑧𝑖 , Δ)

Step 1. The message of user 𝑈𝑖 is a complex vector 𝑧𝑖 = (𝑧𝑖,1, 𝑧𝑖,2, ⋯ , 𝑧𝑖,𝐾/2), where 𝐾 is the

dimension of the polynomial ring. The complex vector 𝑧𝑖 is scaled to retain decimal precision, and

𝑧𝑖 = 𝛥 ∙ 𝑧𝑖 is calculated, where 𝛥 is the scaling factor.

Step 2. The complex vector 𝑧𝑖 is mapped to the polynomial ring 𝑅 = ℤ[𝑋]/(𝑋𝑁 + 1) through 𝜏

mapping, that is, 𝑚 = ⌊𝜏−1(⌊𝑧𝑖⌉)⌉.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 5 of 12

Step 3. Output integer coefficient plaintext polynomial 𝑚𝑖.

4. Encryption algorithm 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝑇 , 𝑚𝑖)

Step 1. 𝑈𝑖 randomly samples 𝑣𝑖 ← 𝜒，𝑒0
𝑖 , 𝑒1

𝑖 , 𝑒2
𝑖 ← 𝜓 , and sets 𝑎𝑖 = 𝑎𝑖[1] , 𝑎𝑇 = 𝑎𝑇[1] , 𝑏𝑖 =

𝑏𝑖[1], 𝑏𝑇 = 𝑏𝑇[1].

Step 2. 𝑈𝑖 uses public keys 𝑝𝑘𝑖 and 𝑝𝑘𝑇 to encrypt its plaintext 𝑚𝑖 and do the following

calculation.

𝑐0
𝑖 = 𝑣𝑖 ∙ (𝑏𝑖 + 𝑏𝑇) + 𝑚𝑖 + 𝑒0

𝑖 (𝑚𝑜𝑑 𝑞) (3)

𝑐1
𝑖 = 𝑣𝑖 ∙ 𝑎𝑖 + 𝑒1

𝑖(𝑚𝑜𝑑 𝑞) (4)

𝑐2
𝑖 = 𝑣𝑖 ∙ 𝑎𝑇 + 𝑒2

𝑖 (𝑚𝑜𝑑 𝑞) (5)

The output ciphertext is 𝑐𝑖 = (𝑐0
𝑖 , 𝑐1

𝑖 , 𝑐2
𝑖) ∈ 𝑅𝑞

3.

5. Ciphertext expansion algorithm 𝐸𝑥𝑝𝑎𝑛𝑑(𝑐𝑖 , 𝑖)

Step 1. User 𝑈𝑖 expands its ciphertext 𝑐𝑖 ∈ 𝑅𝑞
3 to a higher dimension and outputs the expanded

ciphertext 𝑐̂𝑖 = (𝑐0
𝑖 , 0, ⋯⏟

𝑖−1

, 𝑐1
𝑖 , 0, ⋯ , 𝑐2

𝑖) ∈ 𝑅𝑞
𝑁+2.

Step 2. 𝑈𝑖 sends its extended ciphertext 𝑐̂𝑖 to CSP for homomorphic operation.

6. Homomorphic operation algorithm 𝐴𝑑𝑑𝐸𝑣𝑎𝑙(𝑐̂1, 𝑐̂2, ⋯ 𝑐̂𝑁)

Step 1. After CSP collects the extended ciphertexts 𝑐̂1, 𝑐̂2, ⋯ 𝑐̂𝑁 of all users 𝑈𝑖{𝑖 = 1,2, ⋯ , 𝑁}, it

performs homomorphic computation as follows. 𝐶𝑠𝑢𝑚0
= ∑ 𝑐0

𝑖𝑁
𝑖=1 , 𝐶𝑠𝑢𝑚1

= (𝑐1
1, ⋯ , 𝑐1

𝑁) , 𝐶𝑠𝑢𝑚2
=

∑ 𝑐2
𝑖𝑁

𝑖=1 , and outputs the aggregated ciphertext 𝐶𝑠𝑢𝑚 = (𝐶𝑠𝑢𝑚0
, 𝑐1

1, ⋯ , 𝑐1
𝑁 , 𝐶𝑠𝑢𝑚2

).

Step 2. CSP sends the aggregate ciphertext 𝐶𝑠𝑢𝑚 to the target user 𝑈𝑇 for decryption.

7. Partial decryption algorithm 𝑃𝑎𝑟𝑡𝐷𝑒𝑐(𝑖, 𝑠𝑘𝑖 , 𝑐𝑖)

Step 1. User 𝑈𝑖 uses his private key 𝑠𝑘𝑖 to partially decrypt his ciphertext 𝑐𝑖 and calculates his

decryption share 𝑝𝑖 = 𝑠𝑖 ∙ 𝑐1
𝑖 + 𝑒𝑖

∗(𝑚𝑜𝑑 𝑞), where 𝑒𝑖
∗ ← 𝜓.

Step 2. 𝑈𝑖 sends its decrypted share 𝑝𝑖 to 𝑈𝑇 for final decryption.

8. Final decryption algorithm 𝐹𝑖𝑛𝐷𝑒𝑐(𝐶𝑠𝑢𝑚, 𝑝1, 𝑝2, ⋯ , 𝑝𝑁)

Step 1. After receiving the aggregate ciphertext 𝐶𝑠𝑢𝑚 and the decryption shares 𝑝1 , 𝑝2, ⋯ , 𝑝𝑁,

𝑈𝑇 uses its own private key 𝑠𝑘𝑇 to perform the final decryption, calculate and output the aggregate

plaintext value as follows.

𝑚∗ = 𝐶𝑠𝑢𝑚0
+ ∑ 𝑝𝑖

𝑁

𝑖=1
+ 𝑠𝑇 ∙ 𝐶𝑠𝑢𝑚2

(𝑚𝑜𝑑 𝑞) (6)

9. Decoding 𝐷𝑒𝑐𝑜𝑑𝑒(𝑚∗)

Step 1. Use mapping 𝜏 to map 𝑚∗ and calculate 𝑚 = ⌊𝜏(𝑚∗)⌉.

Step 2. Perform an inverse scaling operation on m to restore the accuracy of the original data,

that is, 𝑚 = ⌊𝛥−1(𝑚)⌉, where Δ is the scaling factor used during encoding.

Step 3. Output the aggregate plaintext value 𝑚 in the form of a complex vector.

3.3. Correctness Analysis

Given security parameter 𝜆 and circuit depth 𝐿, set modulus 𝑞 = 2𝜆𝐿∙𝜔(𝑙𝑜𝑔 𝜆+𝑙𝑜𝑔 𝐿), 𝐵 = 𝜔(𝜆𝐿),

and 𝜓 is a 𝐵-bounded distribution on 𝑅. Given the ciphertext 𝑐𝑠𝑢𝑚 = (∑ 𝑐0
𝑖𝑁

𝑖=1 , 𝑐1
1, 𝑐1

2, ⋯ , 𝑐1
𝑁) under

𝑁 user public keys and the private keys 𝑠𝑘 = (1, 𝑠1, 𝑠2, ⋯ , 𝑠𝑁) of 𝑁 user connections, we have

〈𝑠𝑘, 𝑐𝑠𝑢𝑚〉 = (1, 𝑠1, 𝑠2, ⋯ , 𝑠𝑁) ∙ (∑ 𝑐0
𝑖

𝑁

𝑖=1
, 𝑐1

1, 𝑐1
2, ⋯ , 𝑐1

𝑁)

= ∑ 𝑐0
𝑖

𝑁

𝑖=1
+ ∑ 𝑠𝑖 ∙ 𝑐1

𝑖
𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

= ∑ 𝑚𝑖

𝑁

𝑖=1
+ 𝑒′(𝑚𝑜𝑑 𝑞)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 6 of 12

Among them, 𝑒′ = ∑ (𝑣𝑖 ∙ 𝑒𝑖 + 𝑒0
𝑖 + 𝑠𝑖 ∙ 𝑒1

𝑖)𝑁
𝑖=1 , and ‖𝑒′‖∞ ≤ 2𝐿∙𝑂(𝑙𝑜𝑔 𝜆+𝑙𝑜𝑔 𝐿). Therefore, given the

plaintext aggregation value 𝑚𝑠𝑢𝑚 and the corresponding aggregation ciphertext 𝐶𝑠𝑢𝑚, according to

the definition of 𝑃𝑎𝑟𝑡𝐷𝑒𝑐 algorithm and 𝐹𝑖𝑛𝐷𝑒𝑐 algorithm, we can calculate

𝐶𝑠𝑢𝑚0
+ ∑ 𝑝𝑖

𝑁

𝑖=1
+ 𝑠𝑇 ∙ 𝐶𝑠𝑢𝑚2

(𝑚𝑜𝑑 𝑞)

= ∑ 𝑐0
𝑖

𝑁

𝑖=1
+ ∑ (𝑠𝑖𝑐1

𝑖 + 𝑒𝑖
∗)

𝑁

𝑖=1
+ 𝑠𝑇 ∑ 𝑐2

𝑖
𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

= ∑ (𝑣𝑖(𝑏𝑖 + 𝑏𝑇) + 𝑚𝑖 + 𝑒0
𝑖)

𝑁

𝑖=1
+ ∑ (𝑠𝑖(𝑣𝑖𝑎𝑖 + 𝑒1

𝑖) + 𝑒𝑖
∗)

𝑁

𝑖=1

+ 𝑠𝑇 ∑ (𝑣𝑖 ∙ 𝑎𝑇 + 𝑒2
𝑖)

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

= ∑ (𝑣𝑖𝑏𝑖 + 𝑚𝑖 + 𝑒0
𝑖 + 𝑠𝑖(𝑣𝑖 ∙ 𝑎𝑖 + 𝑒1

𝑖) + 𝑒𝑖
∗)

𝑁

𝑖=1

+ ∑ (𝑣𝑖𝑏𝑇 + 𝑠𝑇(𝑣𝑖𝑎𝑇 + 𝑒2
𝑖))

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

= ∑ (𝑣𝑖 ∙ 𝑒𝑖 + 𝑚𝑖 + 𝑒0
𝑖 + 𝑠𝑖 ∙ 𝑒1

𝑖 + 𝑒𝑖
∗)

𝑁

𝑖=1

+ ∑ (𝑣𝑖 ∙ 𝑒𝑇 + 𝑠𝑇 ∙ 𝑒2
𝑖)(𝑚𝑜𝑑 𝑞)

𝑁

𝑖=1

= 𝑚𝑠𝑢𝑚 + 𝑒′ + 𝑒′′(𝑚𝑜𝑑 𝑞)

where 𝑒′′ = ∑ (𝑒𝑖
∗ + 𝑣𝑖 ∙ 𝑒𝑇 + 𝑠𝑇 ∙ 𝑒2

𝑖)𝑁
𝑖=1 and ‖𝑒′′‖∞ ≤ 2𝜆𝐿∙𝑂(𝑙𝑜𝑔 𝜆+𝑙𝑜𝑔 𝐿). Therefore, if ‖𝑒′ + 𝑒′′‖∞ < 𝑞/

4 , the lattice-based multi-key homomorphic encryption scheme without CRS can be correctly

decrypted.

3.4. Security Analysis

Theorem 3.1. Assuming that the RLWE problem is difficult, if there is no adversary 𝒜 that can win the

following security game 𝐺𝑎𝑚𝑒𝒜 with non-negligible probability, then the lattice-based multi-key

homomorphic encryption scheme without CRS is IND-CPA secure, that is, it satisfies semantic security.

Proof of Theorem 3.1. Given an adversary 𝒜 and a challenger 𝒞, the theorem is proved by defining

the following game sequence.

Game 0. Given public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝐾, 𝑞, 𝜒, 𝜓) and vector 𝑎𝑖 ← 𝑅𝑞, challenger 𝒞 runs

𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) algorithm to generate public key 𝑝𝑘𝑖 = (𝑏𝑖 , 𝑎𝑖), and sends 𝑝𝑘𝑖 to adversary 𝒜,

where 𝑏𝑖 = −𝑎𝑖 ∙ 𝑠𝑖 + 𝑒𝑖 𝑚𝑜𝑑 𝑞 . The distribution of 𝑝𝑘 at this stage is the same as that of MFHE

scheme.

Game 1. Except for the key generation phase, the steps of other phases are the same as Game 0.

The distribution of public keys is redefined in Game 1. Given public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝑛, 𝑞, 𝜒, 𝜓)

and vector 𝑎𝑖 ← 𝑅𝑞, generate public key 𝑝𝑘𝑖 ′ = (𝑏𝑖 ′, 𝑎𝑖), where 𝑏𝑖′ ← 𝑅𝑞. According to the difficulty

and cyclic security assumed by RLWE, the computational difference between 𝑝𝑘𝐺𝑎𝑚𝑒 0 and 𝑝𝑘𝐺𝑎𝑚𝑒 1

cannot be distinguished, so 𝑏𝑖 and 𝑏𝑖′ are also computationally indistinguishable, so the advantage

of the attacker distinguishing Game 0 from Game 1 can be ignored.

𝐴𝑑𝑣(𝒜) = |𝑃𝑟𝐺𝑎𝑚𝑒 0[𝒜(1𝜆, 𝑝𝑘𝑖) = 1] − 𝑃𝑟𝐺𝑎𝑚𝑒 1[𝒜(1𝜆, 𝑝𝑘𝑖 ′) = 1]| = 𝑛𝑒𝑔𝑙(𝜆) (7)

Within a certain period of time, 𝒜 challenges 𝒞 and sends the challenge plaintext 𝜇1, 𝜇2 ∈

{0,1}. 𝒞 randomly selects 𝑘 ∈ {0, 1}, runs the 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝑇 , 𝑚𝑖) algorithm to output the challenge

ciphertext 𝑐𝑖, and then sends the ciphertext 𝑐𝑖 to 𝒜. 𝒜 outputs the guess result of the scheme and

outputs 𝑘′ ∈ {0,1}. If 𝑘′ = 𝑘, output 1, otherwise output 0. Protection Since the probability of 𝒜

distinguishing 𝑏𝑖 and 𝑏𝑖 ′ can be ignored, the multi-key homomorphic encryption scheme without

CRS proposed in this paper is IND-CPA secure, that is, it satisfies semantic security. □

4. Crowd-sensing Scheme with privacy preservation

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 7 of 12

Crowd sensing refers to a mode in which a large number of sensing devices (usually personal

smartphones, wearable devices, sensors, etc.) distributed in different geographical locations work

together to collect, process and share information[22]. This mode usually involves multiple

participants collaborating to complete a task without central control, especially in the fields of

environmental monitoring, urban management, intelligent transportation, etc.[23].

In a crowd sensing system, the task issued by the data requester requires multiple sensing users

to upload sensing data to the sensing platform, and the platform aggregates and calculates these data

to obtain the sensing results. However, the data uploaded by users may contain personal sensitive

information, such as location information, health data, etc. On the other hand, the sensing platform

cannot be fully trusted, that is, users are worried that the platform may abuse or leak the sensing

result data. Multi-key homomorphic encryption allows the data of multiple users to be calculated in

an encrypted state, which can achieve secure data calculation under the premise of protecting user

privacy data. In order to solve the data privacy problem of sensing users, this section applies the

lattice-based multi-key homomorphic encryption scheme without CRS to the data submission stage

of sensing users, thereby designing a crowd sensing scheme with privacy protection. Specifically,

users encrypt data before uploading it, and the perception platform only aggregates multiple data

ciphertexts. The perception results are obtained by decryption by the data requester, ensuring that

the data is not leaked during transmission and processing. At the same time, no other entity except

the data requester can obtain the perception results.

4.1. System Model

This section proposes a crowd sensing scheme based on multi-key homomorphic encryption.

The entities involved in this scheme are sensing users, sensing platforms, and data receivers.

1. Sensing users

Sensing users are data providers in the crowd sensing system, responsible for collecting data

using their own devices (such as smartphones, wearable devices, environmental sensors, etc.). For

example, smartphone users can provide data such as location, acceleration, and temperature; health

monitoring device users can provide physiological data such as steps, heart rate, and sleep quality.

Their data usually contains personal privacy information, so the data needs to be encrypted before

uploading to the sensing platform.

2. Sensing platform

Sensing platform is an intermediary platform between sensing users and data requesters in the

crowd sensing system, responsible for receiving encrypted data from multiple sensing users and

performing homomorphic operations, and feeding the results back to the data requester.

3. Data requester

Data requester is the subject that uses the crowd sensing results, usually a government

department, enterprise, or individual. According to their own needs (such as traffic management,

environmental monitoring, health management, etc.), they publish data request tasks, receive

aggregated ciphertext from the perception platform and decrypt it, and then analyze the perception

data to make decisions, provide services or optimize operations.

The crowd intelligence perception scheme based on multi-key homomorphic encryption

proposed in this section is divided into four stages: initialization, perception data submission,

ciphertext aggregation, and perception result decryption. Figure 1 shows the four stages of the

scheme and the interaction process between perception users, perception platforms, and data

requesters.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 8 of 12

Figure 1. Flowchart of crowd-sensing scheme based on multi-key homomorphic encryption.

The crowd-sensing solution based on multi-key homomorphic encryption proposed in this

section contains five core functional modules, namely task management module, data collection

module, encryption module, ciphertext aggregation module, and access control module. The

introduction of each functional module is as follows.

Task management module is responsible for allocating and coordinating user tasks to ensure the

effectiveness of data collection. In crowd-sensing, different tasks need to be assigned to different

perception users, and tasks need to be dynamically allocated, taking into full consideration factors

such as user location and device capabilities.

Data collection module is responsible for the collection of environmental information or data by

crowd-sensing terminals (such as smartphones and IoT devices). Data may need to be pre-processed

such as denoising, format conversion, and data compression to reduce communication overhead and

computing burden.

Encryption module is responsible for encrypting the collected data to ensure privacy

preservation during data transmission and calculation. The perception user encrypts the data with

his own public key and then submits the ciphertext.

Ciphertext aggregation module is the perception platform performs homomorphic calculations

on the ciphertexts of multiple perception users without decrypting the data.

Access control module allows the perception user embeds the public key information of the data

requester in the ciphertext to ensure that only the data requester has the right to decrypt the

aggregated ciphertext and thus access the perception results to ensure privacy protection and

security.

4.2. Construction of Crowd-sensing Scheme Based on Multi-key Homomorphic Encryption

4.2.1. Initialization Phase

Define data requester 𝐷 and 𝐿 perception users 𝑈1, ⋯ , 𝑈𝐿 . Perception user 𝑈𝑖 runs

(𝑝𝑘𝑖 , 𝑠𝑘𝑖) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) algorithm to generate its key pair (𝑝𝑘𝑖 , 𝑠𝑘𝑖), and data requester 𝐷

runs (𝑝𝑘𝐷 , 𝑠𝑘𝐷) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚𝑠) algorithm to generate its key pair (𝑝𝑘𝐷 , 𝑠𝑘𝐷).

Data requesters publish perception tasks to the perception platform according to their needs.

The perception platform is responsible for organizing appropriate users to collect and upload data

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 9 of 12

according to the tasks. The perception platform selects perception users 𝑈1, ⋯ , 𝑈𝑁 that meet the task

requirements and sends task invitations to the selected perception users 𝑈𝑖 . Users can choose to

accept or reject.

4.2.2. Perception Data Submission Phase

The perceptual user 𝑈𝑖 who receives the task collects data through its perceptual device and

runs the 𝑚𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒(𝑖, 𝑧𝑖 , 𝛥) algorithm to encode the collected data into 𝑚𝑖 . 𝑈𝑖 uses its own

public key 𝑝𝑘𝑖 and the public key 𝑝𝑘𝐷 of the data requester 𝐷 to encrypt 𝑚𝑖, and runs the 𝑐𝑖 ←

𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝐷 , 𝑚𝑖) algorithm to obtain the ciphertext 𝑐𝑖 = (𝑐0
𝑖 , 𝑐1

𝑖 , 𝑐2
𝑖) = (𝑣𝑖 ∙ (𝑝𝑘𝑖 + 𝑝𝑘𝐷) + 𝑚𝑖 + 𝑒0

𝑖 , 𝑣𝑖 ∙

𝑎𝑖 + 𝑒1
𝑖 , 𝑣𝑖 ∙ 𝑎𝐷 + 𝑒2

𝑖)(𝑚𝑜𝑑 𝑞) , where 𝑣𝑖 ← 𝜒 , 𝑒0
𝑖 , 𝑒1

𝑖 , 𝑒2
𝑖 ← 𝜓 , 𝑎𝑖 = 𝑎𝑖[0] , 𝑎𝐷 = 𝑎𝐷[0] , 𝑝𝑘𝑖 = 𝑝𝑘𝑖[0] ,

𝑝𝑘𝐷 = 𝑝𝑘𝐷[0].

The perceptual user 𝑈𝑖 sends the ciphertext 𝑐𝑖 to the perceptual platform. The platform can

only store and homomorphically compute encrypted data and cannot view the user's plaintext data

𝑚𝑖.

4.2.3. Ciphertext Aggregation Phase

The perception platform receives the ciphertext 𝑐1, ⋯ , 𝑐𝑁 from the perception users 𝑈1, ⋯ , 𝑈𝑁

and performs homomorphic computation without decryption. The perception platform runs the

𝐶𝑠𝑢𝑚 ← 𝐴𝑑𝑑𝐸𝑣𝑎𝑙(𝑐1, 𝑐2, ⋯ , 𝑐𝑁) algorithm to calculate the aggregated ciphertext 𝐶𝑠𝑢𝑚 = ∑ 𝑐𝑖
𝑁
𝑖=1 =

(𝐶𝑠𝑢𝑚0
, 𝐶𝑠𝑢𝑚1

, 𝐶𝑠𝑢𝑚2
) = (∑ 𝑐0

𝑖𝑁
𝑖=1 , ∑ 𝑐1

𝑖𝑁
𝑖=1 , ∑ 𝑐2

𝑖𝑁
𝑖=1). The aggregated ciphertext is still encrypted, and the

perception platform cannot decrypt it to obtain the perception result. The perception platform sends

𝐶𝑠𝑢𝑚 to the data requester 𝐷 for result decryption.

4.2.4. Perception Result Decryption Phase

The decryption phase of the perception result is divided into two steps: partial decryption and

final decryption. In the partial decryption step, the perception user 𝑈𝑖 runs the 𝑝𝑖 ←

𝑃𝑎𝑟𝑡𝐷𝑒𝑐(𝑖, 𝑐𝑖 , 𝑠𝑘𝑖) algorithm to calculate the decryption share 𝑝𝑖 = 𝑠𝑖 ∙ 𝑐1
𝑖 + 𝑒𝑖

∗, where 𝑒𝑖
∗ ← 𝜓, and

then sends 𝑝𝑖 to the data requester 𝐷. In the final decryption step, after receiving the decryption

shares 𝑝1, ⋯ , 𝑝𝑁 of all perception users, the data requester 𝐷 uses its own private key 𝑠𝑘𝐷 to

decrypt the aggregated ciphertext, runs the 𝑚∗ ← 𝐹𝑖𝑛𝐷𝑒𝑐(𝐶𝑠𝑢𝑚, 𝑝1, 𝑝2, ⋯ , 𝑝𝑁) algorithm for final

decryption, and obtains the perception result𝑚∗ . The data 𝑚 obtained after decoding 𝑚∗ is the

perception result required by the data requester 𝐷 . The perception result is the aggregated

perception data, not the data of a single perception user, to ensure user privacy.

5. Security Analysis of Crowd-sensing Scheme Based on Multi-key

Homomorphic Encryption

In the crowd sensing scheme based on multi-key homomorphic encryption, the entire sensing

process is completed through information transmission between three entities: the sensing user, the

sensing platform, and the data requester. Therefore, the security of the scheme will be discussed from

two aspects: the sensing user and the sensing platform.

Theorem 5.1. In the crowd sensing scheme based on multi-key homomorphic encryption, no entity can obtain

the plaintext data of a single sensing user, that is, the privacy data of the sensing user is safe.

Proof of Theorem 5.1. In the crowd sensing scheme based on multi-key homomorphic encryption,

the sensing user does not need to trust the sensing platform or other users, and generates its key

independently according to the distributed key generation protocol, and the data is encrypted locally.

The plaintext data 𝑚𝑖 of the sensing user 𝑈𝑖 is encrypted locally into the ciphertext 𝑐𝑖 =

𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝐷 , 𝑚𝑖), and 𝑐𝑖 is uploaded to the sensing platform through the network. 𝑈𝑖 's data remains

encrypted during transmission. According to Theorem 3.1, the ciphertext 𝑐𝑖 ← 𝐸𝑛𝑐(𝑝𝑘𝑖 , 𝑝𝑘𝐷 , 𝑚𝑖) is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 10 of 12

computationally indistinguishable from the uniform distribution on 𝑅𝑞. The security of IND-CPA

based on the RLWE problem ensures that the ciphertext 𝑐𝑖 cannot be cracked, that is, the plaintext

data 𝑚𝑖 cannot be recovered from 𝑐𝑖. Therefore, even if an attacker or data requester intercepts the

ciphertext of the perceived user 𝑈𝑖, no information related to 𝑚𝑖 can be inferred from it. □

Theorem 5.2. In the crowd-sensing scheme based on multi-key homomorphic encryption, no entity other than

the data requester can decrypt the aggregated ciphertext to obtain the perception result, that is, the perception

result is secure.

Proof of Theorem 5.2. In the crowd-sensing scheme based on multi-key homomorphic encryption,

the perception platform only stores and homomorphically calculates the ciphertext 𝑐1, 𝑐2, ⋯ , 𝑐𝑁, but

does not hold any user's private key 𝑠𝑘𝑖, so it is impossible to decrypt the ciphertext of a single user.

The result 𝐶𝑠𝑢𝑚 after homomorphic calculation is still encrypted, and the perception platform cannot

deduce the plaintext data through calculation. The decryption of the aggregated ciphertext 𝐶𝑠𝑢𝑚

requires the decryption shares 𝑝𝑖 of all users and the private key 𝑠𝑘𝐷 of the data requester. Only

the data requester can decrypt and obtain the perception result. Even if the perception platform

obtains the aggregated ciphertext 𝐶𝑠𝑢𝑚 and the decryption shares 𝑝1, 𝑝2, ⋯ , 𝑝𝑁, its calculation

𝐶𝑠𝑢𝑚0
+ ∑ 𝑝𝑖

𝑁

𝑖=1

(𝑚𝑜𝑑 𝑞) = ∑ 𝑐0
𝑖

𝑁

𝑖=1
+ ∑ (𝑠𝑖 ∙ 𝑐1

𝑖 + 𝑒𝑖
∗)

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

= ∑ (𝑣𝑖 ∙ (𝑝𝑘𝑖 + 𝑝𝑘𝐷) + 𝑚𝑖 + 𝑒0
𝑖)

𝑁

𝑖=1

+ ∑ (𝑠𝑖 ∙ (𝑣𝑖 ∙ 𝑎𝑖 + 𝑒1
𝑖) + 𝑒𝑖

∗)
𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

≈ ∑ 𝑚𝑖

𝑁

𝑖=1
+ ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷

𝑁

𝑖=1
(𝑚𝑜𝑑 𝑞)

In addition to the aggregated plaintext ∑ 𝑚𝑖
𝑁
𝑖=1 , the calculation result also contains the partial

ciphertext ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷
𝑁
𝑖=1 (𝑚𝑜𝑑 𝑞) encrypted by 𝑝𝑘𝐷. Since the perception platform does not have the

private key ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷
𝑁
𝑖=1 (𝑚𝑜𝑑 𝑞) of the data requester, it cannot eliminate ∑ 𝑣𝑖 ∙ 𝑝𝑘𝐷

𝑁
𝑖=1 (𝑚𝑜𝑑 𝑞) in

the calculation result, so it is impossible to obtain the aggregated plaintext data through calculation.

□

6. Conclusion

In multi-user scenarios, CRS, as a centralized public information, not only provides a basis for

collaboration for participating users, but also simplifies the process of key generation and

management, so that the encrypted data of multiple users can be effectively operated in the same

computing environment. However, the existence of CRS weakens the ability of users to

independently generate public keys, and it is difficult to achieve in decentralized systems or scenarios

with low trust requirements. This section proposes a lattice-based multi-key homomorphic

encryption scheme without CRS, aiming to eliminate the dependence on public parameters and

improve the system's anti-attack capability. The proposed scheme not only solves the problems of

privacy preservation and data security, but also maintains high efficiency and scalability in large-

scale distributed systems. Multi-key full homomorphic encryption scheme will be our research

direction in future for more wide application.

Acknowledgement: This study is sponsored by the Science and Technology Innovation Program of China

Metallurgical Geology Bureau (Grant no. CMGBKY202407).

References

1. Liu, L.; Zhang J; Song, S.H. Client-edge-cloud hierarchical federated learning. ICC 2020-2020 IEEE

International Conference on Communications (ICC).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 11 of 12

2. Kim, M.; Harmanci, A.O.; Bossuat, J.P. Ultrafast homomorphic encryption models enable secure

outsourcing of genotype imputation. Cell systems, 2021, 12(11): 1108-1120. e4.

3. Kim, H.I.; Kim, H.J.; Chang, J.W.; A secure kNN query processing algorithm using homomorphic

encryption on outsourced database. Data & knowledge engineering, 2019, 123: 101602.

4. Yang, Y.; Huang, X.; Liu, X. A comprehensive survey on secure outsourced computation and its

applications. IEEE Access, 2019, 7: 159426-159465.

5. Sun, J.; Xu, G.; Zhang, T. Verifiable, fair and privacy-preserving broadcast authorization for flexible data

sharing in clouds. IEEE Transactions on Information Forensics and Security, 2022, 18: 683-698.

6. Kadykov, V.; Levina, A.; Voznesensky, A. Homomorphic encryption within lattice-based encryption

system. Procedia Computer Science, 2021, 186: 309-315.

7. Chen, H.; Dai, W.; Kim, M. Efficient multi-key homomorphic encryption with packed ciphertexts with

application to oblivious neural network inference. Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security. 2019: 395-412.

8. Xu, K.; Tan, B.H.M.; Wang, L.P. Multi-key fully homomorphic encryption from NTRU and (R) LWE with

faster bootstrapping. Theoretical Computer Science, 2023, 968: 114026.

9. Biswas, C.; Dutta, R. Secure and efficient multi-key FHE scheme supporting multi-bit messages from LWE

preserving non-interactive decryption. Journal of Ambient Intelligence and Humanized Computing, 2023,

14(12): 16451-16464.

10. Zhou, T.; Chen, L.; Che, X. Multi-key Fully Homomorphic Encryption Scheme with Compact Ciphertexts.

Cryptology ePrint Archive, 2021.

11. Li, H.; Li, X.; Gao, J. Multi-hop Multi-key Homomorphic Encryption with Less Noise Under CRS Model.

International Symposium on Cyberspace Safety and Security. Cham: Springer International Publishing,

2022: 342-357.

12. Luo. F.; Wang, H.; Saif, A.K. Multi-key fully homomorphic encryption without CRS from RLWE. Computer

Standards & Interfaces, 2023, 86: 103742.

13. Ma, J.; Naas, S.A.; Sigg, S. Privacy-preserving federated learning based on multi-key homomorphic

encryption. International Journal of Intelligent Systems, 2022, 37(9): 5880-5901.

14. Ganesh, B.; Palmieri, P. Secure Search over Multi-key Homomorphically Encrypted Data. 2023 7th

International Conference on Cryptography, Security and Privacy (CSP). IEEE, 2023: 145-151.

15. Li, X.; Li, H.; Gao, J. Privacy preserving via multi-key homomorphic encryption in cloud computing.

Journal of Information Security and Applications, 2023, 74: 103463.

16. Chen, Y.; Dong, S.; Li, T. Dynamic multi-key FHE in asymmetric key setting from LWE. IEEE Transactions

on Information Forensics and Security, 2021, 16: 5239-5249.

17. Antwi-Boasiako, E.; Zhou, S.; Liao, Y. An LWE-Based Multi-Key Privacy-Preserving Distributed Deep

Learning. 2021 IEEE 23rd Int Conf on High Performance Computing & Communications, 2021: 533-542.

18. Che, X.; Zhou, H.; Yang, X. Efficient multi-key homomorphic encryption scheme on ring LWE. Journal of

Xidian University, 2023, 48(1): 87-95.

19. Li, N.; Zhou, T.; Che, X. Research on multi-key homomorphic encryption. Journal of Cryptologic Reshearch,

2020, 7(6): 713-734.

20. Pathak, V. Lattices, homomorphic encryption, and ckks. arXiv preprint arXiv:2205.03511, 2022.

21. Qiu, F.; Yang, H.; Zhou, L. Privacy preserving federated learning using ckks homomorphic encryption.

International Conference on Wireless Algorithms, Systems, and Applications. Cham: Springer Nature

Switzerland, 2022: 427-440.

22. Li, J.; Zhu, Y.; Hua, Y. Crowdsourcing sensing to smartphones: A randomized auction approach. IEEE

Transactions on Mobile Computing, 2017, 16(10): 2764-2777.

23. Zheng, X.; Cui, L.; Zhang, L. The perception results based on encryption technology can verify the privacy

preservation group intelligence perception scheme. Journal of Beijing Institute of Technology(Nature

Edition), 2024, 44(4): 413-420.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

 12 of 12

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2025 doi:10.20944/preprints202504.0302.v1

https://doi.org/10.20944/preprints202504.0302.v1

