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Abstract: Urban flooding in economically and environmentally vulnerable areas—such as alleyways,
lowlands, and semi-basement residences—poses serious threats to lives and property. Existing flood
detection research has largely relied on aerial or satellite-based distant-view imagery. While some
studies have explored ground-level images, datasets specifically focused on flood-vulnerable areas
remain scarce. To address this gap, we introduce AlleyFloodNet, a ground-level image dataset
designed to support rapid and accurate flood classification in high-risk urban environments. The
dataset reflects a variety of real-world conditions, enabling deep learning models to better recognize
floods in complex urban settings. We fine-tuned classification models using AlleyFloodNet and
compared their performance to models fine-tuned on FloodNet, a widely used UAV-based dataset.
Results show that models trained on AlleyFloodNet significantly outperform those trained on
FloodNet when applied to ground-level flood images. This demonstrates the importance of
viewpoint-specific data in improving detection accuracy for localized flooding. By constructing a
dataset tailored to economically and flood-vulnerable areas, this study contributes to the
development of practical flood detection systems that aim to reduce disaster impacts and enhance
protection for at-risk communities.

Keywords: flood detection; image classification; computer vision; ground-level imagery

1. Introduction

Globally, flood damage caused by heavy rainfall has been increasing significantly due to climate
change [1-4]. Areas such as semi-basement residential zones, narrow alleyways, underpasses, and
lowlands with inadequate drainage infrastructure are particularly vulnerable to flooding, often
inhabited by economically vulnerable populations, leading to substantial financial losses and
challenging recovery efforts [5-7]. They are exposed to greater risks, as they face relative difficulties
in emergency evacuation and have limited capacity to respond swiftly during flood events [8,9].

In 2022, unusually heavy rainfall in Seoul, South Korea, flooded semi-basement residential areas,
resulting in the deaths of residents who were unable to evacuate in time. In 2023 as well, the
underground roadway in Osong, South Korea, was flooded, resulting in numerous casualties. In
2024, a flash flood also occurred in Valencia, Spain, resulting in multiple fatalities reported in narrow
alleyways. These cases indicate that the risks of heavy rainfall and flooding induced by climate
change are steadily increasing on a global scale, and that existing disaster prevention systems are
insufficient to effectively prevent or respond to all flood-related damages [10,11].

Thus far, research on deep learning-based flood detection and prediction has primarily focused
on data from areas near rivers or large-scale inundation zones [12,13]. Moreover, most existing
studies have relied on data collected from a distance or on aerial data obtained through unmanned
aerial vehicles (UAVs) [14-16]. While such approaches may be effective in detecting large-scale river
flooding or widespread inundation, they have limitations in accurately identifying localized flood-
vulnerable areas within urban environments, such as narrow alleyways or semi-basement residential
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zones [16,17]. Although some studies have utilized ground-level imagery to analyze flooding, the
images were not specifically tailored to flood-vulnerable areas such as narrow alleyways or semi-
basement dwellings [17,18]. In particular, while UAV-based data can provide high-resolution
imagery, it is often difficult to achieve immediate detection and response in rapidly evolving flood
situations.[19] Therefore, there is a growing need for data collection and analysis specifically focused
on flood-vulnerable areas.

Previous studies have not adequately considered the socio-economic vulnerability of flood-
vulnerable areas, indicating a pressing need for research in this domain. The development of
customized flood detection and response systems is essential for addressing the needs of flood-
vulnerable areas. To address this issue, this study constructs a specialized ground-level image dataset,
AlleyFloodNet, designed to accurately predict and alert flood impacts in flood-vulnerable areas such
as narrow alleyways, lowlands, and semi-basement residential spaces. Unlike previous studies, this
research conducts ground-level image analysis specifically tailored to flood-vulnerable areas such as
narrow alleyways. The primary objective of this study is to overcome the limitations of prior research
and enable practical responses in real-world disaster situations.

In this study, various deep learning-based image classification models will be fine-tuned using
the constructed dataset, and their performance will be evaluated using metrics such as accuracy,
precision, recall, and Fl-score. Misclassifications will also be explored to better understand
challenging conditions in flood-vulnerable areas. Furthermore, deep learning models were fine-
tuned separately using FloodNet and AlleyFloodNet, and their performance was compared on the
AlleyFloodNet test set. This study aims to support the improvement of image classification
algorithms and the refinement of AlleyFloodNet. The overall workflow of this study is summarized
in Figure 1.
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Figure 1. Workflow of the proposed study using AlleyFloodNet for flood image classification and dataset

comparison.

2. Related Works

Rahnemoonfar et al. addressed the limitations of conventional flood datasets, which primarily
relied on low-resolution satellite imagery with infrequent updates, making rapid and efficient
damage assessment difficult. To overcome this, the authors employed high-resolution UAV imagery,
enabling access to hard-to-reach areas and facilitating more detailed scene analysis. In addition, the
proposed FloodNet dataset provides pixel-level annotations for semantic segmentation tasks,
including classification of flooded and non-flooded regions [16].

Zhao et al. highlighted the limitations of traditional remote sensing technologies, which, despite
their ability to cover wide areas, struggle to provide real-time, localized flood monitoring due to
spatiotemporal resolution constraints. In particular, accurate detection under low-light conditions,
such as nighttime or heavy rainfall, remains a persistent challenge due to the complex and dynamic
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characteristics of inundated areas. To address these challenges, the authors leveraged urban
surveillance cameras and proposed a deep learning-based framework that incorporates specialized
imaging models tailored to low-light flood scenarios and robust feature extraction techniques
resilient to various environmental changes [18].

Munawar et al. developed an automated flood detection system utilizing Unmanned Aerial
Vehicles (UAVs) to overcome the limitations of satellite-based approaches, which suffer from low
spatial resolution and delayed response times in disaster scenarios. The proposed method employs
aerial imagery captured by UAVs to determine flood occurrence, enabling rapid and localized
assessment. To this end, Haar cascade classifiers were applied to detect landmarks such as buildings
and roads in UAV images, which served as the basis for training a deep learning model for flood
classification [20].

Stateczny et al. proposed a flood detection framework using satellite imagery, which integrates
median filtering for image preprocessing and a K-means clustering algorithm enhanced by cubic
chaotic map-based weighting to segment inundated areas. Subsequently, multiple vegetation indices
such as DVI, NDVI, MTVI, GVI, and SAVI were extracted to characterize the landscape and enhance
analytical precision. For flood prediction, the authors constructed a hybrid deep learning model
(DHMEFP) by combining CNN and deep ResNet architectures, aiming to capture both local and global
features. To optimize model performance, the Combined Harris Hawks Shuffled Shepherd
Optimization (CHHSSO) algorithm was introduced for fine-tuning model weights [21].

Munawar et al. proposed a methodology that utilizes UAV-based aerial imagery and
Convolutional Neural Networks (CNNs) to automatically extract flood-affected features and assess
infrastructure damage in disaster-vulnerable areas. The study focused on flood-vulnerable regions
along the Indus River in Pakistan, where pre- and post-disaster UAV images were collected to
support the analysis. A total of 2,150 image patches were generated for model training, enabling the
CNN to effectively learn flood-related spatial patterns [22].

Yoo et al. proposed a U-Net-based flooding region segmentation model for detecting inundation
in urban underpasses using near-field image data. To train and evaluate the model, near-field images
were collected from urban underpasses in Daejeon, South Korea, to construct a dedicated dataset.
The proposed model achieved Dice coefficients of 98.8%, 94.03%, and 93.85%, respectively, across the
three locations, demonstrating high segmentation performance [23].

Zhong et al. employed the YOLOv4 object detection model to estimate flood depth by
identifying submerged objects—such as pedestrians’ legs and vehicle exhaust pipes—in flood
imagery. The method achieved a mean average precision (mAP) of 89.29% on a dataset of 1,177 flood
images, with vehicle-based reference showing higher accuracy than human-based estimation. This
approach enables real-time flood depth estimation using existing traffic camera footage, offering a
cost-effective and immediately deployable solution without the need for additional sensors [24].

Vo et al. investigated the potential of utilizing street view imagery to identify building-level
indicators of flood vulnerability, such as the presence of basements or semi-basements, in support of
urban flood risk assessment. The study focuses on identifying visual features that indicate basement
structures, evaluating the availability and suitability of image data sources, and applying computer
vision algorithms to automatically detect relevant features [25].

Witherow et al. [26] proposed an image processing pipeline for detecting roadway flooding
using images captured by mobile devices such as smartphones. To address challenges arising from
the varying resolution, lighting conditions, and environmental noise in crowdsourced data—as well
as dynamic elements like vehicles and pedestrians—the pipeline incorporates preprocessing
techniques such as water edge detection, image inpainting, and contrast enhancement. In addition,
the method utilizes R-CNN for vehicle detection and removal, SIFT for image alignment, and
specialized techniques for flood boundary detection and reflection elimination [26].

Zeng et al. proposed a deep learning-based flood detection system that automatically identifies
the extent and location of urban flooding using surveillance camera footage. The system employed
the DeepLabv3+ model, which outperformed Mask R-CNN in segmentation accuracy and was
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further enhanced using a Super-Resolution GAN (SRGAN). Experimental results demonstrated high
detection performance, with a precision of 84%, recall of 91%, and mean Intersection over Union
(mIoU) of 85.8% [27].

Manaf et al. [28] constructed a new flood image dataset by integrating benchmark datasets and
collecting additional images from the web to improve classification performance across regions and
resolutions. A comparative analysis of CNN-based deep learning models revealed that MobileNet
and Xception outperformed ResNet-50, VGG-16, and Inception(v3), achieving an accuracy of 98%
and an Fl-score of 92%. The study contributes to enhancing the generalizability of flood image
classification models and improving the processing of low-resolution imagery [28].

3. Materials and Methods

3.1. Data Development and Preprocessing

In this study, we constructed a dataset named AlleyFloodNet, composed of flood and non-flood
images, to identify the occurrence of flooding using a binary classification approach. The dataset
primarily consists of images from South Korea, and it was developed by collecting photographs of
flood-vulnerable areas such as alleyways, semi-basement residences, and lowlands around the
world, taken via CCTV and smartphones, from Google and YouTube.

AlleyFloodNet was developed by taking into account various types of floods that occur in flood-
vulnerable areas. Floods can take different forms, such as rapidly flowing and rising water or
stagnant and gradually rising water. Depending on the form of the flood, the color of the water can
also vary —appearing brown due to mixed soil or remaining relatively clear. Furthermore, the visual
characteristics of the water change according to the time of day, as the amount of light varies, and
floods tend to cause more damage under lower lighting conditions. To account for the diverse
characteristics of floods mentioned earlier, AlleyFloodNet was developed to classify flood situations
effectively across a wide range of conditions, including flood types, water color, and visual changes
over time.

AlleyFloodNet was developed by collecting not only photographs of flooding situations taken
in alleys and lowlands, but also images captured under non-flooding conditions, to perform binary
classification of flooding versus non-flooding. Compared to existing datasets, it was designed to
enable precise detection of flooding in alleys, narrow roads, and areas near semi-basement windows
by including close-range images captured from relatively low positions. This allows the deep
learning models to quickly detect situations in which water rapidly accumulates, and to accurately
assess the actual risk of flooding rather than simply determining the presence of rainfall. Moreover,
both flooding and non-flooding data include various objects such as people and vehicles, allowing
the model to be trained effectively under diverse environmental conditions. Based on this design,
AlleyFloodNet is structured to support effective model training in various flood-prone areas and is
expected to contribute to flooding detection in vulnerable regions.

A total of 971 images were collected for use in this study. The size of AlleyFloodNet was
determined with reference to the training set size (637 images) of FloodNet Trackl, a well-known
dataset for flooding and non-flooding classification. All images were preprocessed using the
ImageNet mean and standard deviation and resized to 224x224 pixels. The entire dataset was evenly
divided across classes into a training set and a test set at a ratio of 8:2. Additionally, the training set
was further split into a training and validation set at a ratio of 8:2, maintaining class balance. As a
result, the dataset was divided as follows: the training set consisted of 454 flooding and 322 non-
flooding images; the test set included 114 flooding and 81 non-flooding images; and the validation
set contained 92 flooding and 63 non-flooding images. Figure 2 shows example images from the flood
class, while Figure 3 presents example images from the non-flood class in the AlleyFloodNet dataset.
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Figure 2. example images from the flooding class.

Figure 3. example images from the non-flooding class.

3.2. Models

3.2.1. AlexNet

AlexNet is a representative deep Convolutional Neural Network (CNN)-based model that
gained significant attention for its outstanding performance in the 2012 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). This model features a deeper and more complex architecture
compared to earlier shallow CNNs such as LeNet, consisting of five convolutional layers and three
fully connected layers. One of the key characteristics of AlexNet is its use of the Rectified Linear Unit
(ReLU) activation function, which accelerates training compared to traditional Sigmoid or
Hyperbolic Tangent (Tanh) functions. In addition, it employs the Dropout technique to prevent
overfitting and applies Local Response Normalization (LRN) to suppress excessive activation of
specific neurons. Furthermore, the model significantly improved training speed by optimizing
parallel computation on GPUs. AlexNet demonstrated excellent performance on large-scale datasets
such as ImageNet and played a pivotal role in the advancement of CNN-based deep learning models.
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However, despite its relatively deep architecture, it has the drawback of requiring more
computational resources and memory compared to more recent models such as VGGNet and ResNet.
Nevertheless, AlexNet remains widely used in various studies as a foundational model for CNN-
based image classification [29].

3.2.2. VGG-19

VGG-19 is one of the models in the VGGNet family and is characterized by a deep neural
network architecture comprising 19 layers. This model gained attention for its outstanding
performance in the 2014 ILSVRC and was designed to enable sophisticated pattern learning by
incorporating deeper convolutional layers compared to traditional CNN architectures. A key feature
of VGG-19 is its use of small 3x3 convolutional filters applied consecutively, which allows for
computational efficiency even in a deep network. These small filters introduce more non-linearity,
thereby enhancing the model’s representational capacity and enabling effective learning of complex
features. In addition, max pooling layers are employed to control the size of the feature maps, and
final classification is performed through two fully connected layers, each containing 4096 neurons.
Although VGG-19 has a relatively simple architecture, it delivers high performance, with the
drawback of increased computational cost as the network depth increases. As the network depth
increases, the risk of gradient vanishing becomes more pronounced, and techniques such as batch
normalization are sometimes employed to mitigate this issue. Nevertheless, VGG-19 remains a
powerful model that continues to demonstrate high performance in various image classification and
object detection tasks [30].

3.2.3. ResNet-50

ResNet (Residual Network) is a model that introduces the residual learning technique to address
the gradient vanishing problem that arises as neural networks become deeper. ResNet-50 features a
deep neural network architecture consisting of 50 layers and employs blocks that follow a 1x1, 3x3,
1x1 bottleneck structure to optimize computational efficiency. The most important characteristic of
ResNet is its introduction of skip connections (also known as shortcut connections). In conventional
CNNs, deeper networks may suffer from information loss or distortion, but ResNet is designed to
preserve information by directly adding the output of a previous layer to a subsequent layer, thereby
facilitating stable training even in very deep networks. Owing to these characteristics, ResNet-50
maintains high performance on large-scale datasets such as ImageNet, and enables stable learning
even in deeper networks compared to traditional CNN-based models. Moreover, it is widely applied
in various vision tasks such as object detection and segmentation, and is regarded as one of the
leading neural network models due to its high performance and strong generalization capabilities
[31].

3.2.4. DenseNet-121

DenseNet-121 (Dense Convolutional Network-121) is a neural network architecture in which
each layer receives as input the outputs of all preceding layers, differing from conventional CNN
models. This dense connectivity improves information flow and mitigates the gradient vanishing
problem. While consisting of 121 layers, it adopts a computationally efficient architecture in which
direct connections between all layers enable more effective feature propagation and enhance training
efficiency. Furthermore, it employs bottleneck layers using 1x1 convolutions and applies global
average pooling (GAP) to reduce redundant computation and the number of parameters, while
maintaining high performance. DenseNet-121 demonstrates strong generalization performance,
particularly in environments with limited datasets, and is effectively applied in various fields such
as medical image analysis, object recognition, and image classification. Compared to models such as
VGGNet and ResNet, DenseNet-121 maintains excellent performance while requiring significantly
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fewer parameters. In particular, it is regarded as a powerful CNN model due to its ability to support
deep network training with reduced memory consumption [32].

3.2.5. ViT (Vision Transformer)

ViT (Vision Transformer) is an image classification model that utilizes a Transformer-based
architecture instead of a CNN, applying the self-attention mechanism originally developed for
natural language processing (NLP) to visual tasks. ViT divides an input image into fixed-size patches,
linearly projects each patch into an embedding, and then learns features using a Transformer encoder.
This architecture enables more effective learning of long-range dependencies than CNNs, and
outperforms CNN-based models on large-scale datasets. However, Transformer-based models
require large amounts of data and high computational resources, and may underperform compared
to CNNs on smaller datasets. These limitations can be addressed through transfer learning using pre-
trained models, and recently, hybrid architectures combining CNNs and Transformers have
emerged.

3.2.6. ConvNeXt

ConvNeXt is a modernized convolutional neural network (CNN) architecture built upon
ResNet, while incorporating design elements inspired by recent Transformer-based models such as
the Swin Transformer. To overcome limitations of traditional CNNs and enhance competitiveness
with Transformer-based models, ConvNeXt applies various optimization techniques including
improved normalization strategies, deeper network architectures, and the use of depthwise separable
convolutions. It introduces layer normalization and large 7x7 convolutional kernels to ensure a
broader receptive field. While preserving the advantages of CNNs, ConvNeXt integrates structural
refinements aligned with modern deep learning practices, achieving high computational efficiency
and strong performance across various computer vision tasks such as object detection, image
classification, and semantic segmentation. Notably, ConvNeXt challenges the perception that CNNs
are inferior to Transformer models in terms of representational capacity and performance and
demonstrates that CNN-based architectures remain highly relevant in contemporary deep learning
research.

3.3. Experimental Setup

In this study, experiments were conducted using PyTorch in a Google Colab environment
equipped with an NVIDIA A100 GPU to evaluate the performance of image classification models.
Input images were resized to 224 x 224 pixels and normalized using the mean (0.485, 0.456, 0.406) and
standard deviation (0.229, 0.224, 0.225) of the ImageNet dataset to enhance model generalization. The
data were loaded in batches of size 32 for training, validation, and testing. For model training,
BCEWithLogitsLoss—commonly used for binary classification tasks—was employed as the loss
function, and the Adam optimizer was used to effectively update model weights. In consideration of
training stability and convergence speed, the learning rate was set to 0.0001. Based on the
experimental setup and hyperparameter configuration, the model was trained and validated, and its
performance was subsequently evaluated.

3.4. Evaluation Metrics

To comprehensively evaluate model performance, accuracy, recall, precision, and F1-score were
employed as the primary evaluation metrics. Accuracy represents the proportion of correctly
classified samples out of the total samples and serves as a useful indicator of overall model
performance. However, in the presence of class imbalance, accuracy alone may be insufficient for
performance assessment; thus, additional metrics were analyzed in conjunction. Recall indicates the
proportion of actual positive samples that are correctly predicted and is particularly important in
domains such as medical diagnosis or anomaly detection, where false negatives can have critical
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consequences. In contrast, precision measures the proportion of predicted positive samples that are
truly positive and is particularly relevant in tasks such as financial fraud detection or spam filtering,
where reducing false positives is crucial. astly, the Fl1-score considers the balance between precision
and recall by computing their harmonic mean, enabling an unbiased evaluation that does not favor
either metric. n this study, these evaluation metrics were collectively analyzed to compare the
predictive performance of the models and to identify the most optimal model.

3.5. Average Fine-Tuning Time per Epoch and Single Image Inference Time

To compare the training speed and real-time detection capability of each model, the average
training time per epoch and single image inference time were measured. The average fine-tuning
time per epoch was measured by recording the fine-tuning time for each epoch using the
AlleyFloodNet dataset and calculating the mean. This enabled analysis of the differences in training
speed across models. Single image inference time was calculated by averaging the prediction times
for 224x224-sized images from the test set after model training was completed. This was used to
evaluate the extent to which each model can process data in real-time within a flood detection system

3.6. Comparative Analysis of Flood Datasets and Misclassification Patterns

This study conducted comparative experiments with the existing FloodNet dataset to evaluate
the usefulness of the newly built AlleyFloodNet dataset. FloodNet Track 1 is designed for binary
classification tasks for flood detection within the FloodNet dataset, primarily containing flood and
non-flood images captured from a distance. In contrast, AlleyFloodNet is a dataset designed to more
accurately detect flood-vulnerable areas within urban settings, including flood and non-flood images
taken in alleys, semi-basement building entrances, and lowlands. Most of the data consists of near-
field images captured by ground-based cameras such as CCTV and smartphones.

In the comparative experiments, we analyzed two cases separately: fine-tuning a pre-trained
model using FloodNet Trackl and fine-tuning a pre-trained model using AlleyFloodNet. Both
models were configured with the same architecture, and identical train-validation split ratios and
hyperparameters were applied during training to ensure a fair comparison. Subsequently, the
performance of both models was evaluated using the test set of AlleyFloodNet, and performance
metrics such as accuracy, precision, recall, and F1-score were compared. Through these experiments,
we compared which dataset—FloodNet, a conventional UAV-based flood detection dataset, or
AlleyFloodNet —was more suitable for detecting flood-prone areas. This study aims to quantitatively
evaluate the performance of the two models and determine which dataset is more appropriate for
effective detection in flood-vulnerable areas such as narrow alleys. In addition, misclassified images
from the fine-tuned model with the best performance are analyzed to identify potential
improvements for both the dataset and the model in the future.

4. Results and Discussion

4.1. Comparison of Model Performance: Accuracy, Precision, Recall, and F1 Score

In this study, we conducted experiments using six deep learning models— AlexNet, ResNet,
VGG19, Vision Transformer (ViT), DenseNetl21, and ConvNeXt-Large—to compare their
performance in flood detection. The evaluation of model performance was based on accuracy,
precision, recall, and F1 score.

According to the performance analysis, the ConvNeXt-Large model achieved the highest
accuracy of 0.9590, followed by the Vision Transformer (ViT) model with an accuracy of 0.9487.
Notably, the ConvNeXt-Large model achieved the highest precision (0.9740) and F1 score (0.9494),
while the ViT model attained the highest recall value (0.9753). ResNet, VGG19, and DenseNet121 also
demonstrated relatively strong performance, whereas AlexNet showed comparatively lower
accuracy (0.8872) and F1 score (0.8690), indicating inferior performance compared to the other
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models. These results suggest that the superior performance of the ConvNeXt-Large and ViT models
in flood detection can be attributed to their advanced feature extraction capabilities enabled by state-
of-the-art network architectures.

To further investigate model behavior, training and validation loss/accuracy curves were plotted
(Figure 4), demonstrating rapid convergence with relatively stable validation trends. In addition, a
confusion matrix (Figure 5) was used to analyze classification errors, revealing that ConvNeXt-Large
correctly classified 112 flood and 75 non-flood images, with only minimal misclassifications (2 false
negatives and 6 false positives). These findings reinforce the advantage of advanced architectures like
ViT and ConvNeXt-Large for flood detection in complex urban scenarios.

Table 1. Comparison of Model Performance.

Model Name Accuracy Precision Recall F1 Score
AlexNet 0.8872 0.8391 0.9012 0.8690
ResNet50 0.9436 0.9487 0.9136 0.9308
VGGI19 0.9333 0.9048 0.9383 0.9212
ViT 0.9487 0.9080 0.9753 0.9405
DenseNet121 0.9385 0.9259 0.9259 0.9259
ConvNeXt-Large 0.9590 0.9740 0.9259 0.9494
Loss Curve Training & Validation Accuracy
0.40 - —— Train Loss 1.000 1
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0.35 1 0.975
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Figure 4. training and validation loss/accuracy curves.
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Figure 5. Confusion matrix results of the ConvNeXt-Large.

4.2. Results of Average Fine-Tuning Time per Epoch and Single Image Inference Time

To evaluate the training speed and real-time applicability of each model, we measured the
average fine-tuning time per epoch and single image inference time. AlexNet and ResNet exhibited
the fastest training speeds, with an average fine-tuning time of approximately 5 to 6 seconds per
epoch, whereas ConvNeXt-Large required the longest time at 17.48 seconds per epoch. This can be
attributed to the increased computational complexity of the ConvNeXt-Large model, which employs
a more intricate neural network architecture. In terms of single image inference time, the ViT model
demonstrated the fastest speed at 0.007917 seconds, followed by AlexNet with a relatively fast
inference time of 0.009549 seconds. Conversely, DenseNet121 showed the slowest inference speed at
0.113015 seconds, and ConvNeXt-Large also exhibited relatively high computational cost with an
inference time of 0.021080 seconds. Taken together, although the ConvNeXt-Large model
demonstrated the highest performance, its prolonged training time and relatively slow inference
speed may serve as limitations. The ViT model, offering both fast inference speed and strong
performance, may be considered a suitable candidate for real-time flood detection systems.

Table 2. Comparison of Average Fine-tuning Time per Epoch and Single Image Inference Time.

Model Name Avg. Training Time per Inference Time per
Epoch (s) Image (s)
AlexNet 5.36 0.009549
ResNet50 5.59 0.035457
VGG19 6.66 0.017241
ViT 9.42 0.007917
DenseNet121 6.42 0.113015
ConvNeXt-Large 17.48 0.020000

4.3. Results Comparative Analysis of Flood Datasets and Misclassification Patterns

Models fine-tuned using the AlleyFloodNet generally demonstrated high performance, with
ConvNeXt-Large achieving the most outstanding results (Accuracy: 0.9590, F1 Score: 0.9494). In
contrast, models fine-tuned on FloodNet Trackl and evaluated on the AlleyFloodNet test set
exhibited a marked decline in performance (Accuracy: 0.3385-0.5128). This suggests that due to the
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domain discrepancy between FloodNet and AlleyFloodNet, models trained on FloodNet failed to
generalize to narrow alleyways and semi-basement environments. In other words, datasets based
solely on distant-view images (such as FloodNet) are insufficient for effectively detecting flood-
vulnerable micro-urban areas (e.g., alleyways, semi-basements), underscoring the necessity of
specialized datasets like AlleyFloodNet. The ConvNeXt model fine-tuned on AlleyFloodNet, which
achieved the best performance, demonstrated reliable classification even in low-light conditions.

Misclassifications primarily occurred in environments with very low illumination, where even
high-performance models struggled to achieve accurate classification due to insufficient visual
information. In particular, when dim or distant streetlights illuminated only parts of the scene, the
model had difficulty distinguishing between wet surfaces reflecting light and actual flooded areas.
Examples of such misclassifications can be seen in Figure 6. Thus, despite the current dataset
encompassing diverse environments, its limitation in adequately representing low-light or nighttime
flooding scenarios has become apparent. To address these issues, future studies should consider
enhancing model robustness through increased collection of nighttime images, data augmentation
simulating low-light conditions, or the incorporation of multimodal information such as thermal or
infrared imagery.

Original Image

Original Image

Pred: 0 Pred: 0
Actual: 1 Actual: 1
Pred: 1 Pred: 0
Actual: 0 Actual: 1

Figure 6. Examples of misclassified images.

5. Conclusions

The significance of this study lies in the construction of a specialized, close-range image
dataset— AlleyFloodNet—that precisely reflects flood-vulnerable areas such as narrow alleyways
and semi-basement residences, and in the experimental validation of deep learning-based flood
classification models tailored to these environments. AlleyFloodNet was designed to effectively
capture and learn flood patterns in narrow and structurally complex urban environments, which are
difficult to observe using conventional satellite- or UAV-based distant-view datasets. Experimental
results confirmed its superior detection performance in such regions. Although previous studies have
utilized images captured from low viewpoints—such as those from CCTV or Google Street View —
for flood detection, the distinctiveness of this study lies in the development of the AlleyFloodNet
using images from flood-vulnerable areas and applying it specifically to image classification.
Furthermore, this study extends beyond a purely technical approach by focusing its analysis on areas
densely populated by economically vulnerable groups, which are repeatedly affected by flooding
due to climate change. In doing so, it aims to establish a practical foundation for protecting the lives
and property of these at-risk communities.
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Future research will focus on expanding AlleyFloodNet to accommodate diverse environmental
factors—such as urban structures, climatic conditions, lighting levels, and time of day —in order to
enhance model performance under a wider range of real-world scenarios. In particular, misclassified
images will be utilized to augment the dataset, enabling deep learning models to learn from a broader
spectrum of visual patterns. Additionally, analysis of these misclassified images revealed that, in
order to reliably detect flooding in situations such as during dark nighttime conditions, appropriate
lighting is necessary to discern the presence of stagnant water. Moreover, to ensure practical
deployment of the fine-tuned deep learning models in real-world disaster response systems, it is
essential to achieve real-time performance through model compression and computational
optimization techniques. Building upon the findings of this study, it will be possible to develop an
integrated flood response platform encompassing flood depth prediction, risk visualization, and
evacuation route guidance. These follow-up studies are expected to contribute significantly to
enhancing the field applicability and societal effectiveness of disaster response technologies, while
providing a technological foundation for protecting flood-prone areas and vulnerable populations
repeatedly affected by climate change.
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