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Abstract: The equation of state (EOS) of metal nickel is theoretically studied up to 3000 K and 

concurrently 500 GPa by a direct integral approach to the partition function. The theoretical results 

agree very well with previous hydrostatic experiments at room temperature, and at high 

temperatures, the deviation between our calculated pressures and the latest hydrostatic experiments 

up to 109 GPa is less than 3.5%, 4.1%, and 4.6 % at 1000, 2000, and 3000 K, respectively. These results 

indicate our predictions at extreme conditions should be reliable. Furthermore, a universal model 

with only two parameters is developed to produce analytical EOS for general solids at high 

temperatures. 

Keywords: hydrostatic equation of state; a direct integral approach to the partition function; 

predictions for extreme conditions; universal model for equation of state 

 

1. Introduction 

In the design of new materials, theoretical predicting the equation of state (EOS) without 

experimental data supporting is crucial to understand the thermodynamic properties. In fact, even 

for existing materials, the predictions are also necessary since experimental measurement of EOS still 

confronts some problems, especially at high pressures and high temperatures. 

Taking nickel (Ni) as an example, it is one of the most abundant elements in the earth's core, 

where the temperature and pressure reaches 6000 K and 350 GPa, and Ni-based alloys have been 

widely applied in industries. However, rare experiments concern the EOS of Ni-based alloys, and 

even for the metal of pure Ni, hydrostatic measurements at room temperature are limited to 98 GPa 

[1] so far, and at high temperatures, there are only two sets of experiments with pulsed laser to heat 

the specimen, resulting in the uncertainty of the temperature measurements being as large as ~ 100 K 

above 1000 K [1,2], and the results of the two experiments are distinctly different. 

According to the ensemble theory, the EOS and all the other thermodynamic properties of 

materials can be theoretically calculated from the partition function (PF) without any experimental 

measurement. However, this fundamental approach faces formidable computational challenges: for 

an N-atom system, a 3N-dimensional configuration integral is required to be solved, rendering it 

computationally intractable for realistic solids containing ~10²³ atoms. In spite of a century of 

research, this fundamental limitation persists in contemporary materials science. 

The quasi-harmonic approximation (QHA) [3–5] has emerged as an effective compromise, 

achieving wide applications by simplifying lattice dynamics through harmonic vibrational modes. 

However, its inherent assumption of small atomic displacements becomes inadequate at elevated 

temperatures where anharmonic effects dominate. In fact, a recent study [6] has quantitatively 

demonstrated that the accuracy of QHA deteriorates progressively with both increasing temperature 

and atomic volume. Alternative approaches have also been developed to circumvent this limitation. 
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The particle-in-a-cell model (PCM) [7–9] reduces the 3N- dimensional integral into a 3-fold one. 

Nevertheless, achieving the 3- dimensional integral at ab initio level remains a technical challenge. 

Moreover, PCM's validity is restricted to the conditions above the Debye temperature [10]. A more 

radical simplification appears in the classical mean field (CMF) [11–14] method, which reduces the 3-

fold integral in PCM into a one-fold spherical approximation. This approach fundamentally assumes 

isotropic atomic interactions, a significant oversimplification that introduces substantial errors for 

most crystalline metals. The anisotropic nature of interatomic forces in crystalline systems, 

particularly along different crystallographic directions, renders CMF's spherical symmetry 

assumption physically inappropriate for accurate thermodynamic predictions. 

In contrast to the methods mentioned above, a recently developed direct integral approach (DIA) 

[15] introduces a novel perspective by transforming the 3N-fold integration in PF into a 3N-

dimensional effective volume, enabling the PF to be solved with ultra-high efficiency at ab initio level. 

Up to now, DIA has been successfully employed to calculate the EOS of several metals [15–18], argon 

[15], 2-D materials [19], and its success in reproducing the phase transitions of vanadium [20], 

zirconium [21] and aluminum [22] further highlights the accuracy of DIA. DIA without any empirical 

parameters works universally to any solids. 

In the present work, DIA is applied to calculate the EOS of metal Ni up to 3000 K and 

simultaneously 500 GPa to further check the reliability of DIA and give theoretical predictions for the 

EOS at extreme conditions. In order to obtain an analytical EOS of the metal Ni, we applied the widely 

used Mie-Grüneisen-Debye (MGD) formalism [23–25] to fit our calculated results, which shows that 

one of the three parameters in the MGD model, the Debye temperature, could be removed without 

losing any accuracy of the fitting. Furthermore, a much more simplified and universal model is 

developed to produce analytical EOS for general solids. 

2. Calculation Method 

From the ensemble theory it is known that for a system containing N atoms occupying the spatial 

position rN = {r1, r2, …, rN}, the PF reads 

 (1) 

in which U(rN) is the interaction energy of the system, and m, h, kB is the atomic mass, Planck constant, 

and Boltzmann constant, respectively. If the configurational integral 

 (2) 

is solved, the pressure (P) as a function of V and T, i.e. the isothermal EOS could be obtained by 

 (3) 

and all the other thermodynamic quantities can also be achieved without any experimental 

supporting. 

To solve the 3N-dimentional integral in Eq. (2), an approach was developed recently by Ning et 

al. [15], and its essential framework is as follows. 

For a crystal in an equilibrium state with the N atoms located at their ideal lattice sites RN = {R1, 

R2, …, RN} and the total energy of U0(RN), a transformation is firstly introaduced, 

 (4) 

so that r'N represents the displacements of atoms away from their equilibrium positions. Then, the Q 

in Eq. (2) is expressed as 

 (5) 

Here, we define a function 

 (6) 

and then the 3N-fold integral in Eq. (5) turns into 

( )N
BNB

2

3

221
d e ,

!

k
N

U T
Z

mk T

hN

 − 
=  

 


r
r

( )N
BNd e

U k T
Q

−
= 

r
r

B

ln Z
P

V
k T


=


，

( ) ( ) ( )N N N N N N

0,  ,U U U  = − = −r q R r r R

( )N
B0 B Ne d e .

U k TU k T
Q

 −− = 
r

r

( ) ( ) ( )N N

ij

1 , ,

0 0 ,
N

i j x y z

F U U r
= =

    = − r r

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2025 doi:10.20944/preprints202504.0103.v1

https://doi.org/10.20944/preprints202504.0103.v1


 3 of 16 

 

 (7) 

in which 

 (8) 

is defined as the effective length, and r'ix (r'iy or r'iz) is the x (y or z) coordinate of the ith atom 

away from its ideal lattice site with simultaneously the other two degrees of freedom and all the other 

atoms fixed at the ideal lattice sites. 

The Eq. (6) could be expanded by a Taylor series as 

 (9) 

Clearly, if U'(r'N) changes slow enough with respect to r'N, ∂2U'(r'N)/∂r'ij∂r'ik and further F(r'N) 

would approach to zero, so that the Q of Eq. (7) is close to 

 (10) 

To ensure Eq. (10) is a good approximation, the axes of a Cartesian coordinate system should be 

set as the direction along which U'(r'N) changes slowest. 

For face-centered cubic metal Ni, if the lattice orientations [100], [010] and [001] are selected as 

the axes of a Cartesian system, the variations of U'(r'N) along all the three axes are the slowest. Thus, 

Lx equals to Ly and Lz, so that 

 (11) 

The PF calculations for Ni at specified atomic volumes is implemented through the following 

protocol. As illustrated in Figure 1, we constructed a perfect 3 × 3 × 3 supercell containing 27 atoms 

with an arbitrary volume and displaced an arbitrary atom along the [100] direction in increments of 

0.05 Å until the U'(x') in Eq. (4) exceeded 3.5 eV, ensuring convergence of the effective length at 3000 

K (<10-5). By varying volumes, PF as a function of V was obtained from Eqs. (1, 8, 11) and then P-V 

relationship could be derived from Eq. (3). 

 

Figure 1. (color online) A 3 × 3 × 3 supercell of Ni with the lattice vectors α1 = a0(0.5, 0.5, 0), α2 = a0(0, 0.5, 0.5) 

and α3 = a0(0.5, 0, 0.5), in which an arbitrary atom in the red circle is moved away along [100] direction step by 

step. 
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First-principles calculations were performed using the Vienna Ab initio Simulation Package 

(VASP) [26,27] to get the U'(x'), and the computational parameters were set as follows: (1) the 

projector augmented wave (PAW) pseudopotential [28,29] is used for describing the electron-ion 

interactions with 3d94s1 selected as the valence orbitals; (2) the Perdew-Burke-Ernzerhof (PBE) [30] 

exchange-correlation functional within the generalized gradient approximation (GGA) framework is 

employed to describe the electron-electron interactions; (3) electronic self-consistency criterion is set 

as 10-6 eV; (4) a Γ-centered 15 × 15 × 15 k-mesh generated via the Monkhorst-Pack method [31] is 

adopted to sample the Brillouin zone; (5) the tetrahedron method with Blöchl corrections [28] is used 

to determine the electron orbital partial occupancy with the plane-wave cutoff energy set as 400 eV. 

The convergence of all these parameters was verified across all the considered volumes with effective 

length fluctuating below 10-5 Å. 

3. Results and Discussion 

3.1. The Room-Temperature Isotherm 

Based on DIA, the room-temperature P-V relationship of Ni up to 500 GPa is obtained and shown 

as the red solid line in Figure 2, which includes three sets of experimental data [1,2,32] and the results 

calculated by QHA [33]. It is roughly seen that the calculations of both QHA and DIA agree well with 

the experiments. To specifically inspect the feasibility of DIA, under the same volume, differences 

between the pressure calculated by DIA (PDIA), or QHA (PQHA) and the experimental measurement 

(PEXP) are conducted and presented in Figure 3. 

 

Figure 2. (color line) The room-temperature (300 K) P-V relationship of Ni calculated from DIA (red solid line) 

and QHA [33] (yellow dashed line). The scattered points are experimental measurements by Campbell et al. [2] 

(magenta squares), Pigott et al. [1] (black fork symbols), and Hirao et al. [32] (olive stars). 

As shown in Figure 3(a), most of PDIA agree well with the PEXP of Ref. [2] up to 61 GPa with the 

difference less than 1 GPa, but at PEXP of 13.1, 17.6, 21.4, and 22.1 GPa (in the green box in Figure 3(a)), 

PDIA presents a large relative deviation (|PDIA – PEXP| / PEXP) of 25.2, 13.2, 11.8 and 25.1%, respectively, 

which should be attributed to the accidental error in the experiments. Comparatively, QHA manifests 

a little worse than DIA with nearly all the PQHA smaller than the PEXP, resulting in an average 

difference (|PEXP - PQHA|) of 2.85 GPa. In 2015, Pigott et al. [1] performed a larger range of diamond 

anvil cells compressions of Ni up to 98 GPa. Compared with the experiment of Ref. [2], higher 

precision is taken in Ref. [1] in terms of zero uncertainty for the controlled room temperature and 

better hydrostatic conditions. As shown in Figure 3(b), the difference between PDIA and the PEXP of 

Ref. [1] fluctuates around zero in the whole compression condition with average |PEXP – PDIA| of 1.35 

GPa, while nearly all the PQHA are larger than the PEXP with an average deviation of 2.59 GPa. 
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Recently, Hirao et al. [32] reported a set of volume measurements of Ni up to 368 GPa, but only 

the ones below 21 GPa are hydrostatic. As shown in Figure 3(c), PDIA agrees well with these 

hydrostatic measurements with an average difference of only 0.56 GPa, but most of the non-

hydrostatic PEXP are smaller than PDIA, which qualitatively indicates the reliability of DIA since the 

pressures under non-hydrostatic conditions are recognized to be smaller than that under hydrostatic 

conditions. As the pressure calculated by QHA in Ref. [33] is just up to 180 GPa, comparisons between 

PQHA and the experiment of Ref. [32] is only within 0 - 180 GPa. Obviously, nearly all the PEXP are 

larger than PQHA. 

The above discussions show that when compared to the experiments, DIA manifests better than 

QHA, but from the perspective of practical applications, the differences of the room-temperature 

isotherms supplied by the hydrostatic experiments Ref. [2], Ref. [1] and calculations of QHA and DIA 

could be neglected. 
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Figure 3. (color online) Under the same volume, deviation of the calculated pressure PDIA or PQHA [33] from the 

experimental measurements PEXP of Ref. [2] (a), Ref. [1] (b), and Ref. [32] (c). Values of PEXP - PDIA and PEXP - PQHA 

are displayed as the red squares and blue circles, respectively. 

3.2. The High-Temperature Isotherms 

On the P-V relationship of Ni at high temperatures (> 300 K), Campbell et al. [2] using a multi-

anvil press and laser-heated diamond anvil cells (LHDAC) completed a group of measurements with 

the covered P, T reaching 2457 K and 66 GPa. Pigott et al. [1] using LHDAC achieved the volume 

measurements of Ni up to 109 GPa and 2941 K. Unfortunately, a large uncertainty of the manipulated 

temperature is noted in both the experiments of Ref. [2] and Ref. [1], so that the measured P-V-T data 

are isolated points instead of isotherms. To inspect the feasibility of DIA, we calculated the pressure 
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at each pair of the experimentally measured (V, T) of the Ni sample in Ref. [2] and Ref. [1], and then 

performed specific comparisons with the experiments. To show the differences clearly, we arranged 

the experimental pressures in Ref. [2] and Ref. [1] in an ascending order mapped by the Arabic 

numerals shown as the blue symbols in Figure 4(a) and (b), where the red symbols are the 

corresponding calculated results by DIA. Error bars for our calculated pressures are obtained as 

follows. Taking the point indicated by the arrow in Figure 4(a) as an example, the experimentally 

measured V and T corresponding to this pressure is 9.806 ± 0.010 cm3/mol and 1976 ± 92 K, and based 

on DIA, at 1976 K, when the volume of Ni is 9.806 cm3/mol, our calculated pressure is 40.384 GPa. 

Making the calculated pressure 41.435 GPa at volume of (9.806 – 0.010) cm3/mol and temperature of 

(1976 + 92) K as the upper bound and 39.334 GPa at volume of (9.806 + 0.010) cm3/mol and temperature 

of (1976 – 92) K as the lower bound, the upper error for this calculated pressure (40.384 GPa) is ΔP+ = 

1.051 GPa and the lower one is ΔP- = 1.050 GPa. 

 

Figure 4. (color online) The experimental pressures (blue symbols) in Ref. [2] (a) and Ref. [1] (b) are arranged in 

an ascending order and mapped by the Arabic numerals. Under each experimentally measured (V, T) of the Ni 

sample, the calculated pressures from DIA are correspondingly shown as the red squares. 

From Figure 4(a) and (b) as well as the respective insets, we can see that our calculated results 

agree well with the experiments of Ref. [2] and Ref. [1], especially better with the latter one. 

Considering the uncertainty, if the calculated pressure has an overlap with the experimentally 

measured result, we think they are consistent. By this way, the degree of the coincidence of our 

calculations with the experiment of Ref. [2] is 59.55%, and with Ref. [1] reaches 78.28%. The re-

arranged experimental data of Ref. [2] and Ref. [1] along with the corresponding calculated pressures 

by DIA are listed in supplementary material, Table SI and SII, respectively. 
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For realistic applications, having a good command of the isotherms of Ni at high temperatures 

is demanded. In Ref. [2] and Ref. [1], the measured P-V-T data were fitted by the Mie-Grüneisen-

Debye formalism (MGD) [23–25], and from the fitted parameters, the isotherms of Ni could be 

obtained. However, the results in Ref. [2] and Ref. [1] are effective just to 66 GPa, 2457 K, and 109 

GPa, 2941 K, respectively. In the present work, we calculated the isotherms of Ni up to 3000 K and 

simultaneously 500 GPa, which are listed in Table 1. To discuss the differences among the high-

temperature isotherms of Ni reported by different experiments and theoretical calculations, the P-V 

curves of Ni under 1000, 2000, and 3000 K from Ref. [2], Ref. [1], DIA and QHA are displayed in 

Figure 5(a) - (c). Since the largest calculated pressure in Ref. [33] is limited to 180 GPa, and according 

to Ref. [34], solid Ni exists above 7.5 GPa at 2000 K and 50.6 GPa at 3000 K, the comparisons and 

discussions in this section are just within these conditions. Under the same volume, the differences 

between PQHA, PEXP of Ref. [2], or Ref. [1] and PDIA at 1000, 2000, and 3000 K are correspondingly 

displayed in Figure 5(d) - (f), from which we can see that PQHA [33] is close to PEXP of Ref. [1] in the 

whole pressure and temperature range with the largest difference of less than 4.3 GPa. Whereas, both 

PQHA and PEXP of Ref. [1] are consistently smaller than PDIA. The deviation of PEXP in Ref. [1] from PDIA 

increases gradually with increasing pressure with the largest relative error ((PEXP – PDIA) / PDIA) of 

3.5%, 4.1%, and 4.6 % at 1000, 2000, and 3000 K, respectively, while PQHA almost presents a constant 

relative deviation ((PQHA – PDIA) / PDIA) of 5.6% within the entire discussed conditions. It is noted that 

the pressures in the experiment of Ref. [2] were also determined based on the MGD model, but the 

derived isotherms are far away from the ones reported in Ref. [1], and also distinguish from the 

calculated results of QHA and DIA. As shown by the gray solid line in Figure 5(d) - (f), the largest 

relative difference between PEXP in Ref. [2] and PDIA reaches 17.1%, 17.2%, and 15.6% at 1000, 2000, 

and 3000 K, respectively. 

Table 1. Based on DIA, the calculated volume (Å3/atom) of Ni as a function of the temperature and pressure. 

P (GPa) 300 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K 

0.0001 10.9524 11.046 11.3055 11.6181 - - - 

10 10.4413 10.5118 10.7087 10.9196 11.1518 - - 

20 10.0454 10.1001 10.2462 10.4083 10.5905 - - 

30 9.7252 9.7727 9.8944 10.022 10.1592 10.3093 - 

40 9.4478 9.4888 9.5948 9.7067 9.8236 9.9458 - 

50 9.2108 9.2467 9.3388 9.4348 9.5355 9.6418 - 

60 9.0012 9.0332 9.1153 9.2004 9.2888 9.3809 9.4773 

70 8.8128 8.8418 8.9158 8.9923 9.0716 9.1539 9.2391 

80 8.6424 8.6687 8.736 8.8057 8.8775 8.9516 9.0282 

90 8.4875 8.5117 8.5735 8.6369 8.7023 8.7698 8.8395 

100 8.3459 8.3682 8.425 8.4834 8.5435 8.6053 8.6688 

110 8.2153 8.236 8.2887 8.3428 8.3981 8.455 8.5135 

120 8.0941 8.1133 8.1623 8.2127 8.2643 8.3171 8.3712 

130 7.9808 7.9987 8.0445 8.0917 8.14 8.1894 8.24 

140 7.8748 7.8914 7.9341 7.9783 8.0238 8.0702 8.1177 

150 7.7756 7.7913 7.8313 7.8725 7.9148 7.9583 8.0031 

160 7.6821 7.6973 7.7353 7.7741 7.8137 7.8542 7.8957 

170 7.5932 7.608 7.6446 7.6816 7.7191 7.7573 7.7962 

180 7.5083 7.5226 7.5581 7.5937 7.6297 7.6662 7.7032 

190 7.427 7.4407 7.4752 7.5096 7.5443 7.5794 7.615 

200 7.3501 7.3632 7.3959 7.429 7.4625 7.4964 7.5306 

210 7.2779 7.2901 7.3212 7.3526 7.3844 7.4167 7.4496 

220 7.2092 7.2208 7.2502 7.2801 7.31 7.3412 7.3724 

230 7.1434 7.1545 7.1826 7.211 7.24 7.2693 7.2991 

240 7.0798 7.0905 7.1174 7.1448 7.1726 7.2007 7.2293 

250 7.0181 7.0284 7.0543 7.0808 7.1076 7.1348 7.1624 
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260 6.9582 6.9681 6.9932 7.0188 7.0448 7.0711 7.0978 

270 6.9005 6.9099 6.9339 6.9587 6.9839 7.0095 7.0353 

280 6.8454 6.8543 6.8773 6.9009 6.925 6.9497 6.9748 

290 6.7924 6.8011 6.8232 6.8458 6.8689 6.8924 6.9164 

300 6.7415 6.7499 6.7713 6.7931 6.8152 6.8378 6.8607 

310 6.6923 6.7005 6.7213 6.7424 6.7638 6.7855 6.8076 

320 6.6445 6.6527 6.6731 6.6936 6.7143 6.7353 6.7566 

330 6.5981 6.6061 6.6261 6.6462 6.6664 6.6869 6.7075 

340 6.5528 6.5607 6.5803 6.6 6.6198 6.6398 6.6599 

350 6.5087 6.5164 6.5357 6.555 6.5744 6.5939 6.6135 

360 6.4657 6.4732 6.4921 6.511 6.53 6.5491 6.5684 

370 6.424 6.4313 6.4496 6.468 6.4866 6.5054 6.5242 

380 6.3836 6.3907 6.4085 6.4264 6.4445 6.4627 6.4811 

390 6.3444 6.3513 6.3686 6.386 6.4036 6.4213 6.4392 

400 6.3063 6.313 6.3299 6.3469 6.364 6.3812 6.3986 

410 6.2693 6.2758 6.2922 6.3088 6.3255 6.3423 6.3592 

420 6.2331 6.2395 6.2555 6.2717 6.288 6.3044 6.3209 

430 6.1979 6.2041 6.2198 6.2355 6.2514 6.2674 6.2836 

440 6.1635 6.1696 6.1849 6.2003 6.2158 6.2314 6.2472 

450 6.1299 6.1359 6.1508 6.1659 6.181 6.1963 6.2117 

460 6.0971 6.103 6.1176 6.1323 6.1471 6.1621 6.1771 

470 6.065 6.0707 6.085 6.0994 6.1139 6.1286 6.1433 

480 6.0336 6.0391 6.0531 6.0672 6.0815 6.0958 6.1103 

490 6.0027 6.0082 6.0219 6.0357 6.0496 6.0637 6.0779 

500 5.9725 5.9778 5.9912 6.0048 6.0185 6.0323 6.0462 
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Figure 5. (color online) Isothermal P-V relationship of Ni at 1000 (a), 2000 (b), and 3000 K (c), reported in Ref. [2] 

(olive dash dot dot line) and Ref. [1] (magenta solid line), and calculated by QHA [33] (black short dashed line) 

and DIA (red dashed line). Under the same volume, the pressure differences between the values in Ref. [2], Ref. 

[1], or Ref. [33] and those calculated by DIA are correspondingly shown in (d), (e), and (f). 

The above discussions as well as those included in the section A show that our calculations agree 

better with the experiment of Ref. [1], in which the accuracy of the measurements should be higher 

than that of Ref. [2]. In addition, it is noted that QHA is rarely applied to such high temperatures up 

to 3000 K due to its effectiveness only to small atomic vibrations, but it should be appropriate for the 

Ni system because as confirmed by one of our investigations [6] that QHA would work well for the 

system with atomic volume smaller than 22 Å3/atom, and under the lower pressure limit for the solid 

Ni [34], its atomic volume calculated by DIA at 300, 1000, 2000, and 3000 K is 10.95, 11.31, 11.33, and 

9.74 Å3/atom, respectively. Thus, it is reasonable that the isotherms of Ni calculated by QHA 

distinguish little from that by DIA with a nearly constant relative error of only 5.6% in a large 

temperature range from 300 up to 3000 K. As the accuracy of DIA increases with decreasing volume 

of the material [19], the predictions for the isotherms of Ni up to 3000 K and simultaneously 500 GPa 

should be reliable. 

3.3. The Analytical EOS 
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For practical application of metal Ni, it is necessary to obtain an analytical isothermal EOS based 

on the calculated results of DIA to determine the pressure for arbitrary volume V and temperature T. 

For this purpose, the MGD model [23–25] should be a good choice since it has been applied 

successfully to fit experimental data to obtain analytical EOS at high temperatures [1,2]. In this model, 

the total pressure P is considered to be the summation of thermal pressure Pth and the room-

temperature one P300K. Pth as a function of V and T is determined by three parameters via the 

following equations, 

 (12) 

and 

 (13) 

where R is the gas constant and n is the mole number of atoms confined within volume V. The 

Grüneisen parameter γ and Debye temperature θ are regarded to be only volume dependent via 

 (14) 

and 

 (15) 

in which the quantities with subscript 0 represent the corresponding values at 300 K and one 

atmospheric pressure. γ0, q and θ0 are the three parameters to be decided. The P300K can be described 

by the third-order Birch-Murnaghan (BM) [35] EOS 

 (16) 

with K0 and K´0 the bulk modulus and its pressure derivative at one atmospheric pressure. 

Although K0 and K0´ could be easily obtained by fitting experimental data via Eq. (16), 

determining γ0, q and θ0 will cost too much computer hours because an integral equation (Eq. (13)) is 

involved in the MGD model. Actually, in previous applications of the model [1,2], the parameter θ0 

measured by other experiment was pre-introduced. For example, Ref. [1] employed MGD model 

fitting the experimental P-V-T data of metal Ni with θ0 of 415 K [36], and γ0 and q were then 

determined to be 1.98 and 1.3. In fact, the fitted results are insensitive to θ0. When we varied the value 

of θ0 from 1 to 500 K without changing the value of γ0 and q, the obtained pressures deviate from the 

original ones with θ0 of 415 K by no more than 0.45 GPa (Figure 6), which is significantly smaller than 

the uncertainty of the experimental measurements. 

It is notable that the internal energy expressed by Eq. (13) is based on the harmonic 

approximation, and tends to be UT = 3nRT when the temperature T is larger than the Debye 

temperature. It is a fact that the Debye temperature for most solids is in the range of 200 - 400 K, and 

therefore the internal energy at temperature above 300 K should be independent of volume and can 

be simplified as 3nRT. Accordingly, the expression of the thermal pressure Pth can be simplified as 

 (18) 

Thus, the MGD model is reduced to a simplified one without parameter θ0 and the integral 

equation Eq. (13). We apply this simplified model to calculate the pressure of metal Ni with parameter 

γ0 and q taken as 1.98 and 1.3 determined in Ref. [1], the results deviate from the predictions under 

MGD model by no more than 0.42 GPa [Figure 6], which is significantly smaller than the uncertainty 

of the experimental measurements. Furthermore, we obtained an analytical EOS of metal Ni by fitting 

the calculated results (Table 1) of DIA via the simplified model, showing that the fitted pressure 

deviates from the original one by no more than 1 GPa, which is smaller than the precision of DIA 

calculations [Figure 7]. As shown in Table 2, the parameters of the EOS determined by DIA present 
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some difference from the ones determined by fitting experimental data under MGD model reported 

in Ref. [2] or Ref. [1]. Relatively, our theoretical parameters are closer to the latter ones. 

 

Figure 6. (color online) The pressure difference (ΔP) between the results of MGD model with θ0 of 415 K and the 

ones with different value of θ0 (solid line), or the results of the simplified model (black short dot line) as a 

function of pressure P at 1000 K (a), 2000 K (b) and 3000 K (c). 
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Figure 7. (color online) The difference of pressure (ΔP) between the analytical EOS prediction and the original 

results of DIA as a function of pressure P for different temperatures. 

Table 2. The parameters in MGD model (or the simplified one) determined by experimental data (or DIA 

calculations). 

 DIA Campbell et al. [2] Pigott et al. [1] 

V0 (Å3/atom) 10.909 10.939 10.926 

K0 (GPa) 200.402 179(3) 201(6) 

K0´ 4.637 4.3(0.2) 4.4(0.3) 

θ0 (K) / 415 415 

γ0 2.025 2.50(0.06) 1.98(0.08) 

q 0.772 1 1.3(0.2) 

Applying the analytical EOS of metal Ni, we obtained a map of pressure distribution over T-V 

plan shown in Figure 8(a), which is similar to the empirical predications (Figure 8(b)) based on the 

MGD fitting experimental data [1]. The isobars in Figure 8(a) and (b) indicate clearly that the pressure 

depends mainly upon the volume instead of the temperature varied from 300 to 3000 K. For given 

pressure, the volume expends linearly with the temperature and the expansion rate gets slower and 

slower with increasing pressure. When the pressure is larger than 400 GPa, the volume keeps nearly 

unchanged even if the temperature increases from 300 to 3000 K. For arbitrary volume (or pressure) 

and temperature, the pressure (or the volume) can be easily read from this pressure map. 

The difference between our theoretical predictions and the empirical ones take place mainly in 

the high-pressure region. As shown in Figure 8(c), there exists a T-V curve along which our theoretical 

prediction is the same as the ones of the empirical prediction, and the theoretical pressure is larger 

than the empirical one by 5 GPa when the pressure is 150 GPa. As the pressure increases to 500 GPa, 

the pressure difference gets larger and larger up to 35 GPa, which can be understood in consideration 

of the fact that the empirical predictions using MGD model is based on the experimental data below 

109 GPa. 
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Figure 8. (color online) Map of the pressure distribution over T-V plane obtained by the simplified model fitting 

the DIA results (a), and (b) from the MGD model based on the experimental results of Ref. [1]. The solid lines 

are the isobars separated by 50 GPa. 

4. Conclusions 

In this work, we applied DIA at ab initio level to study the EOS of metal Ni up to 3000 K and 

simultaneously 500 GPa, and proposed an analytical expression of the EOS. The theoretical results 

are in good agreement with available hydrostatic experiments, suggesting that the predications 

under extreme conditions will be reliable. The simplified model developed to produce analytical EOS 

of solid should be universal and will find its vast applications for obtaining analytical EOS of various 

solids by fitting limited experimental or theoretical data. 
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