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Abstract: The aim of this work is to propose an explanation of the inverse mass hierarchy of the low-
lying nonet of the scalar mesons in the framework of the massless Nambu – Jona-Lasinio UR(3)×UL(3)
quark model. The proposed explanation is based on symmetry principles. The collective meson states
are described via quark-antiquark pairs, which condensates lead simultaneously to spontaneous
breaking of the chiral and the flavour symmetry. It is shown that due to the flavour symmetry breaking
two iso-doublets of K∗

0(700) mesons play the role of Goldstone bosons. It is also proven that there
exists a solution with degenerate masses of the a0(980) and f0(980) mesons and a zero mass of the
f0(500) meson.

Keywords: symmetries in hadron physics; Bogoliubov – Nambu – Goldstone bosons; mass hierarchy
in low-lying scalar nonet

1. Introduction
The symmetries and the symmetry breaking have a fundamental role in Physics. It is known that

spontaneous symmetry breaking of the chiral SUR(2)× SUL(2) symmetry leads to massless Goldstone
bosons, which role is played by the pions. In case of the spontaneous symmetry breaking of the U f (3)
flavour symmetry K∗

0(700) mesons play the role of massless Goldstone bosons. Futher on in this article
we will call these bosons Bogoliubov – Nambu – Goldstone (BNG) bosons to highlight the legacy of
Bogoliubov [1,2].

In this work we will consider simultaneous chiral and flavour spontaneous symmetry breaking
and their important role for the explanation of the mass spectrum of the low-lying scalar mesons.

The pions, consisting of quark-antiquark pairs (qq̄), have a very small mass in comparison with
the other hadronic states. The smallness of pion mass would have been a problem of their constituent
quark models, however, it is well known that the small mass of the pseudoscalar pions is explained by
the mechanism of spontaneous breaking of the chiral SUR(2)× SUL(2) symmetry [3]. As a result of
that symmetry breaking the pions play the role of massless BNG bosons [4,5].

There exists another problem connected with the mass of low-lying scalar mesons, namely the
explanation of the inverse hierarchy mass in the low-lying scalar nonet. The constituent quark models,
describing the mesons as quark-antiquark pairs could not explain this problem. Therefore, one of
the first hypothesis for explanation of the inverse hierarchy was the work by Jaffe [6] proposing
diquark-antidiquark structure (qqq̄q̄) for the scalar mesons. Another explanation, which allows to
preserve the quark-antiquark structure of scalar mesons, see [7], uses the UA(1) anomaly term in
dynamical chiral symmetry breaking of chiral effective theories. However, while this mechanism
explains the difference between lowest-lying scalar meson f0(500) (or σ) and a0(980), it cannot explain
the mass of the K∗

0(700) (or κ) meson [8].
In this paper we propose an alternative explanation of the smallness of the mass of the K∗

0(700)
meson. It is based on the well-known mechanism of spontaneous symmetry breaking of the U f (3)
flavour symmetry to SU f (2) isotopic symmetry. As a result of this symmetry breaking K∗

0(700) mesons
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with isospin I = 1/2 play the role of massless BNG bosons. According to us this is a natural explanation
of the small masses of the K∗

0(700) mesons, similar to the explanation of the pion small masses. Note
that the SU f (2) isotopic symmetry cannot be spontaneously broken, as shown in [9], i.e., there exists
isotopic symmetry in nature.

In Section 2 we introduce a model of self-interaction of scalar quark currents, analogous to the
Nambu – Jona-Lasinio (NJL) model [10,11]. We present a quantisation of this model and derive the
effective potential for the scalar mesons nonet. In Section 3 we present the minimisation of this effective
potential and we obtain the mass states of the scalar mesons. In the Conclusion we list the basic results
and conclusions of this work.

2. The Model
Let us consider UR(3)× UL(3) chiral self-interaction of the scalar quark currents:

L = iΨ ∂/ Ψ +
G0

2
(

Ψ Ψ
)2

+
G̃0

2

8

∑
a=1

(
Ψ λaΨ

)2, (1)

where, Ψ = (u d s)T is the triplet of massless color quarks1, while λa (1, ..., 8) are the Gell-Mann
matrices. Here, G0 and G̃0 are positive constants of the self-interaction of the singlet state quark
scalar current and the octet states of the quark scalar currents, correspondingly, and both have a
dimension [mass]−2. We consider massless quarks, which will obtain masses due to spontaneous
symmetry breaking.

It is obvious that the quantisation of this Lagrangian in perturbation theory on the dimensional
constants G0 and G̃0 will result into nonrenormalisable theory. Therefore, we will use the linearisation
method of this Lagrangian developed in [12,13]. The linearisation of the Lagrangian (eq. 1) leads to
the following equivalent on the classical level Lagrangian:

L = iΨ ∂/ Ψ + g0Ψ Ψ S0 −
g2

0
2G0

S2
0 +

8

∑
a=1

(
gaΨ λaΨ Sa −

g2
a

2G̃0
S2

a

)
(2)

where we have introduced the auxiliary fields

S0 =
G0

g0
ΨΨ and Sa =

G̃0

ga
Ψ λaΨ, (3)

which will play the role of collective excitation states of the corresponding currents. Here, g0 and ga

are the dimensionless Yukawa coupling constants.
All the collective modes become dynamical as a result of the self-energy quantum corrections

from fermion loops (Figure 1a).

&%
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�
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qqqqqq q q q q q q

q q q q q q(b)

Figure 1. (a) Radiative correction to self-energy parts. (b) Radiative correction to self-interactions.

1 Here the color indices are suppressed.
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Let us consider the self-energy quantum corrections to the scalar field S0:

Π00(q) = ig2
0NCTr[1]

∫ d4 p
(2π)4 Tr

[
(p/ − m0)

−1(p/ − q/ − m0)
−1
]

= 12ig2
0NC

∫ d4 p
(2π)4

1
p2 − m2

0
− 6ig2

0NC

∫ d4 p
(2π)4

1(
p2 − m2

0
)2 q2 + finite terms O(q4)

= 12g2
0NC I2 + 6g2

0NC I0 q2 + finite terms O(q4), (4)

and to the scalar fields Sa

Πab(q) = igagbNCTr[λaλb]
∫ d4 p

(2π)4 Tr
[
(p/ − m0)

−1(p/ − q/ − m0)
−1
]

= 8ig2
a NCδab

∫ d4 p
(2π)4

1
p2 − m2

0
− 4ig2

a NCδab

∫ d4 p
(2π)4

1(
p2 − m2

0
)2 q2 + finite terms O(q4)

= 8g2
a NC I2δab + 4g2

a NC I0δab q2 + finite terms O(q4), (5)

where p is the internal and q is the external momentum, NC denotes the number of colors, and

I2 ≡ i
∫ d4 p

(2π)4
1

p2 − m2
0
=
∫ d4 pE

(2π)4
1

p2
E + m2

0
> 0 (6)

is the quadratically divergent integral, while

I0 ≡ −i
∫ d4 p

(2π)4
1(

p2 − m2
0
)2 =

∫ d4 pE

(2π)4
1(

p2
E + m2

0
)2 > 0 (7)

is a logarithmically divergent integral, which are both positive in Euclidian momentum space.
Here we have introduced the small current mass m0 for the quark, which will help to avoid the

infrared divergences in the denominator and which will be neglected in the numerator. This kind of
quark mass introduction explicitly breaks the chiral symmetry and is called soft symmetry breaking.
Such symmetry breaking does not cause extra ultraviolet divergences in the scalar particles masses.
Due to the dimensionless of the Yukawa coupling constants g0 and ga in the four dimensional space
there exist only two types of divergent integrals (6) and (7). The ultraviolet divergences in (6) and (7)
are removed using one of the known regularisation methods.

The first terms in the last lines of Equations (4) and (5) represent the corrections to the mass terms
of the scalar fields S0: µ2 = g2

0/G0 − 12g2
0NC I2 and Sa: µ̃2 = g2

a/G̃0 − 8g2
a NC I2. The second terms

represent the kinetic parts of the scalar fields. For a correct normalisation of the scalar fields wave
functions the following requirements should be fulfilled:

6g2
0NC I0 = 4g2

a NC I0 = 1. (8)

Due to the dynamical origin of the kinetic terms all the interactions in the NJL model are descried by a
single dimensionless coupling constant

g ≡ g0 =
√

2/3 ga. (9)

Another essential point of the NJL model is the generation of the self-interactions of the scalar
fields, which self-interactions lead to a spontaneous dynamical breaking of the chiral symmetry. Thus,
at a quantum level, due to the radiative corrections (Figure 1b) in the effective Lagrangian local terms
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appear for the self-interaction of the scalar mesons with zero external momentum and corresponding
symmetry factors:

□0000(0) =
i
4

g4
0NCTr[1]□ = −3g4

0NC I0 +O(m2
0) ≈ −1

2
g2; (10)

□00aa(0) =
3i
2

g2
0g2

a NCTr
[
λ2

a

]
□ = −12g2

0g2
a NC I0 +O(m2

0) ≈ −3g2; (11)

□0aab(0) = 3ig0g2
a gbNCTr

[
λ2

aλb

]
□ = −12g0g2

a gbNC I0daab +O(m2
0)

≈



−3

√
3
2

g2, for a = 4, 5 and b = 3;

3

√
3
2

g2, for a = 6, 7 and b = 3;

−3
√

2g2, for a = 1, 2, 3 and b = 8;
3√
2

g2, for a = 4, 5, 6, 7 and b = 8;

(12)

□0888(0) = ig0g3
8NCTr

[
λ3

8

]
□ =

8√
3

g0g3
8NC I0 +O(m2

0) ≈
√

2g2; (13)

□0abc(0) = 3ig0gagbgcNCTr[λa{λb, λc}]□ = −48g0gagbgcNC I0dabc +O(m2
0) ≈ −6

√
6g2dabc; (14)

□aaaa(0) =
i
4

g4
a NCTr

[
λ4

a

]
□ = −2g4

a NC I0 +O(m2
0) ≈ −3

4
g2; (15)

□aabb(0) =
i
2

g2
a g2

b NCTr
[
λ2

aλ2
b + λaλb{λa, λb}

]
□ = −4g2

a g2
b NC I0 +O(m2

0) ≈ −3
2

g2; (16)

Here, dabc are totally symmetric structure constants of su(3) algebra, where the indices a, b and c obtain
different values non equal to each others, and the integral on the internal momentum p

□ =
∫ d4 p

(2π)4 Tr
[
(p/ − m0)

−1(p/ − m0)
−1(p/ − m0)

−1(p/ − m0)
−1
]

(17)

comes from the fermionic loop in Figure 1b.
The last expressions (10, 11, 12, 13, 14, 15, 16) were obtained using the normalisation condition (8),

the relation between coupling constants (9) and neglecting the small current quark mass m0, which
was introduced only to remove infrared divergencies. The normalisation condition (8) requires that
the leading term in the effective Lagrangian consists only of the divergent terms of the diagrams with
zero external momentum [14], depicted in Figure 1b.

Thus, the effective potential reads:

Veff =
µ2

2
S2

0 +
µ̃2

2

8

∑
a=1

S2
a +

g2

2
S4

0 + 3g2S2
0

8

∑
a=1

S2
a +

3g2

4

(
8

∑
a=1

S2
a

)2

+
3
√

3√
2

g2S0S3

(
S2

4 + S2
5 − S2

6 − S2
7

)
−
√

2g2 S0S3
8

+ 3
√

2g2 S0S8

(
S2

1 + S2
2 + S2

3 −
S2

4 + S2
5 + S2

6 + S2
7

2

)
+ 3

√
6g2S0(S1S4S6 + S1S5S7 − S2S4S7 + S2S5S6). (18)

The advantage of this potential is that it depends only on one dimensionless constant g2 and two
dimensional parameters of the mass: µ2 and µ̃2. This allows to find exact solutions of spontaneous
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symmetry breaking and the mass spectrum of the scalar mesons, which will be presented in the
next section.

3. Symmetry Breaking and Mass Spectrum of Scalar Mesons
Due to the spontaneous symmetry breaking the scalar fields obtain non-zero vacuum expectation

values. The physical vacuum must conserve the electric charge and the quark flavour. Therefore,
only the scalar fields S0, S3 and S8, which interact with the diagonal combinations of quark-antiquark
flavours, can have non-zero vacuum expectation values. In order to find the minimum of the effective
potential (18), we will differentiate the potential only on these degrees of freedom. The minimisation
leads to the following system of equations:

∂Veff
∂S0

∣∣∣∣∣∣∣S0=⟨S0⟩
S3=⟨S3⟩
S8=⟨S8⟩

= µ2⟨S0⟩+ 2g2⟨S0⟩3 + 6g2⟨S0⟩
(
⟨S3⟩2 + ⟨S8⟩2)

−
√

2g2⟨S8⟩3 + 3
√

2g2⟨S3⟩2⟨S8⟩ = 0,

∂Veff
∂S3

∣∣∣∣∣∣∣S0=⟨S0⟩
S3=⟨S3⟩
S8=⟨S8⟩

=
[
µ̃2 + 3g2

(
2⟨S0⟩2 + ⟨S3⟩2 + ⟨S8⟩2 + 2

√
2⟨S0⟩⟨S8⟩

)]
⟨S3⟩ = 0,

∂Veff
∂S8

∣∣∣∣∣∣∣S0=⟨S0⟩
S3=⟨S3⟩
S8=⟨S8⟩

= µ̃2⟨S8⟩+ 3g2
(

2⟨S0⟩2 + ⟨S3⟩2 + ⟨S8⟩2 −
√

2⟨S0⟩⟨S8⟩
)
⟨S8⟩

+3
√

2g2⟨S0⟩⟨S3⟩2 = 0.

(19)

Note, that for a = 1, 2, 4, 5, 6, 7 : ⟨Sa⟩ = 0 due to neutrality of vacuum expectation values. It has
also been shown in [9], that SU f (2) group cannot be spontaneously broken and ⟨S3⟩ = 0 is the right
solution of the system (19), while ⟨S0⟩ ̸= 0 and ⟨S8⟩ ̸= 0 acquire non-zero vacuum expectation values.

The spontaneous symmetry breaking is possible only at strong coupling constants G0 and G̃0,
when the massive parameters have negative values, i.e., µ2 < 0 and µ̃2 < 0. To avoid the irrational
coefficients and the dimensional parameters in (19), we introduce the dimensionless variables x =

3
√

2g⟨S0⟩/
√
−µ̃2, z = 3g⟨S8⟩/

√
−µ̃2 and r2 = µ2/µ̃2. Then the constituent quark masses can be

obtained from the following relations:

mu = md = −
√

−µ̃2

18
(x + z), (20)

ms = −
√

−µ̃2

18
(x − 2z). (21)

The first and the third equations of the system (19) in the new dimensionless variables read:{
x2 + 6z2 − 2 z3

x = 9r2,
x2 − xz + z2 = 3.

(22)

Before solving this system, let us find first the square of the masses of the scalar meson isotriplet
a±0 (980) = (S1 ∓ iS2)/

√
2, a0

0(980) = S3:

M2
i =

∂2Veff

∂S2
i

∣∣∣∣∣S0=⟨S0⟩
S8=⟨S8⟩

= 9
√

2g2⟨S0⟩⟨S8⟩ = (−µ̃2) xz, where i = 1, 2, 3. (23)

This result shows that for non negative square masses the vacuum expectation values of S0 and S8

should have the same signs. We should note that the solutions of the system (22) are invariant with
respect to simultaneous sign changing of the vacuum expectation values: x → −x and z → −z.
Therefore, for definiteness, we will search solutions for positive vacuum expectation values.
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The solutions of the second equation of the system (22) are:

z± =
x ±

√
3(4 − x2)

2
. (24)

Substituting these solutions into the first equation of the system (22) the following expression is
obtained:

±
√

4 − x2
(

x2 − 1
)
=

√
3 ax, where a = r2 − 1. (25)

In order to solve this equation analytically it is necessary to square its right and left hand sides. Thus,
using the substitution x2 = t, a cubic equation follows:

4 − 9t + 6t2 − t3 = 3a2t. (26)

The solutions of this equation are illustrated in Figure 2, where t1 = 2 − 2 3
√

6
√

3 − 10 and t0 = 1 +
√

3.

1 2 3 4
t

t1 t00

a2 >a20
a2 = a20
a2 <a20

Figure 2. The graphical illustration of solutions of the cubic Equation (26)

It is obvious from Figure 2, that three real roots exist for 0 < a2 < a2
0, where a2

0 = 2
√

3 − 3.
Vice versa, for a2 > a2

0 only one real root exists. For a2 = 0 and a2 = a2
0 we obtain only two real roots.

From Equation (25) it follows that x2 ≤ 4.
Let us describe all the exact solutions of Equation (26) dividing them into three intervals, such that

within each interval one single solution exists. The first case corresponds to the interval 0 < x2 ≤ 1.
This interval consists of two subintervals, namely 0 < x2 ≤ t1 and t1 ≤ x2 ≤ 1. In the first subinterval
the solution with one real root for a2 ≥ a2

0 is:

x2 = 2 − 3
√

3a2 − 1 +
√

Q − 3
√

3a2 − 1 −
√

Q, where Q = a2(a4 + 6a2 − 3). (27)

In the other subinterval, the solution for 0 ≤ a2 ≤ a2
0 reads:

x2 = 2 + 2
√

1 − a2 cos

(
1
3

arccos
1 − 3a2√
(1 − a2)3

+
2π

3

)
. (28)

This solution corresponds to one of the three real roots of Equation (26).
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In the second case, corresponding to the interval 1 ≤ x2 ≤ t0, the solution for 0 ≤ a2 ≤ a2
0 reads:

x2 = 2 + 2
√

1 − a2 cos

(
1
3

arccos
1 − 3a2√
(1 − a2)3

− 2π

3

)
. (29)

In the third case, corresponding to the interval t0 ≤ x2 ≤ 4, the solution for 0 ≤ a2 ≤ a2
0 reads:

x2 = 2 + 2
√

1 − a2 cos

(
1
3

arccos
1 − 3a2√
(1 − a2)3

)
. (30)

Let us now calculate all the masses of the scalar meson nonet. We have already done this for
the isotriplet a0(980) (23). The squares of the masses of the scalar mesons κ with isospin I = 1/2:
κ± = (S4 ∓ iS5)/

√
2, κ0 = (S6 − iS7)/

√
2, κ̄0 = (S6 + iS7)/

√
2

M2
s =

∂2Veff

∂S2
s

∣∣∣∣∣S0=⟨S0⟩
S8=⟨S8⟩

= µ̃2 + 3g2
(

2⟨S0⟩2 −
√

2⟨S0⟩⟨S8⟩+ ⟨S8⟩2
)
= 0, (31)

are equal to zero, where s = 4, 5, 6, 7 and the last equality follows from the third equation of the system
(19) with ⟨S3⟩ = 0. The fact that the squares of the masses are equal to zero for these states is a direct
consequence of the Goldstone’s theorem [4,5].

Now let us calculate the squares of the masses of the isosinglet states with isospin I = 0, S0 and
S8:

M2
0 =

∂2Veff

∂S2
0

∣∣∣∣∣S0=⟨S0⟩
S8=⟨S8⟩

= µ2 + 6g2
(
⟨S0⟩2 + ⟨S8⟩2

)
= (−µ̃2)

2
9

(
x2 +

z3

x

)
, (32)

M2
8 =

∂2Veff

∂S2
8

∣∣∣∣∣S0=⟨S0⟩
S8=⟨S8⟩

= µ̃2 + 3g2
(

2⟨S0⟩2 − 2
√

2⟨S0⟩⟨S8⟩+ 3⟨S8⟩2
)

= (−µ̃2)
z
3
(2z − x), (33)

M2
08 =

∂2Veff
∂S0∂S8

∣∣∣∣∣S0=⟨S0⟩
S8=⟨S8⟩

= 3g2
(

4⟨S0⟩ − 2
√

2⟨S8⟩
)
⟨S8⟩ = (−µ̃2)

√
2 z
3

(2x − z) ̸= 0. (34)

From the last equation it follows that there exists a non-trivial mixing between these states. This can be
descried by the non-diagonal matrix:

M2
I=0 = (−µ̃2)

(
A B
B C

)
, (35)

where A = 2
9

(
x2 + z3

x

)
, B =

√
2

3 z(2x − z), C = 1
3 z(2z − x) The diagonalisation of this matrix leads to

two eigenvalues:

M2
σ = (−µ̃2)

A + C −
√
(A − C)2 + 4B2

2
, (36)

M2
f0(980) = (−µ̃2)

A + C +
√
(A − C)2 + 4B2

2
. (37)
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1 2 3 4
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1.0

1.5

2.0

2.5

z

z+
z−

1 2 3 4
a2

1

2

3

4

5

M 2

(−µ̃2)

a0(980)
σ
f0(980)

Figure 3. The left panel presents the solutions of Equation (24). The right panel presents the reduced squares of
masses of σ, f0(980) and a0(980) mesons. The figure corresponds to the first case.

They correspond to the squares of the masses of the physical states σ and f0(980).
Let us analyse the obtained solutions (27, 28, 29, 30), keeping in mind that the squares of masses

of σ, f0(980) and a0(980) mesons should be non-negative. In the first case, the solutions (27, 28), are
illustrated in Figure 3. The left panel of the figure presents the solutions of Equation (24). From the panel
it is obvious that only the solution z+ is positive. For positive x this leads to positive masses of the scalar
isotriplet a0(980). The right panel presents the reduced squares of the masses of the meson isotriplet
a0(980) and the two isosinglets, σ and f0(980). Thus, it is seen from the right panel that this case does
not correspond to physical masses, due to the unphysical pattern Ma0(980) < Mσ < M f0(980).

0.1 0.2 0.3 0.4
a2

−1.0

−0.5

0.5

1.0

1.5

2.0

2.5

z

z+
z−

0.1 0.2 0.3 0.4
a2

1

2

3
M 2

(−µ̃2)

a0(980)
σ
f0(980)

Figure 4. The left panel presents the solutions of Equation (24). The right panel presents the reduced squares of
masses of σ, f0(980) and a0(980) mesons. The figure corresponds to the second case.

The second case, solution (29), is illustrated in Figure 4. The left panel of the figure presents the
solutions of Equation (24). Again, only solution z+ is positive. The right panel presents the reduced
squares of the masses of the meson isotriplet and the two isosinglets. This result is more attractive
from physical point of view. Namely, for a2 → a2

0 the masses of the isotriplet a0(980) and isosinglet
f0(980) are almost degenerate and heavy, while the σ meson mass tends to zero, and it equals zero for
a2 = a2

0. From Equation (25) it follows that for the case z+ > 0 the parameter a is positive: a > 0. So,
for the second case the mass ratio µ2/µ̃2 = 1 + a > 1. This mass ratio depends on the initial coupling
constants in the Lagrangian (1) and means, that G0 is greater than G̃0.

Let us analyse the mixing at a = a0 =
√

2
√

3 − 3. The physical states σ and f0(980) are defined
by the states S0 and S8 from the following relation:(

σ

f0

)
=

(
cos φ − sin φ

sin φ cos φ

)(
S0

S8

)
, (38)

where the mixing angle φ is

φ =
1
2

arccos
C − A√

(C − A)2 + 4B2
. (39)
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The corresponding illustration of this mixing angle is presented in Figure 5.

0.0 0.1 0.2 0.3 0.4
a240

41

42

43

44

45

46

47

ϕ

Figure 5. The figure presents the mixing angle φ corresponding to the second case.

The formula connecting the pure states (uū + dd̄)/
√

2 and ss̄ to the physical states σ and f0(980)
reads: (

σ

f0

)
=

(
cos ω sin ω

− sin ω cos ω

)(
ss̄

uū+dd̄√
2

)
, (40)

where the mixing angle ω is related to the mixing angle φ by the relation:

ω = arctan
√

2 − φ. (41)

It is interesting to note, that at point a = a0 ω = ω0, where ω0 ≈ 54.7◦ − 47.5◦ = 7.2◦. This very
small angle corresponds to a nearly ideal mixing. However, contrary to the common assumption, that
f0(980) meson is almost pure ss̄ state, we obtain that actually it is the σ meson which has almost pure
ss̄ state, while f0(980) meson is close to (uū + dd̄)/

√
2 state.

In the third case, solution (30), both the solutions z+ and z− can be positive. Therefore, we will
consider separately both cases. Figure 6 presents the solution z+, while in Figure 7 z− solution is
presented. The solution z− is nonnegative for 0 ≤ a2 ≤ a2

1 = (−2/3)2.

0.0 0.1 0.2 0.3 0.4
a2

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

z

z+

0.1 0.2 0.3 0.4
a2

−1

1

2

3 M 2

(−µ̃2)

a0(980)
σ
f0(980)

Figure 6. The left panel presents the solution z+ of Equation (24). The right panel presents the reduced squares of
masses of σ, f0(980) and a0(980) mesons. The figure corresponds to the third case.
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0.1 0.2 0.3 0.4
a2

0.2

0.4

0.6

0.8

1.0

z

a2
1

z−

0.1 0.2 0.3 0.4
a2

−1

1

2

M 2

(−µ̃2)

a2
1

a0(980)
σ
f0(980)

Figure 7. The left panel presents the solution z− of the Equation (24). The right panel presents the reduced
squares of masses of σ, f0(980) and a0(980) mesons. The figure corresponds to the third case.

However, as it is seen from the right panels of these figures, the square of the mass of the σ meson
is negative in the whole range of variation of parameter a2, except of point a2 = a2

0 in Figure 6 and
point a2 = a2

1 in Figure 7, at which the mass of the σ meson is zero. The first point is included in the
second case, as intermediate point between the second and the third cases, and already have been
considered as physical solution, while at the second point in the right panel of Figure 7 the mass of
a0(980) meson is also zero, which does not correspond to a physical case. Negative values of the mass
of the σ meson do not correspond to the minimum of the potential.

In conclusion, only the second case, illustrated in Figure 4, corresponds to a physical solution.

4. Conclusions and Discussion
In this article we propose an explanation of the inverted mass hierarchy of the low-lying nonet of

the scalar mesons. Such type of explanation is proposed for a first time in literature. The explanation
is provided in the framework of quark-antiquark NJL model. In particular, the chiral symmetry
UR(3)× UL(3) is broken to UV(3), which on its turn is broken simultaneously to SU(2). The latter
type of spontaneous symmetry breaking has not been considered before. Remarkably, this type of
symmetry breaking leads to the appearance of BNG bosons, which results into zero masses of the κ

mesons. Moreover, our model suggests also a zero mass for the σ meson. We have also determined
that the σ meson state consists almost completely of ss̄ quark combination. In previous studies it
was assumed that the σ meson consists predominantly of light quarks. We have also shown f0(980)
consists predominantly of light quarks, contrary to the previous assumptions that it consists mainly of
strange quarks. Thus, the experimentally observed decay of f0(980) to two pions is nicely described
by our model.

Future analysis should consider the realistic case of non-zero current masses. In order to explain
the real mass spectrum it is necessary to introduce explicit breaking of SU(3) flavour symmetry due
to non-zero current quark masses. The method for introduction of heavy current mass of the strange
quark has been developed in the framework of the chiral model U(1) with a spontaneous symmetry
breaking [15]. The results obtained in this work confirmed the predicted in ref. [16] mass value of
the h1(1415) meson. This meson was experimentally discovered 15 years later [17] exactly with the
predicted mass value. Such analysis will be provided elsewhere. Here we want only to note that
during the UR(3)× UL(3) symmetry breaking besides pseudoscalar pions, K mesons, which contain a
strange quark, obtain zero mass, as well.

It is known that the account for the current quark masses, in the case of dominant strange quark
mass, leads to a real mass of the pseudoscalar K mesons of the order of 500 MeV. We expect that
similarly to the K mesons case, σ and κ mesons, which contain strange quarks, will obtain masses of
the order of K mesons.
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