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Article 
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Flood‐Vulnerable Areas 
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Department of Information Systems, Hanyang University, Seoul 04764, Korea 

*  Correspondence: jooking012@hanyang.ac.kr; Tel.: +82‐10‐6438‐1763 

Abstract: Urban flooding in economically and environmentally vulnerable areas—such as alleyways, 

lowlands, and semi‐basement residences—poses serious threats to lives and property. Existing flood 

detection research has largely relied on aerial or satellite‐based distant‐view imagery. While some 

studies have explored ground‐level images, datasets specifically focused on flood‐vulnerable areas 

remain  scarce.  To  address  this  gap, we  introduce AlleyFloodNet,  a  ground‐level  image  dataset 

designed  to support  rapid and accurate  flood classification  in high‐risk urban environments. The 

dataset reflects a variety of real‐world conditions, enabling deep learning models to better recognize 

floods  in  complex  urban  settings. We  fine‐tuned  classification models  using AlleyFloodNet  and 

compared their performance to models fine‐tuned on FloodNet, a widely used UAV‐based dataset. 

Results  show  that models  trained  on  AlleyFloodNet  significantly  outperform  those  trained  on 

FloodNet  when  applied  to  ground‐level  flood  images.  This  demonstrates  the  importance  of 

viewpoint‐specific data  in  improving detection accuracy  for  localized  flooding. By constructing a 

dataset  tailored  to  economically  and  flood‐vulnerable  areas,  this  study  contributes  to  the 

development of practical flood detection systems that aim to reduce disaster impacts and enhance 

protection for at‐risk communities. 

Keywords: flood detection; image classification; computer vision; ground‐level imagery 

 

1. Introduction 

Globally, flood damage caused by heavy rainfall has been increasing significantly due to climate 

change [1–4]. Areas such as semi‐basement residential zones, narrow alleyways, underpasses, and 

lowlands with  inadequate  drainage  infrastructure  are  particularly  vulnerable  to  flooding,  often 

inhabited  by  economically  vulnerable  populations,  leading  to  substantial  financial  losses  and 

challenging recovery efforts [5–7]. They are exposed to greater risks, as they face relative difficulties 

in emergency evacuation and have limited capacity to respond swiftly during flood events [8,9]. 

In 2022, unusually heavy rainfall in Seoul, South Korea, flooded semi‐basement residential areas, 

resulting  in  the  deaths  of  residents who were  unable  to  evacuate  in  time.  In  2023  as well,  the 

underground  roadway  in Osong, South Korea, was  flooded,  resulting  in numerous casualties.  In 

2024, a flash flood also occurred in Valencia, Spain, resulting in multiple fatalities reported in narrow 

alleyways. These  cases  indicate  that  the  risks  of heavy  rainfall  and  flooding  induced  by  climate 

change are steadily  increasing on a global scale, and that existing disaster prevention systems are 

insufficient to effectively prevent or respond to all flood‐related damages [10,11]. 

Thus far, research on deep learning‐based flood detection and prediction has primarily focused 

on  data  from  areas  near  rivers  or  large‐scale  inundation  zones  [12,13]. Moreover, most  existing 

studies have relied on data collected from a distance or on aerial data obtained through unmanned 

aerial vehicles (UAVs) [14–16]. While such approaches may be effective in detecting large‐scale river 

flooding or widespread inundation, they have limitations in accurately identifying localized flood‐

vulnerable areas within urban environments, such as narrow alleyways or semi‐basement residential 
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zones [16,17]. Although some studies have utilized ground‐level  imagery to analyze flooding, the 

images were not specifically tailored to flood‐vulnerable areas such as narrow alleyways or semi‐

basement  dwellings  [17,18].  In  particular,  while  UAV‐based  data  can  provide  high‐resolution 

imagery, it is often difficult to achieve immediate detection and response in rapidly evolving flood 

situations.[19] Therefore, there is a growing need for data collection and analysis specifically focused 

on flood‐vulnerable areas. 

Previous  studies  have  not  adequately  considered  the  socio‐economic  vulnerability  of  flood‐

vulnerable  areas,  indicating  a  pressing  need  for  research  in  this  domain.  The  development  of 

customized  flood detection  and  response  systems  is  essential  for  addressing  the needs  of  flood‐

vulnerable areas. To address this issue, this study constructs a specialized ground‐level image dataset, 

AlleyFloodNet, designed to accurately predict and alert flood impacts in flood‐vulnerable areas such 

as narrow alleyways, lowlands, and semi‐basement residential spaces. Unlike previous studies, this 

research conducts ground‐level image analysis specifically tailored to flood‐vulnerable areas such as 

narrow alleyways. The primary objective of this study is to overcome the limitations of prior research 

and enable practical responses in real‐world disaster situations. 

In this study, various deep learning‐based image classification models will be fine‐tuned using 

the constructed dataset, and  their performance will be evaluated using metrics  such as accuracy, 

precision,  recall,  and  F1‐score.  Misclassifications  will  also  be  explored  to  better  understand 

challenging  conditions  in  flood‐vulnerable  areas.  Furthermore,  deep  learning models were  fine‐

tuned separately using FloodNet and AlleyFloodNet, and their performance was compared on the 

AlleyFloodNet  test  set.  This  study  aims  to  support  the  improvement  of  image  classification 

algorithms and the refinement of AlleyFloodNet. The overall workflow of this study is summarized 

in Figure 1. 

 

Figure  1. Workflow  of  the  proposed  study  using AlleyFloodNet  for  flood  image  classification  and dataset 

comparison. 

2. Related Works 

Rahnemoonfar et al. addressed the limitations of conventional flood datasets, which primarily 

relied  on  low‐resolution  satellite  imagery  with  infrequent  updates, making  rapid  and  efficient 

damage assessment difficult. To overcome this, the authors employed high‐resolution UAV imagery, 

enabling access to hard‐to‐reach areas and facilitating more detailed scene analysis. In addition, the 

proposed  FloodNet  dataset  provides  pixel‐level  annotations  for  semantic  segmentation  tasks, 

including classification of flooded and non‐flooded regions [16]. 

Zhao et al. highlighted the limitations of traditional remote sensing technologies, which, despite 

their ability  to cover wide areas, struggle  to provide  real‐time,  localized  flood monitoring due  to 

spatiotemporal resolution constraints. In particular, accurate detection under  low‐light conditions, 

such as nighttime or heavy rainfall, remains a persistent challenge due to the complex and dynamic 
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characteristics  of  inundated  areas.  To  address  these  challenges,  the  authors  leveraged  urban 

surveillance cameras and proposed a deep learning‐based framework that incorporates specialized 

imaging  models  tailored  to  low‐light  flood  scenarios  and  robust  feature  extraction  techniques 

resilient to various environmental changes [18]. 

Munawar  et al. developed  an automated  flood detection  system utilizing Unmanned Aerial 

Vehicles (UAVs) to overcome the  limitations of satellite‐based approaches, which suffer from  low 

spatial resolution and delayed response times in disaster scenarios. The proposed method employs 

aerial  imagery  captured  by UAVs  to  determine  flood  occurrence,  enabling  rapid  and  localized 

assessment. To this end, Haar cascade classifiers were applied to detect landmarks such as buildings 

and roads in UAV  images, which served as the basis for training a deep  learning model for flood 

classification [20]. 

Stateczny et al. proposed a flood detection framework using satellite imagery, which integrates 

median  filtering  for  image preprocessing and a K‐means clustering algorithm enhanced by cubic 

chaotic map‐based weighting to segment inundated areas. Subsequently, multiple vegetation indices 

such as DVI, NDVI, MTVI, GVI, and SAVI were extracted to characterize the landscape and enhance 

analytical precision. For  flood prediction,  the  authors  constructed  a hybrid deep  learning model 

(DHMFP) by combining CNN and deep ResNet architectures, aiming to capture both local and global 

features.  To  optimize  model  performance,  the  Combined  Harris  Hawks  Shuffled  Shepherd 

Optimization (CHHSSO) algorithm was introduced for fine‐tuning model weights [21]. 

Munawar  et  al.  proposed  a  methodology  that  utilizes  UAV‐based  aerial  imagery  and 

Convolutional Neural Networks (CNNs) to automatically extract flood‐affected features and assess 

infrastructure damage in disaster‐vulnerable areas. The study focused on flood‐vulnerable regions 

along  the  Indus River  in  Pakistan, where  pre‐  and  post‐disaster UAV  images were  collected  to 

support the analysis. A total of 2,150 image patches were generated for model training, enabling the 

CNN to effectively learn flood‐related spatial patterns [22]. 

Yoo et al. proposed a U‐Net‐based flooding region segmentation model for detecting inundation 

in urban underpasses using near‐field image data. To train and evaluate the model, near‐field images 

were collected from urban underpasses  in Daejeon, South Korea, to construct a dedicated dataset. 

The proposed model achieved Dice coefficients of 98.8%, 94.03%, and 93.85%, respectively, across the 

three locations, demonstrating high segmentation performance [23]. 

Zhong  et  al.  employed  the  YOLOv4  object  detection  model  to  estimate  flood  depth  by 

identifying  submerged  objects—such  as  pedestrians’  legs  and  vehicle  exhaust  pipes—in  flood 

imagery. The method achieved a mean average precision (mAP) of 89.29% on a dataset of 1,177 flood 

images, with vehicle‐based reference showing higher accuracy than human‐based estimation. This 

approach enables real‐time flood depth estimation using existing traffic camera footage, offering a 

cost‐effective and immediately deployable solution without the need for additional sensors [24]. 

Vo et al.  investigated  the potential of utilizing street view  imagery  to  identify building‐level 

indicators of flood vulnerability, such as the presence of basements or semi‐basements, in support of 

urban flood risk assessment. The study focuses on identifying visual features that indicate basement 

structures, evaluating the availability and suitability of image data sources, and applying computer 

vision algorithms to automatically detect relevant features [25]. 

Witherow et al.  [26] proposed an  image processing pipeline  for detecting  roadway  flooding 

using images captured by mobile devices such as smartphones. To address challenges arising from 

the varying resolution, lighting conditions, and environmental noise in crowdsourced data—as well 

as  dynamic  elements  like  vehicles  and  pedestrians—the  pipeline  incorporates  preprocessing 

techniques such as water edge detection, image inpainting, and contrast enhancement. In addition, 

the method  utilizes  R‐CNN  for  vehicle  detection  and  removal,  SIFT  for  image  alignment,  and 

specialized techniques for flood boundary detection and reflection elimination [26]. 

Zeng et al. proposed a deep learning‐based flood detection system that automatically identifies 

the extent and location of urban flooding using surveillance camera footage. The system employed 

the  DeepLabv3+ model, which  outperformed Mask  R‐CNN  in  segmentation  accuracy  and was 
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further enhanced using a Super‐Resolution GAN (SRGAN). Experimental results demonstrated high 

detection performance, with a precision of 84%,  recall of 91%, and mean  Intersection over Union 

(mIoU) of 85.8% [27]. 

Manaf et al. [28] constructed a new flood image dataset by integrating benchmark datasets and 

collecting additional images from the web to improve classification performance across regions and 

resolutions. A comparative analysis of CNN‐based deep learning models revealed that MobileNet 

and Xception outperformed ResNet‐50, VGG‐16, and  Inception(v3), achieving an accuracy of 98% 

and  an  F1‐score  of  92%. The  study  contributes  to  enhancing  the  generalizability  of  flood  image 

classification models and improving the processing of low‐resolution imagery [28]. 

3. Materials and Methods 

3.1. Data Development and Preprocessing 

In this study, we constructed a dataset named AlleyFloodNet, composed of flood and non‐flood 

images,  to  identify  the occurrence of  flooding using a binary classification approach. The dataset 

primarily consists of images from South Korea, and it was developed by collecting photographs of 

flood‐vulnerable  areas  such  as  alleyways,  semi‐basement  residences,  and  lowlands  around  the 

world, taken via CCTV and smartphones, from Google and YouTube. 

AlleyFloodNet was developed by taking into account various types of floods that occur in flood‐

vulnerable  areas.  Floods  can  take  different  forms,  such  as  rapidly  flowing  and  rising water  or 

stagnant and gradually rising water. Depending on the form of the flood, the color of the water can 

also vary—appearing brown due to mixed soil or remaining relatively clear. Furthermore, the visual 

characteristics of the water change according to the time of day, as the amount of light varies, and 

floods  tend  to  cause more  damage  under  lower  lighting  conditions.  To  account  for  the  diverse 

characteristics of floods mentioned earlier, AlleyFloodNet was developed to classify flood situations 

effectively across a wide range of conditions, including flood types, water color, and visual changes 

over time. 

AlleyFloodNet was developed by collecting not only photographs of flooding situations taken 

in alleys and lowlands, but also images captured under non‐flooding conditions, to perform binary 

classification of  flooding versus non‐flooding. Compared  to  existing datasets,  it was designed  to 

enable precise detection of flooding in alleys, narrow roads, and areas near semi‐basement windows 

by  including  close‐range  images  captured  from  relatively  low  positions.  This  allows  the  deep 

learning models to quickly detect situations in which water rapidly accumulates, and to accurately 

assess the actual risk of flooding rather than simply determining the presence of rainfall. Moreover, 

both flooding and non‐flooding data include various objects such as people and vehicles, allowing 

the model to be trained effectively under diverse environmental conditions. Based on this design, 

AlleyFloodNet is structured to support effective model training in various flood‐prone areas and is 

expected to contribute to flooding detection in vulnerable regions. 

A  total  of  971  images were  collected  for  use  in  this  study.  The  size  of AlleyFloodNet was 

determined with reference to the training set size (637  images) of FloodNet Track1, a well‐known 

dataset  for  flooding  and  non‐flooding  classification.  All  images  were  preprocessed  using  the 

ImageNet mean and standard deviation and resized to 224×224 pixels. The entire dataset was evenly 

divided across classes into a training set and a test set at a ratio of 8:2. Additionally, the training set 

was further split into a training and validation set at a ratio of 8:2, maintaining class balance. As a 

result, the dataset was divided as follows: the  training set consisted of 454  flooding and 322 non‐

flooding images; the test set included 114 flooding and 81 non‐flooding images; and the validation 

set contained 92 flooding and 63 non‐flooding images. Figure 2 shows example images from the flood 

class, while Figure 3 presents example images from the non‐flood class in the AlleyFloodNet dataset. 
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Figure 2. example images from the flooding class. 

 

Figure 3. example images from the non‐flooding class. 

3.2. Models 

3.2.1. AlexNet 

AlexNet  is  a  representative  deep  Convolutional Neural Network  (CNN)‐based model  that 

gained significant attention for its outstanding performance in the 2012 ImageNet Large Scale Visual 

Recognition Challenge  (ILSVRC).  This model  features  a  deeper  and more  complex  architecture 

compared to earlier shallow CNNs such as LeNet, consisting of five convolutional layers and three 

fully connected layers. One of the key characteristics of AlexNet is its use of the Rectified Linear Unit 

(ReLU)  activation  function,  which  accelerates  training  compared  to  traditional  Sigmoid  or 

Hyperbolic Tangent  (Tanh)  functions.  In  addition,  it  employs  the Dropout  technique  to prevent 

overfitting  and  applies Local Response Normalization  (LRN)  to  suppress  excessive  activation  of 

specific  neurons.  Furthermore,  the model  significantly  improved  training  speed  by  optimizing 

parallel computation on GPUs. AlexNet demonstrated excellent performance on large‐scale datasets 

such as ImageNet and played a pivotal role in the advancement of CNN‐based deep learning models. 
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However,  despite  its  relatively  deep  architecture,  it  has  the  drawback  of  requiring  more 

computational resources and memory compared to more recent models such as VGGNet and ResNet. 

Nevertheless, AlexNet remains widely used  in various studies as a foundational model for CNN‐

based image classification [29]. 

3.2.2. VGG‐19 

VGG‐19  is  one  of  the models  in  the VGGNet  family  and  is  characterized  by  a deep neural 

network  architecture  comprising  19  layers.  This  model  gained  attention  for  its  outstanding 

performance  in  the  2014  ILSVRC  and was designed  to  enable  sophisticated  pattern  learning  by 

incorporating deeper convolutional layers compared to traditional CNN architectures. A key feature 

of  VGG‐19  is  its  use  of  small  3×3  convolutional  filters  applied  consecutively, which  allows  for 

computational efficiency even in a deep network. These small filters introduce more non‐linearity, 

thereby enhancing the model’s representational capacity and enabling effective learning of complex 

features. In addition, max pooling layers are employed to control the size of the feature maps, and 

final classification is performed through two fully connected layers, each containing 4096 neurons. 

Although  VGG‐19  has  a  relatively  simple  architecture,  it  delivers  high  performance,  with  the 

drawback of  increased computational cost as  the network depth  increases. As  the network depth 

increases, the risk of gradient vanishing becomes more pronounced, and techniques such as batch 

normalization  are  sometimes  employed  to mitigate  this  issue. Nevertheless,  VGG‐19  remains  a 

powerful model that continues to demonstrate high performance in various image classification and 

object detection tasks [30]. 

3.2.3. ResNet‐50 

ResNet (Residual Network) is a model that introduces the residual learning technique to address 

the gradient vanishing problem that arises as neural networks become deeper. ResNet‐50 features a 

deep neural network architecture consisting of 50 layers and employs blocks that follow a 1×1, 3×3, 

1×1 bottleneck structure to optimize computational efficiency. The most important characteristic of 

ResNet is its introduction of skip connections (also known as shortcut connections). In conventional 

CNNs, deeper networks may suffer from information loss or distortion, but ResNet is designed to 

preserve information by directly adding the output of a previous layer to a subsequent layer, thereby 

facilitating  stable  training even  in very deep networks. Owing  to  these characteristics, ResNet‐50 

maintains high performance on large‐scale datasets such as ImageNet, and enables stable learning 

even in deeper networks compared to traditional CNN‐based models. Moreover, it is widely applied 

in various vision  tasks  such as object detection and  segmentation, and  is  regarded as one of  the 

leading neural network models due to its high performance and strong generalization capabilities 

[31]. 

3.2.4. DenseNet‐121 

DenseNet‐121  (Dense Convolutional Network‐121)  is a neural network architecture  in which 

each  layer receives as  input the outputs of all preceding  layers, differing from conventional CNN 

models. This dense connectivity  improves  information  flow and mitigates  the gradient vanishing 

problem. While consisting of 121 layers, it adopts a computationally efficient architecture in which 

direct connections between all layers enable more effective feature propagation and enhance training 

efficiency.  Furthermore,  it  employs  bottleneck  layers  using  1×1  convolutions  and  applies  global 

average  pooling  (GAP)  to  reduce  redundant  computation  and  the  number  of parameters, while 

maintaining  high  performance.  DenseNet‐121  demonstrates  strong  generalization  performance, 

particularly in environments with limited datasets, and is effectively applied in various fields such 

as medical image analysis, object recognition, and image classification. Compared to models such as 

VGGNet and ResNet, DenseNet‐121 maintains excellent performance while requiring significantly 
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fewer parameters. In particular, it is regarded as a powerful CNN model due to its ability to support 

deep network training with reduced memory consumption [32]. 

3.2.5. ViT (Vision Transformer) 

ViT  (Vision Transformer)  is  an  image  classification model  that utilizes  a Transformer‐based 

architecture  instead  of  a  CNN,  applying  the  self‐attention mechanism  originally  developed  for 

natural language processing (NLP) to visual tasks. ViT divides an input image into fixed‐size patches, 

linearly projects each patch into an embedding, and then learns features using a Transformer encoder. 

This  architecture  enables more  effective  learning  of  long‐range  dependencies  than  CNNs,  and 

outperforms  CNN‐based  models  on  large‐scale  datasets.  However,  Transformer‐based  models 

require large amounts of data and high computational resources, and may underperform compared 

to CNNs on smaller datasets. These limitations can be addressed through transfer learning using pre‐

trained  models,  and  recently,  hybrid  architectures  combining  CNNs  and  Transformers  have 

emerged. 

3.2.6. ConvNeXt 

ConvNeXt  is  a  modernized  convolutional  neural  network  (CNN)  architecture  built  upon 

ResNet, while incorporating design elements inspired by recent Transformer‐based models such as 

the Swin Transformer. To overcome  limitations of traditional CNNs and enhance competitiveness 

with  Transformer‐based  models,  ConvNeXt  applies  various  optimization  techniques  including 

improved normalization strategies, deeper network architectures, and the use of depthwise separable 

convolutions.  It  introduces  layer  normalization  and  large  7×7  convolutional  kernels  to  ensure  a 

broader receptive field. While preserving the advantages of CNNs, ConvNeXt integrates structural 

refinements aligned with modern deep learning practices, achieving high computational efficiency 

and  strong  performance  across  various  computer  vision  tasks  such  as  object  detection,  image 

classification, and semantic segmentation. Notably, ConvNeXt challenges the perception that CNNs 

are  inferior  to  Transformer models  in  terms  of  representational  capacity  and  performance  and 

demonstrates that CNN‐based architectures remain highly relevant in contemporary deep learning 

research. 

3.3. Experimental Setup 

In  this  study,  experiments were  conducted  using  PyTorch  in  a Google Colab  environment 

equipped with an NVIDIA A100 GPU to evaluate the performance of image classification models. 

Input images were resized to 224 × 224 pixels and normalized using the mean (0.485, 0.456, 0.406) and 

standard deviation (0.229, 0.224, 0.225) of the ImageNet dataset to enhance model generalization. The 

data were  loaded  in  batches  of  size  32  for  training,  validation,  and  testing.  For model  training, 

BCEWithLogitsLoss—commonly  used  for  binary  classification  tasks—was  employed  as  the  loss 

function, and the Adam optimizer was used to effectively update model weights. In consideration of 

training  stability  and  convergence  speed,  the  learning  rate  was  set  to  0.0001.  Based  on  the 

experimental setup and hyperparameter configuration, the model was trained and validated, and its 

performance was subsequently evaluated. 

3.4. Evaluation Metrics 

To comprehensively evaluate model performance, accuracy, recall, precision, and F1‐score were 

employed  as  the  primary  evaluation  metrics.  Accuracy  represents  the  proportion  of  correctly 

classified  samples  out  of  the  total  samples  and  serves  as  a  useful  indicator  of  overall  model 

performance. However,  in  the presence of class  imbalance, accuracy alone may be  insufficient for 

performance assessment; thus, additional metrics were analyzed in conjunction. Recall indicates the 

proportion of actual positive samples that are correctly predicted and  is particularly  important  in 

domains such as medical diagnosis or anomaly detection, where  false negatives can have critical 
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consequences. In contrast, precision measures the proportion of predicted positive samples that are 

truly positive and is particularly relevant in tasks such as financial fraud detection or spam filtering, 

where reducing false positives is crucial. astly, the F1‐score considers the balance between precision 

and recall by computing their harmonic mean, enabling an unbiased evaluation that does not favor 

either metric.  n  this  study,  these  evaluation metrics were  collectively  analyzed  to  compare  the 

predictive performance of the models and to identify the most optimal model. 

3.5. Average Fine‐Tuning Time per Epoch and Single Image Inference Time 

To compare  the  training speed and real‐time detection capability of each model,  the average 

training  time per epoch and single  image  inference  time were measured. The average  fine‐tuning 

time  per  epoch  was  measured  by  recording  the  fine‐tuning  time  for  each  epoch  using  the 

AlleyFloodNet dataset and calculating the mean. This enabled analysis of the differences in training 

speed across models. Single image inference time was calculated by averaging the prediction times 

for 224×224‐sized  images  from  the  test set after model  training was completed. This was used  to 

evaluate the extent to which each model can process data in real‐time within a flood detection system 

3.6. Comparative Analysis of Flood Datasets and Misclassification Patterns 

This study conducted comparative experiments with the existing FloodNet dataset to evaluate 

the usefulness of  the newly built AlleyFloodNet dataset. FloodNet Track 1  is designed  for binary 

classification tasks for flood detection within the FloodNet dataset, primarily containing flood and 

non‐flood images captured from a distance. In contrast, AlleyFloodNet is a dataset designed to more 

accurately detect flood‐vulnerable areas within urban settings, including flood and non‐flood images 

taken in alleys, semi‐basement building entrances, and lowlands. Most of the data consists of near‐

field images captured by ground‐based cameras such as CCTV and smartphones. 

In  the comparative experiments, we analyzed  two cases separately:  fine‐tuning a pre‐trained 

model  using  FloodNet  Track1  and  fine‐tuning  a  pre‐trained model  using  AlleyFloodNet.  Both 

models were configured with the same architecture, and  identical  train‐validation split ratios and 

hyperparameters  were  applied  during  training  to  ensure  a  fair  comparison.  Subsequently,  the 

performance of both models was evaluated using  the  test set of AlleyFloodNet, and performance 

metrics such as accuracy, precision, recall, and F1‐score were compared. Through these experiments, 

we  compared which  dataset—FloodNet,  a  conventional  UAV‐based  flood  detection  dataset,  or 

AlleyFloodNet—was more suitable for detecting flood‐prone areas. This study aims to quantitatively 

evaluate the performance of the two models and determine which dataset is more appropriate for 

effective detection in flood‐vulnerable areas such as narrow alleys. In addition, misclassified images 

from  the  fine‐tuned  model  with  the  best  performance  are  analyzed  to  identify  potential 

improvements for both the dataset and the model in the future. 

4. Results and Discussion 

4.1. Comparison of Model Performance: Accuracy, Precision, Recall, and F1 Score 

In  this study, we conducted experiments using  six deep  learning models—AlexNet, ResNet, 

VGG19,  Vision  Transformer  (ViT),  DenseNet121,  and  ConvNeXt‐Large—to  compare  their 

performance  in  flood  detection.  The  evaluation  of model  performance was  based  on  accuracy, 

precision, recall, and F1 score. 

According  to  the  performance  analysis,  the  ConvNeXt‐Large  model  achieved  the  highest 

accuracy of  0.9590,  followed by  the Vision Transformer  (ViT) model with  an  accuracy of  0.9487. 

Notably, the ConvNeXt‐Large model achieved the highest precision (0.9740) and F1 score (0.9494), 

while the ViT model attained the highest recall value (0.9753). ResNet, VGG19, and DenseNet121 also 

demonstrated  relatively  strong  performance,  whereas  AlexNet  showed  comparatively  lower 

accuracy  (0.8872)  and  F1  score  (0.8690),  indicating  inferior  performance  compared  to  the  other 
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models. These results suggest that the superior performance of the ConvNeXt‐Large and ViT models 

in flood detection can be attributed to their advanced feature extraction capabilities enabled by state‐

of‐the‐art network architectures. 

To further investigate model behavior, training and validation loss/accuracy curves were plotted 

(Figure 4), demonstrating rapid convergence with relatively stable validation trends. In addition, a 

confusion matrix (Figure 5) was used to analyze classification errors, revealing that ConvNeXt‐Large 

correctly classified 112 flood and 75 non‐flood images, with only minimal misclassifications (2 false 

negatives and 6 false positives). These findings reinforce the advantage of advanced architectures like 

ViT and ConvNeXt‐Large for flood detection in complex urban scenarios. 

Table 1. Comparison of Model Performance. 

Model Name  Accuracy  Precision  Recall  F1 Score 

AlexNet 

ResNet50 

VGG19 

ViT 

DenseNet121 

0.8872 

0.9436 

0.9333 

0.9487 

0.9385 

0.8391 

0.9487 

0.9048 

0.9080 

0.9259 

0.9012 

0.9136 

0.9383 

0.9753 

0.9259 

0.8690 

0.9308 

0.9212 

0.9405 

0.9259 

ConvNeXt‐Large  0.9590  0.9740  0.9259  0.9494 

 

Figure 4. training and validation loss/accuracy curves. 
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Figure 5. Confusion matrix results of the ConvNeXt‐Large. 

4.2. Results of Average Fine‐Tuning Time per Epoch and Single Image Inference Time 

To  evaluate  the  training  speed  and  real‐time  applicability  of  each model, we measured  the 

average fine‐tuning time per epoch and single image inference time. AlexNet and ResNet exhibited 

the  fastest  training speeds, with an average  fine‐tuning  time of approximately 5  to 6 seconds per 

epoch, whereas ConvNeXt‐Large required the longest time at 17.48 seconds per epoch. This can be 

attributed to the increased computational complexity of the ConvNeXt‐Large model, which employs 

a more intricate neural network architecture. In terms of single image inference time, the ViT model 

demonstrated  the  fastest  speed  at  0.007917  seconds,  followed  by AlexNet with  a  relatively  fast 

inference time of 0.009549 seconds. Conversely, DenseNet121 showed the slowest inference speed at 

0.113015 seconds, and ConvNeXt‐Large also exhibited  relatively high computational cost with an 

inference  time  of  0.021080  seconds.  Taken  together,  although  the  ConvNeXt‐Large  model 

demonstrated  the highest performance,  its prolonged  training  time and  relatively  slow  inference 

speed may  serve  as  limitations.  The  ViT model,  offering  both  fast  inference  speed  and  strong 

performance, may be considered a suitable candidate for real‐time flood detection systems. 

Table 2. Comparison of Average Fine‐tuning Time per Epoch and Single Image Inference Time. 

Model Name  Avg. Training Time per   

Epoch (s) 

Inference Time per   

Image (s) 

AlexNet 

ResNet50 

VGG19 

ViT 

DenseNet121 

5.36 

5.59 

6.66 

9.42 

6.42 

0.009549 

0.035457 

0.017241 

0.007917 

0.113015 

ConvNeXt‐Large  17.48  0.020000 

4.3. Results Comparative Analysis of Flood Datasets and Misclassification Patterns 

Models  fine‐tuned using  the AlleyFloodNet generally demonstrated high performance, with 

ConvNeXt‐Large  achieving  the most  outstanding  results  (Accuracy:  0.9590,  F1  Score:  0.9494).  In 

contrast,  models  fine‐tuned  on  FloodNet  Track1  and  evaluated  on  the  AlleyFloodNet  test  set 

exhibited a marked decline in performance (Accuracy: 0.3385–0.5128). This suggests that due to the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2025 doi:10.20944/preprints202504.0154.v1

https://doi.org/10.20944/preprints202504.0154.v1


  11  of  14 

 

domain discrepancy between FloodNet and AlleyFloodNet, models  trained on FloodNet  failed  to 

generalize  to narrow alleyways and semi‐basement environments.  In other words, datasets based 

solely  on distant‐view  images  (such  as  FloodNet)  are  insufficient  for  effectively detecting  flood‐

vulnerable  micro‐urban  areas  (e.g.,  alleyways,  semi‐basements),  underscoring  the  necessity  of 

specialized datasets like AlleyFloodNet. The ConvNeXt model fine‐tuned on AlleyFloodNet, which 

achieved the best performance, demonstrated reliable classification even in low‐light conditions. 

Misclassifications primarily occurred in environments with very low illumination, where even 

high‐performance models  struggled  to  achieve  accurate  classification  due  to  insufficient  visual 

information. In particular, when dim or distant streetlights illuminated only parts of the scene, the 

model had difficulty distinguishing between wet surfaces reflecting light and actual flooded areas. 

Examples  of  such misclassifications  can  be  seen  in  Figure  6.  Thus,  despite  the  current  dataset 

encompassing diverse environments, its limitation in adequately representing low‐light or nighttime 

flooding  scenarios has become apparent. To address  these  issues,  future  studies  should  consider 

enhancing model robustness through increased collection of nighttime images, data augmentation 

simulating low‐light conditions, or the incorporation of multimodal information such as thermal or 

infrared imagery. 

 

Figure 6. Examples of misclassified images. 

5. Conclusions 

The  significance  of  this  study  lies  in  the  construction  of  a  specialized,  close‐range  image 

dataset—AlleyFloodNet—that precisely  reflects  flood‐vulnerable  areas  such  as narrow  alleyways 

and  semi‐basement  residences,  and  in  the  experimental  validation  of  deep  learning‐based  flood 

classification models  tailored  to  these  environments. AlleyFloodNet was  designed  to  effectively 

capture and learn flood patterns in narrow and structurally complex urban environments, which are 

difficult to observe using conventional satellite‐ or UAV‐based distant‐view datasets. Experimental 

results confirmed its superior detection performance in such regions. Although previous studies have 

utilized images captured from low viewpoints—such as those from CCTV or Google Street View—

for flood detection, the distinctiveness of this study  lies  in the development of  the AlleyFloodNet 

using  images  from  flood‐vulnerable  areas  and  applying  it  specifically  to  image  classification. 

Furthermore, this study extends beyond a purely technical approach by focusing its analysis on areas 

densely populated by economically vulnerable groups, which are repeatedly affected by  flooding 

due to climate change. In doing so, it aims to establish a practical foundation for protecting the lives 

and property of these at‐risk communities. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2025 doi:10.20944/preprints202504.0154.v1

https://doi.org/10.20944/preprints202504.0154.v1


  12  of  14 

 

Future research will focus on expanding AlleyFloodNet to accommodate diverse environmental 

factors—such as urban structures, climatic conditions, lighting levels, and time of day—in order to 

enhance model performance under a wider range of real‐world scenarios. In particular, misclassified 

images will be utilized to augment the dataset, enabling deep learning models to learn from a broader 

spectrum of visual patterns. Additionally, analysis of  these misclassified  images  revealed  that,  in 

order to reliably detect flooding in situations such as during dark nighttime conditions, appropriate 

lighting  is  necessary  to  discern  the  presence  of  stagnant  water. Moreover,  to  ensure  practical 

deployment of  the  fine‐tuned deep  learning models  in  real‐world disaster  response systems,  it  is 

essential  to  achieve  real‐time  performance  through  model  compression  and  computational 

optimization techniques. Building upon the findings of this study, it will be possible to develop an 

integrated  flood  response platform  encompassing  flood depth prediction,  risk visualization,  and 

evacuation  route  guidance.  These  follow‐up  studies  are  expected  to  contribute  significantly  to 

enhancing the field applicability and societal effectiveness of disaster response technologies, while 

providing a technological foundation for protecting flood‐prone areas and vulnerable populations 

repeatedly affected by climate change. 
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