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Abstract: Accurate water body detection is essential for autonomous navigation and operational
planning of Unmanned Surface Vehicles (USVs). To address model adaptability to ambiguous bound-
aries caused by diverse scenarios and climatic conditions, this study proposes GFANet (Global-Local
Feature Attention Network) for real-time water surface semantic segmentation of camera-captured
images. First, a Global-Local Feature (GLF) Extraction module is proposed, integrating a self-attention-
based local feature extractor and a multi-scale global feature extractor for parallel feature learning,
thereby enhancing hierarchical feature representation. Second, a Gated Attention (GA) Module is
designed with a dual-branch gating mechanism to implement noise suppression and efficient low-level
feature utilization. The method was validated on three publicly available datasets in relevant do-
mains.Experimental results on the Riwa dataset show GFANet achieves state-of-the-art segmentation
performance (4.41M parameters, 7.15 GFLOPs) with mIoU 82.29% and mPA 89.49%. Comparable
performance metrics were obtained on the USVInland and WaterSeg datasets.Additionally, GFANet
achieves 154.98 FPS processing speed, meeting real-time segmentation requirements. Experimental
results verify that GFANet achieves an optimal balance between high segmentation accuracy and
real-time processing efficiency.

Keywords: water segmentation network; unmanned surface vehicles (USVs); self-attention;
feature extraction

1. Introduction
Water body segmentation holds significant application value in environmental governance poli-

cies and advancements in USV technologies. In the context of environmental monitoring, real-time
water detection enables hydrological disaster monitoring through water body segmentation [1–3].For
autonomous systems, precise delineation of water bodies is essential for vessel navigation [4–6]. Re-
cently, the applications of water body segmentation have been further expanded to include ecosystem
assessment [7,8] and climate change impact analysis [9].

Traditional water detection systems employ sensors including contact-based devices, radar, sonar,
and optoelectronic cameras. However, contact sensors are constrained to static, fixed scenarios with
short-range detection capabilities. Fog and intense water surface reflections introduce noise artifacts in
radar data, whereas turbulent waves degrade sonar signal integrity. These environmental factors com-
promise the performance of direct detection systems.In contrast, optoelectronic cameras—functioning
as non-contact indirect sensors—require only image acquisition, offering superior adaptability to
diverse aquatic environments and cost advantages over radar/sonar systems. Real-time semantic
segmentation of optoelectronic camera imagery therefore offers a cost-effective and efficient solution
for water surface detection.

This study addresses machine vision-based identification of water regions in outdoor scenes,
which is critical for intelligent video surveillance in aquatic environments. Furthermore, water surface
segmentation represents a quintessential case of complex image segmentation, providing insights
into broader segmentation challenges. Existing water body segmentation methodologies are typically
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classified into image processing-based and machine learning-based frameworks. Image processing
frameworks depend on empirical features (e.g., gradients, textures, edges), which exhibit limitations
in generalizability and robustness. For instance, Zhao et al. [10] employed an adaptive-threshold
Canny edge detection algorithm for river boundary detection. However, these frameworks demand a
priori environmental knowledge and exhibit performance degradation under substantially varying
conditions. With the proliferation of deep learning, machine learning-based frameworks have been
deployed for water body segmentation. For example, Zhan et al. [11] developed an online learning
framework leveraging Convolutional Neural Networks (CNNs) for water region detection in unknown
navigation scenarios. Han et al. [12] pioneered the use of Fully Convolutional Networks (FCNs) for
urban flood segmentation. Although these frameworks attain high accuracy, their computational
complexity poses significant hardware demands.

Most state-of-the-art deep learning-based water segmentation frameworks require significant
computational resources. Given practical deployment constraints and real-time inference requirements,
this study proposes a network architecture that balances segmentation accuracy with computational
efficiency.The primary challenge involves balancing model parameter complexity and inference effi-
ciency. Therefore, designing a lightweight yet accurate segmentation network specifically optimized
for water region recognition has significant academic and practical implications.

The key contributions of this work are as follows:

1. A Global-Local Feature (GLF) Extraction module is proposed to enhance hierarchical feature
representation within network depth and width constraints, thereby improving segmentation
performance.

2. A Gated Attention (GA) Module is designed with skip connections to enable efficient feature
utilization, enhancing segmentation accuracy and interference robustness.

3. GFANet is implemented using a lightweight backbone integrated with the proposed modules.
Under standardized training protocols, GFANet achieves segmentation accuracy comparable to
complex models while demonstrating fewer parameters, lower computational complexity, and
faster inference speed.

2. Related Work
Deep learning-driven image semantic segmentation has established itself as a prominent research

domain in the past decade. Although deep learning-based segmentation has been widely adopted in
autonomous driving for lane detection, its application to complex water body segmentation scenarios
remains significantly underexplored, offering a promising research trajectory with substantial potential.

2.1. Feature-Enhanced Image Segmentation

Accurate segmentation of complex boundaries and ambiguous edges poses significant challenges.
Continuous advancements in feature representation learning have improved segmentation perfor-
mance. UNet [13] employs skip connections for multi-level feature fusion, integrating high-resolution
shallow encoder features with deep decoder semantic features via channel-wise concatenation to
preserve local details and global context. Traditional CNNs, constrained by limited receptive fields,
face challenges in modeling long-range dependencies. PSPNet [14] addresses this limitation with a
pyramid pooling module, which downsamples feature maps via multi-scale pooling, followed by
bilinear upsampling and concatenation to enable explicit global context modeling. Concurrently,
the DeepLab series [15] pioneered dilated convolutions, exponentially expanding receptive fields by
adjusting dilation rates without parameter increase.

However, uncontrolled receptive field expansion risks local detail loss, introducing a trade-off
between global and local feature representation. To resolve this, BiSeNet [16] introduced a dual-path
architecture incorporating a feature fusion module with channel attention weighting to balance speed
and accuracy. DANet [17] pioneered a dual-attention mechanism that captures channel correlations
using covariance matrices and adaptively fuses outputs via learnable parameters, thereby improv-
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ing segmentation precision for complex boundaries. CCNet [18] further optimized computational
efficiency through a recursive criss-cross attention mechanism. This architecture aggregates con-
textual information along horizontal/vertical axes via two sequential criss-cross attention modules,
concatenated with local feature maps to achieve superior segmentation performance.

These works demonstrate that integrating local and global semantic features is essential for
segmenting complex boundaries. Building on this foundation, GFANet integrates two novel
modules—Global-Local Feature Fusion (GLF) and Global Attention (GA)—to enhance semantic seg-
mentation performance.

2.2. Water Body Segmentation

Early water body segmentation was primarily based on handcrafted features and a priori knowl-
edge. Rankin et al. [19] developed classification rules using color and texture analysis, though
generalization remained limited by scene-specific lighting and terrain variations. Yao [20] proposed
a hybrid framework integrating region growing and texture analysis: initial segmentation using
brightness thresholds, followed by K-Means clustering on 9×9 image patches to identify water re-
gions via minimal texture variance. However, shadow interference required stereo vision, thereby
increasing computational complexity. To reduce manual intervention, Achar et al. [21] developed
a self-supervised algorithm leveraging RGB, texture, and elevation features for patch-level binary
classification, aiming to reduce manual intervention. However, missegmentation persisted in complex
boundary regions.

With the proliferation of convolutional neural networks (CNNs), data-driven methodologies
gained prominence. Elias et al. [22,23] pioneered encoder-decoder architectures for Unmanned Surface
Vehicle (USV) water detection, achieving real-time segmentation. However, single-scene training
limited architectural generalization. Eltner et al. [24] integrated CNN segmentation with structure-
from-motion (SfM) for 3D water level measurement. However, cross-river applications necessitated
manual parameter calibration. Blanch et al. [25] addressed this limitation by training a universal CNN
on multi-basin heterogeneous datasets, achieving significant improvements in cross-regional river
segmentation. Cao et al. [26] and Miao et al. [27] proposed high-low feature connection methods but
neglected receptive field mismatches. Meanwhile, Liang et al. [28] enhanced Deeplabv3+ for USV
navigable area detection, improving F1-score by 6.8% over baselines.

Recent advancements have focused on lightweight hybrid architectures to balance segmentation
accuracy and computational efficiency. Kang et al. [29] developed CoastFormer, incorporating axial
attention in the encoder to capture long-range coastline features while maintaining high-resolution
outputs using a CNN decoder. Zhang et al. [30] developed MSF-Net, leveraging complementary
infrared and visible-light data to enhance turbid water detection, thereby achieving a Dice coefficient
of 91.5%.

Notwithstanding these advancements, key challenges remain: limited discriminative capability
under complex lighting and turbid conditions, and the challenge of balancing lightweight designs
with high segmentation precision. This study introduces a multi-modal adaptive network featuring
dynamic feature selection and hierarchical attention mechanisms to balance robustness and real-time
computational performance.

3. Materials and Methods
To address the speed-accuracy trade-off in practical applications, this study introduces GFANet

(Global-Local Feature Attention Network), a lightweight architecture designed for real-time water
surface semantic segmentation. GFANet employs an encoder-decoder architecture comprising three
core components: (1) a backbone, (2) a Global-Local Feature (GLF) Extraction module, and (3) a Gated
Attention (GA) module.
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3.1. Backbone

A lightweight and efficient backbone was developed to enhance inference speed. Ma et
al. [30] developed ShuffleNetV2, demonstrating its superiority over competing lightweight archi-
tectures. Therefore, to satisfy real-time inference requirements, ShuffleNetV2 was adopted as the
backbone architecture.

(a) (b)

Figure 1. Units in ShufflenetV2.(a) is Basic Unit, (b) is Downsampling Unit

The main design of ShuffleNetV2 includes the Basic Unit for feature representation, as shown
in Figure 1(a), and the Down Unit for downsampling, as shown in Figure 1(b). In the basic unit, the
input with c feature channels undergoes channel splitting into two branches. One branch preserves
the identity mapping, while the other branch applies three convolutions with consistent input/output
dimensions. The branch outputs are concatenated, maintaining channel count consistency. Channel
shuffle is employed to fuse features and facilitate inter-branch communication. In the Down Unit,
channel splitting is omitted, and convolution stride is increased to double output channels while
halving spatial resolution.

Based on these two fundamental units and with reference to the design of ShuffleNet V2, we
constructed the encoder backbone, as depicted in Figure 2. The encoder consists of four downsampling
stages. The first stage involves feature transformation and extraction using a downsampling convolu-
tion, followed by max pooling. Subsequent feature extraction is carried out through three additional
downsampling stages, which capture deeper semantic information. To ensure model efficiency and a
lightweight design, the last three downsampling stages uniformly utilize one downsampling unit and
three basic units. Feature maps from each downsampling stage are retained for skip connections.
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Figure 2. Encoder of the backbone in GFANet.

Corresponding to the encoder, the decoder comprises four upsampling stages aimed at progres-
sively restoring image resolution. The detailed architecture is illustrated in Figure 3. Stage 4 utilizes a
4× upsampling ratio, whereas the other stages employ 2× upsampling. The outputs of upsampling
stages 1-3 are fused with feature maps 3-1 from the encoder via channel-wise concatenation, thus
supplementing deep semantic features with shallow spatial details. To achieve model lightweighting,
we apply 1×1 kernel depthwise separable convolutions subsequent to upsampling operations. This
design significantly reduces the parameter count and computational overhead, while preserving
feature representation capability. Lastly, upsampling stage 4 reconstructs the image to its original
resolution and conducts pixel-wise semantic classification to accomplish the segmentation task.
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Figure 3. Decoder of the backbone in GFANet.

3.2. GLF

To improve the detailed information extraction and enhance the feature extraction capability of
the network, we introduce the Global-Local Feature Extraction (GLF) module. The architecture of this
module is depicted in Figure 4.

Figure 4. Struction of Global-Local Feature Extraction.
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The GLF module integrates local and global information, multi-scale features, attention mech-
anisms, and channel shuffling techniques. These strategies augment the diversity and expressive
capacity of feature extraction, thereby allowing the module to tackle challenges like complex back-
grounds in computer vision tasks and limited feature extraction capabilities of networks.Consequently,
the network training performance becomes more stable.

Specifically, the module executes dual-branch feature extraction and aggregation processes on the
input feature maps. One branch extracts local features by applying four dilated convolutions with
varying dilation rates.

The input feature maps (x) undergo four concurrent dilated convolution operations. The concate-
nated outputs from these four operations constitute the initial local features, as detailed below:

x1 = Conv1(x), x2 = Conv2(x), x3 = Conv3(x), x4 = Conv4(x) (1)

Local = Concat(x1, x2, x3, x4) (2)

Subsequently, a channel shuffle operation is utilized to thoroughly blend features originating from
diverse convolutional layers, thereby significantly improving the flow of inter-channel information.
Furthermore, a 1×1 convolutional layer is employed to transform the blended features into dimensions
that match the input, yielding the ultimate local feature output, as detailed below:

Local f = Conv f (ChannelShu f f le(Local)) (3)

The alternative branch utilizes a self-attention mechanism for extracting global features. This
methodology facilitates global weighting, enabling each position to directly access and dynamically
modify attention weights across all spatial positions, thus augmenting contextual understanding.
Initially, the branch extracts the Query (Q), Key (K), and Value (V) tensors via pyramid pooling
operations. The subsequent implementation steps are as follows:

Att =
1√
c
· (Q · KT) (4)

Att = so f tmax(Att, dim = −1) (5)

Global = Att · V (6)

Global f = Conv f (global) (7)

As Equation (4), the dot product between Q and K is computed, followed by scaling with a factor
of 1√

c (where c represents the feature dimension) to ensure numerical stability and address gradient
vanishing or exploding problems. Subsequently Equation (5), a softmax function is applied along the
sequence dimension (usually the last axis) to transform attention scores into normalized probability
distributions, indicating the relative significance of various spatial positions. Finally, the attention
weights are utilized to compute the weighted sum of the Value (V) tensor, as shown in (6), thereby
generating aggregated global contextual information. Subsequently, a linear transformation using
convolution is applied to adjust the feature dimensions, resulting in the refined global features, as
presented in (7).

Output = Local f + Global f (8)

Equation (8) represents the output of the Global-Local Fusion (GLF) model. The features from both
branches are combined through element-wise addition to produce the final feature extraction output.
This fusion strategy integrates fine-grained spatial details from local features with contextual semantics
derived from global representations in a synergistic manner, ultimately resulting in a comprehensive
feature map suitable for segmentation tasks.
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3.3. GA

In semantic segmentation models, skip connections play a crucial role in establishing a feature
bridge between the encoder and decoder, reducing the loss of spatial details due to continuous
downsampling, which consequently enhances the accuracy of target boundary localization. However,
skip connections based on direct addition often introduce substantial amounts of low-level textures
and noise, making it difficult to effectively distinguish important features.

Figure 5. Struction of Gated Attention.

To overcome these limitations, we propose the Gated Attention Module (GA), which aims to
address the issues associated with direct skip connections. The structure of the GA module is il-
lustrated in Figure 5. The Gated Attention (GA) module achieves its functionality through two
residual-connected operations that synergistically integrate attention and gating mechanisms.The
GA module initially applies Layer Normalization (LN) to standardize the input features. Then, it
extracts attention parameters via parallel convolutions, facilitating the integration of spatial attention
(for identifying key regions) and channel attention (for adjusting feature importance). This results in a
dual-dimensional attention mechanism that is spatially sensitive and channel-adaptive, significantly
improving feature discriminability in complex scenes.The implementation principle of this part of the
attention mechanism is as follows:

Q, K, V = DWConv(Conv(LayerNorm(x))) (9)

Attention = so f tmax(
1√
c
· (Q · KT), dim = −1) · V (10)

xatt = x + Attention (11)

Lastly, a dual-branch gating mechanism is utilized to suppress irrelevant features, as detailed
below:

x1, x2 = Linear(Split(x)) (12)

Gate = GeLU(DWConv1(x1)) · DWConv2(x2) (13)

The output of GA model as Equation (14). The GA module enhances the expressive power of low-
level features by aggregating multiple enhancement results, reducing redundancy while preserving
critical details.

Output = xatt + Gate(xatt) (14)
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3.4. GFANet

The lightweight backbone guarantees exceptionally high baseline inference speeds for the model.
Integration of the GLF (Global-Local Feature) and GA (Gated Attention) modules results in a slight
decrease in inference efficiency compared to the original backbone, but significantly enhances segmen-
tation accuracy. This design allows GFANet to maintain competitive inference speeds while achieving
high-precision performance, thereby achieving an optimal balance between computational efficiency
and segmentation quality.

Figure 6. GFANet structure.

As illustrated in Figure 6, the complete GFANet architecture is realized by strategically integrat-
ing the GLF and GA modules into appropriate positions within the backbone network. GFANet’s
primary objective is to achieve segmentation accuracy comparable to advanced semantic segmentation
networks, while significantly reducing memory usage and execution time.

4. Experiment
Comparative experiments were conducted between GFANet and representative semantic seg-

mentation architectures. Three benchmark datasets widely used in water body segmentation were
employed to evaluate GFANet’s performance against state-of-the-art approaches.

4.1. Experiment Configuration

Experiments were conducted on a Windows 10 OS with an Intel Core i5-12400 CPU (2.5 GHz,
32 GB RAM) and NVIDIA GeForce RTX 2080 Ti GPU (11 GB VRAM).The deep learning framework
comprised PyTorch 2.2.2 (Python 3.11.9), CUDA 12.1, and cuDNN 8.8.

Network parameters were empirically optimized to ensure consistent testing conditions across
models, accounting for baseline model complexity and computational demands. Input resolution was
fixed at 512×512, and the Adam optimizer (momentum = 0.9) was adopted. An initial learning rate
of 1e-4 was used with a warm-up cosine decay scheduler. Batch size was 8, and maximum training
epochs were 150. Models were trained to convergence, defined by stabilized loss and evaluation
metrics.

Data augmentation was applied during training to enhance dataset diversity and evaluate model
robustness to interference.
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4.2. Evaluation Metrics

This study employs five evaluation metrics: mean Intersection over Union (mIoU), mean Pixel
Accuracy (mPA), GigaFLOPS (GFLOPs), parameter count (Params), and frames per second (FPS).
Among these, mIoU quantifies segmentation region accuracy, while mPA measures the proportion
of correctly classified pixels. Both metrics quantify segmentation performance.GFLOPs quantify
computational complexity, reflecting GPU computational efficiency. Params quantify model complexity
by parameter count, indicating memory footprint. FPS quantifies real-time performance by measuring
video stream processing rate. The mIoU and mPA are calculated as follow:

mIoU =
1
N

N

∑
i=1

TP
TP + FP + FN

(15)

mPA =
1
N

N

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(16)

where TP (True Positive) represents the count of pixels accurately predicted as positive. TN (True
Negative)signifies the count of pixels accurately predicted as negative. FP (False Positive) indicates the
count of pixels incorrectly predicted as positive. FN (False Negative) indicates the number of pixels
that are incorrectly predicted to be negative. N is the number of categories.

4.3. Experiments Based on the Riwa Dataset

The RIWA dataset was proposed by Wagner et al. [31] for evaluating water body segmentation
networks. Comprising 1,128 high-resolution water body images, RIWA establishes itself as one
of the largest publicly available datasets for water body segmentation and can be obtained from
https://www.kaggle.com/datasets/franzwagner/river-water-segmentation-dataset.

To evaluate the performance of the proposed network, we compared it with various architectures,
including UNet [13], DeeplabV3+ [15] (backbone = Xception), PSPNet [14] (backbone = ResNet50), and
SegNet [32], which are large-scale CNNs, as well as LEDNet [32], a lightweight CNN. To ensure fairness,
no pre-trained weights were used across all models. Comparative results, including evaluation metrics
and model parameters, are presented in Table 1. GFANet outperforms all baseline architectures across
evaluated metrics. GFANet attains mIoU 82.59% and mPA 90.05%, outperforming all baselines except
SegNet (mIoU -0.27%, mPA -0.41%)—minimal accuracy gaps. GFANet maintains 4.41M parameters
and 7.15 GFLOPs—substantially fewer than large-scale CNNs and marginally higher than lightweight
LEDNet.GFANet exhibits real-time inference speed (FPS: Table 1), outperforming large-scale CNNs
and closely matching lightweight LEDNet.Detailed results are provided in Table 1.

Table 1. Results of each model based on the Riwa dataset.

Methods Backbone mIoU mPA Params GFLOPs FPS

UNet VGG16 81.66 88.75 24.89 225.83 33.16
DeeplabV3+ Xception 81.74 89.12 54.71 83.42 38.41

SegNet - 82.86 90.46 29.44 160.67 40.88
PSPNet ResNet50 81.06 88.97 46.71 184.73 32.49
LEDNet - 78.98 85.61 0.91 5.71 157.01

GFANet(Ours) - 82.59 90.05 4.41 7.15 154.98

Segmentation results of representative architectures are visualized in Figure 7 with misclassified
pixels: green (false water) and blue (false background). GFANet achieves performance comparable to
top-performing SegNet while outperforming other architectures, exhibiting superior edge delineation
precision. The original image accentuates this difference: all architectures except GFANet and SegNet
exhibit significant errors at riverbank edges. While SegNet misclassifies a small bottom-right water
region as background, GFANet accurately segments the entire water area.
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Figure 7. Illustrates of Riwa.

Although GFANet exhibits marginally inferior edge discrimination performance compared to
SegNet, the discrepancy is negligible. GFANet attains nearly fourfold faster inference speed than
SegNet, alongside significantly reduced computational complexity and parameter count. This high-
lights GFANet as a balanced architecture, achieving a favorable trade-off between minimal accuracy
reduction and substantial inference speed gains.

4.4. Experiments Based on the WaterSeg Dataset

The Water dataset was proposed by Liang et al. [34] for water segmentation in videos and images
within Video Object Segmentation (VOS) research. Adopting the DAVIS dataset format, it has gained
widespread adoption.The dataset can be downloaded from .

Given fixed model parameter counts and input size-proportional computational costs, subsequent
results exclude model size metrics, focusing on mIoU and mPA for comparative analysis. Quantitative
results of models on the WaterSeg dataset are presented in Table 1 .

GFANet maintains superior performance on the WaterSeg dataset (Table 2), achieving mIoU
88.49% and mPA 93.68%—marginally lower than PSPNet (<0.5%) and significantly outperforming
other architectures.

Table 2. Results of each model based on the WaterSeg dataset.

Methods Backbone mIoU mPA

UNet VGG16 87.86 92.94
DeeplabV3+ Xception 87.24 92.13

SegNet - 87.33 92.42
PSPNet ResNet50 88.96 94.03
LEDNet - 85.78 91.82

GFANet(Ours) - 88.49 93.68

Visualization results on the dataset are presented in Figure 8. Under low-light conditions, all
architectures exhibit significant edge detection performance degradation.
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Figure 8. Illustrates of WaterSeg.

Under these scenarios, SegNet—previously the top performer—exhibits accuracy degradation,
while PSPNet achieves the highest segmentation precision. GFANet maintains competitive perfor-
mance, exhibiting comparable overall error to PSPNet. GFANet retains significant advantages in
inference speed and model complexity over other architectures.

4.5. Experiments Based on the USVInland Dataset

The USVInland dataset [35] developed and released by Orca-Tech researchers, focuses on inland
waterway scenarios.

Quantitative results of architectures on the USVInland dataset are presented in Table 3. All archi-
tectures achieve higher accuracy on USVInland, attributed to the dataset’s simpler image characteristics
compared to other benchmarks. Under these conditions, performance disparities between architec-
tures diminish, yet GFANet outperforms competitors—closely matching PSPNet (mIoU: +0.02%, mPA:
+0.04%).

Table 3. Results of each model based on the USVInland dataset.

Methods Backbone mIoU mPA

UNet VGG16 93.96 97.07
DeeplabV3+ Xception 94.83 96.92

SegNet - 96.13 98.05
PSPNet ResNet50 96.27 98.18
LEDNet - 94.31 97.21

GFANet(Ours) - 96.25 98.14

To further characterize architectural differences, rainy interference experiments are presented
on challenging imagery. Results are visualized in Figure 9. All architectures except GFANet and
PSPNet exhibit substantial segmentation errors in the left riverbank region. For distant riverbank
details challenging for all architectures, GFANet and PSPNet demonstrate comparable performance.
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Figure 9. Illustrates of USVInland.

Experiments on three datasets (Riwa, WaterSeg, USVInland) encompassed images under diverse
lighting conditions: bright, dim, and partially occluded scenarios. Results reveal GFANet exhibits su-
perior performance in high-brightness environments and reduced performance in low-light conditions.
Nevertheless, GFANet consistently delivers more precise water area and boundary segmentation than
competing architectures across diverse environments. This highlights GFANet’s superior transfer-
ability and enhanced robustness, enabling effective adaptation to diverse environmental conditions
in water segmentation. Collectively, GFANet is ideally suited for real-world water surface semantic
segmentation applications.

5. Conclusions
This study introduces GFANet (Global-Local Feature Attention Network), a real-time water

surface semantic segmentation architecture leveraging local-global feature extraction and gated at-
tention mechanisms. Comprehensive experiments were performed on three benchmark datasets:
RIWA, WaterSeg, and USVInland. Evaluation was assessed across four dimensions: segmentation
accuracy, computational complexity, model size (parameters), and inference speed. Experimental
results (as detailed in Table 1 and Figure 7) reveal GFANet achieves a favorable balance between
segmentation precision and computational efficiency, maintaining high accuracy with significantly
reduced parameters and computational complexity compared to conventional CNN architectures.

While this study simulated three common real-world environmental scenarios (bright, low-light,
and rain-interfered conditions), practical deployment tests on unmanned surface vehicles (USVs) or
surveillance devices were not included.

Future research will focus on deploying GFANet on unmanned surface vehicles (USVs) to address
real-world operational challenges. This entails systematic exploration of: (1) hardware-software co-
design for embedded implementation, (2) computational graph optimization for resource-constrained
edge devices, and (3) dynamic video stream analysis with multisensor fusion extensions. These
efforts aim to: (1) resolve deployment-specific bottlenecks, (2) expand application scenarios in marine
environmental monitoring and intelligent navigation systems, and (3) validate GFANet’s practical
utility in real-world contexts.
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