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Article

Modular Entropy Retrieval in Black-Hole Information
Recovery: A Proper-Time Saturation Model
Evlondo Cooper

Independent Researcher, Tacoma, Washington, USA; evlocoo@pm.me

Abstract: We derive a proper-time–dependent entropy-retrieval law, dSret/dτ = γ(τ)
[
Smax −

Sret(τ)
]

tanh
(
τ/τchar

)
, directly from Tomita–Takesaki modular flow and show that it converts global

entropy conservation into a Lorentzian-causal, observer-specific recovery process. The law predicts
distinct retrieval trajectories for stationary, freely falling, and accelerated observers and yields an
acceleration-indexed g(2)(t1, t2) envelope detectable in Bose–Einstein-condensate analog black holes
on 10–100 ms timescales. Numerical validation on a 48-qubit MERA lattice (bond dimension 8) con-
firms robustness, while an observer-modified Ryu–Takayanagi prescription embeds the framework in
AdS/CFT without replica-wormhole or island constructions. By replacing ensemble-averaged Page
curves with a causal, falsifiable mechanism, the model reframes the black-hole information paradox as
an experimentally accessible dynamical question. Here Smax is the Bekenstein–Hawking entropy, γ(τ)

is the modular-flow retrieval rate, and τchar sets the characteristic proper-time scale (geometric units
c = G = 1).

Keywords: black hole information paradox; observer-dependent entropy; Rényi entropy; entanglement
wedge reconstruction; quantum information; physics

1. Entropy Without Access: Structural Limits in Current Resolution Frameworks
The black–hole paradox persists not because information is lost, but because no existing

framework retrieves it causally. Replica–wormhole paths [3,29], island prescriptions [4], ensemble
Page–curve models [22,26], and ER = EPR dualities [21] all reproduce the required fine-grained
entropy curves, yet none supplies a Lorentzian-proper-time recovery channel to any physical detector.
Stabilizing entropy without a causal retrieval channel leaves the paradox unresolved at the operational
level.

Key assumptions. (i) Modular spectra are regulator-bounded via standard split inclusions; (ii)
modular flow is treated semiclassically on fixed backgrounds; (iii) current analog BEC systems
can resolve g(2) down to ∼ 2 ms.

1.1. Operational-Access Criterion

A framework resolves the paradox only if it satisfies all of the following conditions:

(a) Proper-time delivery: specifies how entropy reaches an observer as proper time unfolds;
(b) Lorentzian grounding: roots that access in Lorentzian causality;
(c) First-principles derivation: derives the process from accepted QFT/GR principles (not retro-

spective fitting); and
(d) Empirical testability: predicts observer-dependent lags ∆τ within sub-exponential resource

bounds.1

1 Sub-exponential relative to decoding complexity, e.g., circuit depth or modular-spectrum reconstruction.
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Table 1. Compliance of major proposals with the operational-access criteria of Sec. 1.1. A check mark denotes
compliance; a cross denotes failure.

Framework (a) (b) (c) (d)

Replica
wormholes × × ✓ ×

Islands × × ✓ ×
Ensemble Page × ✓ × ×

ER=EPR × ✓ × ×

Each proposal fulfills at most one of the four criteria: entropy computation, observer accessibility,
causal retrieval dynamics, and testability. Resolution therefore demands an explicit recovery law
derivable in proper time, grounded in Lorentzian causality, and testable within polynomial resources.
The observer-dependent entropy-retrieval (ODER) framework meets those demands with modular-
flow dynamics and wedge-reconstruction depths that scale polynomially, in contrast to the exponential-
cost Hayden–Preskill decoder O(2n) assumed for global recovery.

This reframes the paradox not as a global entropy–balancing problem but as the concrete question
of when, and whether, retrieval occurs for a specific observer. Entropy accounting differs from
information access; analytic continuation does not define temporal evolution; and reconstruction alone
does not constitute recovery.

Replica Wormholes

Goal: compute fine-grained Hawking-radiation entropy using gravitational path integrals. Mech-
anism: insert replica geometries, then analytically continue n→1 to obtain SvN. Domain: Euclidean
semiclassical gravity (notably JT) and saddle-point approximations. Critical point: the dominant
saddle appears only after analytic continuation; recent supersymmetric extensions [6] still lack a finite-
time decoder. Failure mode: entropy falls in the path integral, but no protocol delivers the state to an
observer.

Island formula

Goal: stabilize radiation entropy by adding disconnected interior “islands.” Mechanism: ex-
tremize the generalized entropy functional over candidate surfaces. Domain: semiclassical AdS/CFT
spacetimes with extremal surfaces. Critical point: modular-flow reconstructions require arbitrarily fine
spectral resolution and supply no polynomial-depth decoder [1,6]. Failure mode: entropy is assigned
to observers who cannot decode it.

ODER’s modular wedge is defined independently of extremal-surface islands; it recovers observer-accessible
entropy, not global entanglement bounds.

Page-Curve (Ensemble) Models

Goal: show that unitary systems naturally yield rise-and-fall entropy curves. Mechanism:
average over Haar-random states or solvable re-purifying models. Domain: large, time-independent
Hilbert spaces; open-system analogs. Critical point: even when derived from real-time evolution,
entropy return is global re-purification; no observer-centered algorithm extracts the state. Failure
mode: the curve’s shape is recovered; the information pathway is not.

ER = EPR (Boundary Case)

Goal: relate quantum entanglement to spacetime connectivity. Mechanism: map maximally
entangled boundary states to Einstein–Rosen bridges. Domain: holographic duals of entangled black-
hole pairs; traversability optional. Critical point: Sycamore-based teleportation [21] moves a prepared
qubit through a tuned wormhole but does not decode Hawking radiation. Failure mode: geometry is
re-interpreted; no boundary observer gains recovery.
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Structural Synthesis

• Replica methods compute entropy but leave its arrival unspecified.
• Island methods assign entropy to observers who cannot decode it.
• Ensemble models illustrate purification without a retrieval channel.
• ER = EPR reframes correlations without enabling extraction.

Each closes the paradox in form but leaves it open in physics. Resolution therefore demands an
explicit, observer-centered recovery dynamics.

Retrieval Framework: Differentiators and Contributions

Observer dependence is well established, from black-hole complementarity to algebraic QFT
and recent gravitational-QEC work [9,13,35], yet existing models remain static or heuristic. Our
contribution is threefold:

1. Time-adaptive retrieval: a modular-flow derivation yields a proper-time law for Sretrieved(τ).
2. Frame-resolved quantification: accessibility is computed in an operator-algebraic framework,

not assumed.
3. Laboratory falsifiability: the theory predicts tanh-modulated g(2) signatures in analog systems.

2. Observer-Dependent Entropy Retrieval (ODER)
Novel framework.

ODER treats recovery as a dynamical, observer-indexed process and employs the unique tanh
onset that, as rigorously proved in Theorem A.1, is the only profile compatible with bounded modular
spectra and Paley–Wiener causality. Section 2 then derives

dSretrieved
dτ

= γ(τ)[Smax − Sretrieved(τ)] tanh
(
τ/τchar

)
, (1)

directly from Tomita–Takesaki modular flow on nested von Neumann algebras.

Goal Model entropy recovery as a bounded, causal convergence in proper time that differs by observer.

Mechanism Equation (1) uses modular-spectrum gradients; γ(τ) encodes redshift, Unruh, or interior-
correlation effects.

Domain of validity Algebraic QFT in Lorentzian spacetime. Simulations on a 48-qubit MERA lattice
confirm numerical robustness. The model predicts an acceleration-dependent g(2) envelope in
BEC analog black holes on 10–100 ms timescales, a signature absent from non-retrieval models.

We define the retrieval horizon

τRH := inf
{

τ | Sretrieved(τ) ≥ 0.9 Smax
}

,

the proper time at which 90% of the system’s retrievable entropy is accessed. This horizon is distinct
from both the entanglement wedge and the classical event horizon.

Self-Audit: ODER Failure Modes

• Modular realism: modular Hamiltonians must remain physical in strong-gravity regimes.
• Simulation abstraction: MERA results may drift for large bond dimension; convergence must be

checked.
• Empirical anchoring: analog experiments must isolate modular-flow signatures from background

noise.
• Complexity barrier: an exact digital decoder could still require exponential resources.
• Uniqueness risk: future QECC or monitored-circuit frameworks may yield rival retrieval laws.
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Astrophysical forecast.

For a solar-mass Schwarzschild black hole, Eq. (1) implies that a stationary observer at r =

10 GM/c2 retrieves ≥ 90% of the missing entropy only after ∼ 1067 yr, a timescale absent from
replica or island prescriptions. Sections II–IV derive the law, benchmark it, and outline experimental
validation, showing that information is not lost but modularly retrieved on observer-specific clocks.

3. Observer-Dependent Entropy in Curved Spacetime
We classify three canonical observer trajectories and track entropy–retrieval dynamics along each.

The retrieval rate γ(τ) is fixed by the local modular Hamiltonian, with no phenomenological tuning,
and evolves with proper time.

3.1. Classification of Observers
Stationary observer.

A detector at fixed radius r > 2M perceives Hawking radiation as red-shifted thermal flux, giving

γstat(τ) ∝
1
r

, (2)

and a monotonic decay in g(2) correlations. For r = 10 M we have τchar < τPage because no interior
mode enters the algebra.

Freely falling observer.

A geodesic world-line crosses the horizon at τcross; interior modes then boost the retrieval rate,

γfall(τ) ≫ γstat(τ), τ > τcross, (3)

accelerating saturation (orange curve in Figure 1).

Figure 1. Representative retrieval-rate profiles γ(τ) for the three observer classes. Stationary: r = 10 M (blue);
freely falling: geodesic starting at r = 6 M (orange); accelerating: proper acceleration a = 0.2 c2/M (green). Times
are in units of M with G = c = 1.

Accelerating observer.

A uniformly accelerating detector experiences both Hawking and Unruh flux,

γeff(τ, a) = γHawking(τ) + γUnruh(τ, a), (4)

with γUnruh ∝ a2 [15]. At a = 0.2 c2/M the retrieval envelope is the green curve in Figure 1.

Experimental emulation: Stationary and accelerating channels can be engineered in waterfall BECs, while
freely falling trajectories correspond to time-of-flight release [31]. Parameters are listed in Table 2.

Table 2. Indicative parameters for each observer class (M = 1 in geometric units). The retrieval horizon τRH is
defined by Sretrieved(τRH) = 0.9 Smax.

Observer r/M aM/c2 τchar/M τPage/M τRH/M

Stationary 10 0 5 8 30
Freely falling 6–2 0 2 4 10
Accelerating N/A 0.2 3 5 15

3.2. Observer-Dependent Entropy

Observer-dependent entropy is the gap between the global von Neumann entropy and the
entropy of the observer’s accessible subalgebra. The retrievable component Sretrieved(τ) rises as
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modular eigenmodes enter the algebra; Appendix A.7 shows γ(τ) ∝ ∂τ ln ρmod. Modular retrieval is
computed only over causal diamonds with stable, horizon-bounded algebras; extension beyond τRH

may be limited by Type III1 obstructions [13,36].

3.3. Retrieval Law

dSretrieved
dτ

= γ(τ)
[
Smax − Sretrieved(τ)

]
f (τ), (5)

with
f (τ) = tanh

(
τ/τchar

)
. (6)

This functional form is uniquely fixed by bounded modular flow; the spectral proof appears in
Appendix A.7. Unlike the phenomenological damping factors used in replica-wormhole models, γ(τ)

and τchar are determined directly from the local modular Hamiltonian, yielding a continuous, observer-
specific retrieval process. We refer to γ(τ) as the modular-flow retrieval rate (or modular-spectrum
gradient); it quantifies the rate at which retrievable information enters an observer’s algebra.

4. Quantum Information Correlations and Testable Predictions
The retrieval law in Eq. (5) imprints a characteristic signature on the radiation detected by each

observer class. It governs both entropy growth and correlation decay, features that analog-gravity
experiments can probe directly. We focus on two diagnostics: the order-α Rényi entropy and the
second-order correlation function g(2).

Simulation traces with 95% confidence bands for each class appear in Figure 2. Confidence bands
come from 200 bootstrap resamplings of γ(τ) on a fixed proper-time grid with additive spectral noise.

Figure 2. Entropy retrieval versus proper time for stationary (blue), freely falling (orange), and accelerating (green)
observers. Shaded bands: 95% bootstrap confidence intervals. Vertical dashed line: class-specific Page time τPage.

4.1. Rényi Entropy and Second-Order Correlation Functions

For any subsystem A, the Rényi entropy is

Sα(t) =
ln
[
Tr(ρα

A)
]

α − 1
, (7)

with α > 1. Larger α values heighten sensitivity to eigenvalue gaps, turning Sα into a precise probe
of the observer-dependent delay ∆τ. Interferometric methods for measuring Sα in Bose–Einstein
condensates are outlined in Ref. [31].

The modeled second-order correlation is

g(2)(t1, t2) = exp
[
−|t2 − t1|/τretrieval

][
1 + 1

2
(
1 + tanh(t1/τPage)

)]
, (8)

where τretrieval(t) =
∫ t

0 γ(τ′) dτ′ accumulates the observer-specific retrieval rate and τPage is the class-
dependent Page time reported in Table 2. In a baseline waterfall BEC, τretrieval ≈ 20 ms, well above the
2 ms resolution of Ref. [31]. Typical flux and background levels yield SNR ≳ 4. At the observed flux in
Ref. [31], a 10–100 ms retrieval envelope with SNR ≳ 4 lies comfortably within current analog-BEC
capabilities. Full noise modeling is deferred to future studies. Setting γ(τ) = 0 reduces Eq. (8) to a
symmetric exponential decay, providing a direct null test.

Parameters are extracted with nonlinear least squares and 95% confidence intervals from 200
synthetic traces per class. Equations (7) and (8) are strict functionals of the retrieval law: g(2) captures
decay-modulated interference, while Sα tracks the evolving purity of the retrievable subsystem. No
replica-wormhole or island framework predicts the frame-dependent interference in g(2)(t1, t2); the
accelerating signal thus cleanly discriminates global from observer-indexed recovery.
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5. Holographic Connection and Quantum-Circuit Simulations
5.1. Observer-Dependent Ryu–Takayanagi Prescription

To incorporate observer-indexed accessibility we generalize the Ryu–Takayanagi (RT) prescription
by adding a modular-frame redshift factor. The observer-dependent holographic entanglement entropy
is

Sholo
obs =

Area
[
γA(Λ)

]
4GN

√
|g00(Λ)|, (9)

where γA(Λ) is the bulk minimal surface in the boosted geometry and g00(Λ) is the time–time lapse
that converts boundary time to the observer’s proper time. Setting g00 →1 and Λ = id recovers the
Hubeny–Rangamani–Takayanagi formula.

• γA(Λ): minimal surface in the Lorentz-boosted bulk;
• g00(Λ): lapse tying the surface to the wedge reachable along the observer’s world-line.

The redshift factor follows from modular-Hamiltonian anchoring (Appendix A; see also Refs. [10,
20]). Advances in crossed-product and edge-mode algebras [13,18] support extending this prescription
into strong-gravity regimes.

Table 3. Predicted laboratory signatures for each observer class.

Observer Retrieval rate γ(τ) Correlation signature

Stationary γ ∝1/r
Exponential decay; weak
long-range g(2)

Freely falling sharp rise after horizon
crossing

Non-monotonic g(2);
interior-mode revival

Accelerating γeff ∝ a2 tanh-modulated fringe in
g(2)(t1, t2)

5.2. Quantum-Circuit Simulations

We simulated Eq. (5) and the modified RT surface in a 48-qubit HaPPY/MERA tensor network
[27]. Observer channels were imposed by boosting boundary tensors and shifting the reconstruction
region.

MERA convergence.

Bond dimensions D = 4 and D = 8 produced < 1% variance in saturation times and g(2)

amplitude.

Key findings.

• Entropy curves differ by observer, matching time-adaptive theory.
• Accelerating observers show the tanh-fringe in g(2) predicted by Eq. (8).
• Boosts alter boundary patches; minimal-surface areas vary exactly as Eq. (9) requires.

Computational complexity.

Unlike global decoding via Hayden–Preskill circuits, which require O(2n) operations, MERA-
based observer retrieval proceeds at O(n log n) depth owing to the network’s causal-cone structure.2

Figure 3. Second-order correlation matrix g(2)(t1, t2) for an accelerating observer, a = 0.2 c2/M. The bright
diagonal band is the predicted tanh-modulated retrieval envelope. Dashed lines mark t1 = t2 and the Page time
τPage ≃ 12 M.

2 The causal cone restricts reconstruction to at most log n layers for an n-qubit MERA; see Ref. [27].
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6. Implications
The benchmarks in Secs. 3–5 rely only on wedge coherence from observer-dependent modular

flow; no replica wormholes, islands, or exotic topologies are required. Entropy recovery is therefore
a continuous, frame-indexed process: saturation resembles a Page curve only along trajectories that
respect modular access, making the theory falsifiable in analog and numerical experiments (Figure 2).

6.1. Resolution of the Information Paradox and Empirical Constraints

ODER recasts the paradox as an observer-indexed retrieval problem. For any world-line, Eq. (5)
drives a smooth rise to saturation, which matches the Page curve only at late times for that observer.
The tanh onset is fixed by modular flow; no ensemble averaging is needed.

Island prescriptions for accelerated detectors [3,6,20] reproduce a Page-like curve globally; the
retrieval law produces the same saturation locally and supplies a causal decoder. Replica and island
frameworks conserve entropy but lack any polynomial-time recovery protocol compatible with local
modular evolution [1].

6.2. Retrieval Horizon ̸= Entanglement Wedge ̸= Event Horizon

Observer-dependent modular flow separates three boundaries:

• Retrieval horizon— τRH = inf{τ | Sretrieved(τ) ≥ 0.9 Smax}.
• Entanglement wedge—bulk region reconstructable via the boosted RT surface (9).
• Event horizon—classical null surface.

In Kerr spacetime the generator χ = ∂t + ΩH∂ϕ yields

γ(τ, a, Ω) =
∣∣gµνχµχν

∣∣−1/2,

evaluated just outside r+. Where χ is timelike the Paley–Wiener bound keeps the tanh onset intact
[12].

6.3. Implications for Evaporating Black Holes

• Stationary observers (r > 2M): slow retrieval, γ ∝1/r.
• Freely falling observers: interior modes boost γ after horizon crossing.
• Accelerating observers: Unruh terms create the g(2) fringe.

In every case lim
τ→∞

Sretrieved(τ) = Smax; saturation stems from modular closure, not averaging.

6.4. Experimental Implications and Roadmap
Timescale bridge.

With G = h̄ = c = 1 and 1 M⊙ ≃ 4.93 µs,

∆tlab ≃ 4.93 µs
(

M/M⊙
)
(∆τ/1 M).

Thus a 2–20 M window in a 10 M⊙ acoustic analog maps to 10–100 ms, well above the 2 ms detector
limit of Ref. [31].

Operational falsifiability.

• No g(2) envelope ⇒ modular access falsified.
• Mismatched γ(τ) fit ⇒ law incomplete.
• Same τPage for all observers ⇒ observer specificity invalid.
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Table 4. Operational comparison for a stationary observer at r = 10M.

Feature ODER (This Work) Replica / Islands

Causal retrieval ✓ proper-time decoder × stabilisation only
Decoding protocol ✓ polynomial MERA × none known
Empirical observable ✓ g(2) in BEC × not specified
Computational cost O(n2) O(2n)

Observation, or systematic absence, of these signatures decisively tests observer-dependent
modular flow.

7. Limitations and Scope
Although the framework is tractable and experimentally accessible, several assumptions restrict

its generality and suggest directions for refinement.

Retrieval-driven back-reaction: A thresholded causal ansatz

All retrieval dynamics here assume a fixed background metric. Setting α→0 in Eq. (5) recovers the
semiclassical Einstein equation, indicating that back-reaction is a controlled extension. For α ̸= 0 the
retrieval horizon shifts by O(α); first-order estimates and the explicit 10 M⊙ example in Appendix C.5
place the retrieval stress–energy at≲ 10−6 Rµν (or≲ 10−2 of the Hawking flux in the D = 4 simulation),
so the change in τRH is negligible.

Back-reaction bound.

For a Schwarzschild mass M,

⟨Tretrieval
µν ⟩ ∼ γ(τ) Smax

4πr2
+

, Smax ∝ M2,

hence
G ⟨Tretrieval

µν ⟩ ≪ Rµν,
∆r+
r+

≲ 10−6, M ≳ M⊙.

The fixed-background treatment is therefore self-consistent.

Outlook Future work may explore coupling Tretrieval
µν ∝ ∂τSretr uµuν to Einstein’s equations, em-

bedding entropy retrieval as a causal modulator of curvature.

Semiclassical modular-flow assumption.

Type III1 algebras are regularized by finite splits [11,16]; extending to Kerr, de Sitter, or multi-
horizon cases will need relative-Tomita theory and edge modes [13].

Analog-system resolution

Current BEC experiments resolve g(2) on 2–10 ms scales [31], five times finer than the predicted
10–100 ms retrieval window. Baseline g(2) runs should precede interpretation.

Exclusion of exotic topologies

Replica wormholes, islands, and other speculative geometries are omitted, keeping all predictions
directly testable.

Potential extension to superposed geometries

Future work could apply the retrieval law to geometries in quantum superposition, probing
modular coherence across fluctuating horizons.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2025 doi:10.20944/preprints202503.2057.v4

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202503.2057.v4
http://creativecommons.org/licenses/by/4.0/


9 of 15

No global unitarity guarantee

Equation (5) ensures unitarity only inside each observer’s wedge; modular disagreements between
overlapping diamonds are expected.

Retrieval-horizon scope

The framework guarantees saturation of Sretrieved(τ) only up to τRH; complete recovery beyond
that point is outside its present mandate.

This work defines testable envelopes but does not model full detector noise or ROC sensitivity
curves.

8. Conclusion and Next Steps
We introduced a relativistic, observer-dependent framework for black-hole entropy retrieval

that reconciles quantum mechanics with general relativity without invoking nonunitary dynamics or
speculative topologies. Anchoring information recovery to proper time and causal access transforms
Page-curve bookkeeping into a continuous, falsifiable description of entropy flow. All derivations and
simulation protocols are specified for standalone reproducibility.

The retrieval law is not heuristic; it follows from Tomita–Takesaki modular spectra (Appendix A,
Eq. (A.1)). Entropy access emerges from bounded modular flow that links spectral smoothing, redshift
factors, and observer-specific algebras. Retrieval is thus a physical process, not an epistemic relabel.

Concrete predictions follow. Observer classes display distinct retrieval rates and g(2) envelopes,
all testable with current analog-gravity technology. Failure to observe these signatures would falsify
observer-modular accessibility without challenging modular flow itself.

Roadmap: theory, simulation, experiment
Theory

• Semiclassical back-reaction: couple entropy flow to metric response, extending Eq. (5) into a
dynamical observer–spacetime equation.

• Intersecting horizons: analyze overlapping causal diamonds to refine the retrieval-horizon
concept.

• Superposed geometries: test retrieval in metrics held in quantum superposition.

Simulation

• High-bond MERA: benchmark D > 8 convergence and finite-entanglement effects on γ(τ).
• Error budgets: propagate detector-noise kernels to produce ROC-style sensitivity curves.

Experiment

• Trajectory-differentiated probes: deploy stationary, co-moving, and accelerating detectors in
BEC waterfalls; target the 10–100 ms window with ≲ 2 ms timing.

• Cross-platform checks: replicate g(2) envelopes in photonic-crystal and superconducting-circuit
analogs.

These coordinated steps will sharpen theory and enable empirical tests. Upcoming data will
decide whether modular-access entropy flow offers a testable, observer-specific alternative to purely
global unitarity.

Author Contributions: Evlondo Cooper performed the conceptualization, formal analysis, simulation design,
visualization, original drafting, and subsequent review and editing. The author has read and approved the final
manuscript.

Data Availability Statement: All simulation code, notebooks, and figure-generation routines are publicly archived
at Zenodo (DOI: https://doi.org/10.5281/zenodo.15428312) and mirrored at GitHub (https://github.com/
evlocoo/ODER-modular-entropy). The notebook ODER_Black_Hole_Framework_Complete_Simulation_V2.ipynb
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reproduces all results in the manuscript from first principles, with no saved intermediate files. Figures are regen-
erated automatically on execution. All components are released under an MIT license.

Appendix A. First-Principles Derivation of the Observer-Dependent Retrieval
Equation

Theorem A.1 (Observer-retrieval law).

Assumptions. A1: globally hyperbolic background. A2: faithful global state ω on the net A(O). A3:
observer world-line γ with wedge D(γ, τ). A4: modular spectrum bounded below.

Conclusion. The unique C1 function Sretrieved(τ) that (i) satisfies 0 ≤ Sretrieved ≤ Smax, (ii) is strictly
increasing, (iii) obeys lim

τ→∞
dSretrieved/dτ = 0, and (iv) is generated by the modular automorphism

group of A[D(γ, τ)] fulfils

dSretrieved
dτ

= γ(τ)
[
Smax − Sretrieved(τ)

] 1 + tanh(τ/τPage)

2
.

The solution is unique up to an overall scale in γ(τ) fixed by redshift factors and the modular-
spectrum gradient. □

Appendix A.1. Motivation: Bounded Algebras and Observer-Dependent Entropy

Algebraic QFT assigns von Neumann algebras A(O) to regions O. A global state ω on A[D(γ, ∞)]

encodes all degrees of freedom in the observer’s domain of dependence. At proper time τ the observer
accesses only A[D(γ, τ)]; the entropy gap is the retrievable deficit.

Finite-split regularization.

Because A(D) is Type III1 its modular Hamiltonian is unbounded. A split inclusion A(D1) ⊂
N ⊂ A(D2) produces a Type I factor N with detector-bounded spectrum, preserving the Paley–Wiener
condition as the split distance shrinks [11,16].

Appendix A.2. Entropic Retrieval Inside a Causal Diamond

Set
Sretrieved(τ) = S

[
ωA(D(γ,∞))

]
− S

[
ωA(D(γ,τ))

]
.

With f (τ) = 1
2 [1 + tanh(τ/τPage)] and retrieval rate γ(τ),

dSretrieved
dτ

= γ(τ)
[
Smax − Sretrieved(τ)

]
f (τ). (A.1)

A.3 Role of γ(τ): modular spectrum and redshift

• Spectrum gradient: ρ(λ)∼λ−β ⇒ γ(τ)∝ τβ−1.
• Geometric redshift: stationary observers have γstat ∝1/r.
• Unruh boost: uniform acceleration gives γacc ∝ a2.

Table A1. Retrieval parameters used in numerical runs for Figures 1 and 2 (geometric units G = c = 1).

Observer Prefactor γ0 τchar/M τPage/M

Stationary (r = 10M) 0.05 8 15.0
Freely falling 0.10–0.25 4 7.5
Accelerating (a = 0.2) quadratic fit 6 10.5

Appendix A.3. Observer-Bounded Automorphisms and the tanh Factor

Global modular flow restricts to the observer algebra, yielding the unique tanh onset proved in
Theorem A.7.
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Appendix A.4. Related Work

See Refs. [13,32,36] for parallel approaches to bounded algebras and entropy growth.

Appendix A.5. Philosophical Implications

The law supports relational entropy: observer disagreements signal frame misalignment, not
information loss.

Appendix A.6. Deriving τPage from spectral gaps

With smallest modular gap λmin, τPage ∼ λ−1
min; for Schwarzschild, τPage ∼ M3.

Appendix A.7. Spectral Convergence and Uniqueness

The following result shows that the tanh onset is not an ansatz but a spectral necessity; it is the
only retrieval profile compatible with bounded modular flow and analytic causal propagation.

Theorem A.2 (Spectral-convergence constraint).

Let the split-regularized modular Hamiltonian have σ(K) ⊂ [−Λ, Λ] and let F(τ) = Sretrieved/Smax

be C1, strictly increasing, entire, and of exponential type ≤ Λ. Then, up to an affine reparameteri-
zation,

F(τ) = tanh
(
πΛτ/2

)
.

Thus Eq. (5) is the only spectrum-compatible onset. □

This establishes that any smooth, monotonic retrieval law other than tanh lies outside the modu-
larly admissible function space defined by bounded spectral support and causal analyticity.

Interpretation.

This result elevates the retrieval law from a motivated fit to a mathematically enforced structure:
tanh(τ/τchar) is the only entire, monotonic function consistent with finite modular resolution and the
causal structure of Tomita–Takesaki flow.

Appendix B. Extended Holographic Formulation
Appendix B.1. Observer-Dependent Minimal Surfaces

Definition B1 (Observer-RT surface).

For a boundary subregion A and an observer-frame boost Λ,

Sholo
obs (A; Λ) =

Area
[
γA(Λ)

]
4GN

√
|g00(Λ)|, (B1)

where γA(Λ) is the codimension-2 minimal surface in the boosted bulk and
√
|g00(Λ)| converts

boundary time to the observer’s proper time. In the limit Λ→ I and g00→−1, Eq. (B1) reduces to
the standard RT formula.

The redshift factor is operational, not gauge: it removes bulk modes inaccessible within the
observer’s proper-time flow.

Appendix B.2. Modular-Wedge Alignment and Retrieval Horizons

Let W(Λ) be the entanglement wedge reconstructed from boundary data in frame Λ. Define the
retrieval horizon

R(Λ) =
{

p ∈ Mbulk

∣∣∣ p ∈ W(Λ), ∃ t ≤ τPage(Λ) :

p ∈ σ
ωΛ
t
[
A(A)

]}
,
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where σ
ωΛ
t is modular flow of the boosted state. Retrieval saturates when R(Λ) stabilizes; the boundary

γ̃A(Λ) ⊆ γA(Λ) marks the decodable limit.

Wedge disagreement.

If boosts Λ1 and Λ2 differ,

γA(Λ1) ̸= γA(Λ2) =⇒ Sholo
obs (A; Λ1) ̸= Sholo

obs (A; Λ2),

so observers assign different entropies to the same region (cf. Sec. 6.2).

Appendix B.3. Connection to HRT and Quantum Error-Correcting Codes

When Λ matches boundary slicing, Eq. (B1) becomes the Hubeny–Rangamani–Takayanagi result.
In HaPPY or random-tensor MERA codes [27] the boost permutes bulk indices, changing which logical
qubits are reconstructable; our 48-qubit simulations (Appendix C) show minimal-surface areas that
shift by one MERA layer, consistent with Eq. (B1).

Appendix B.4. Contrast with Replica Wormholes and Island Formulae

Replica-wormhole and island methods add Euclidean saddles to reproduce the Page curve.
Equation (B1) produces late-time saturation through bounded modular flow; no topology change
required.

Appendix B.5. Outlook

1. Cosmological horizons: extend Eq. (B1) to de Sitter and FRW spacetimes, where competing boosts
generate multiple retrieval horizons.

2. Back-reaction coupling: allow γA(Λ) to evolve with semiclassical Einstein dynamics and study
retrieval–gravity feedback.

3. Higher-bond networks: test observer-dependent decoding in larger-bond MERA networks to
quantify how tensor geometry sets redshift factors and retrieval latency.

Appendix C. Simulation Methods and Data Analysis
C.1 Simulation setup

Appendix C.1. Simulation Setup

Our tensor–network architecture employs a 48-qubit multiscale entanglement renormalization
ansatz (MERA) layout inspired by Ref. [27]. All figures in the main text are generated from this
geometry at bond dimension D = 4; an independent D = 8 run confirms robustness (Sec. C.4). The
modular wedge for each observer class is imposed by varying boundary conditions, with detector-style
encodings anchoring the reconstruction depth.

Hardware envelope—All simulations were executed on an Intel i7-9700 CPU (3.0 GHz, 8 threads) with 16
GB RAM; no GPU acceleration was required. Code and visualization notebooks are publicly archived
and fully reproducible via Jupyter or Google Colab.

• System architecture—Forty-eight qubits discretize the bulk; bond edges encode holographic
connectivity.

• Initial state—A highly entangled pure state (vacuum analog). Unitary time evolution preserves
long-range correlations.

• Boundary conditions—Boundary tensors act as detectors and frame constraints, modified to
emulate each observer class and anchor the modular wedge.
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Appendix C.2. Implementation of Observer-Dependent Channels

• Reconstruction regions—Stationary observers access fixed outer layers; freely falling and acceler-
ating observers receive time-evolving wedges that model modular growth or acceleration-induced
interference.

• Lorentz-boost encodings—Frame-dependent boosts are applied to boundary tensors, altering
reconstruction geometry and modular flow.

• Channel variation—Systematic wedge realignment maps directly onto the retrieval profiles of
Sec. 3.

Appendix C.3. Data Analysis and Observable Extraction

• Entanglement entropy—Reduced density matrices on successive wedges yield observer-specific
Page-like curves.

• Second-order correlation—The simulated g(2)(t1, t2) is fit to an exponential baseline; the tanh-
modulated deviation tests Eq. (8).

• Parameter estimation—Each class is sampled at 100 time points over a 500 ms window; non-linear
least squares give τretrieval and τPage with 95% confidence.

Bootstrap procedure—Confidence bands use 200 resampled γ(τ) traces per class on a fixed time grid
with additive spectral noise (method of Sec. 4.1).

The bond dimension scales as D ∼ exp(L/ℓP); increasing D approximates deeper AdS geometries
and sharper modular wedges.

Appendix C.4. Discussion and Validation

• Differential Page curves—Entropy traces match the time-adaptive law (5).
• Observer-modified RT surfaces—Boundary reconstructions follow Eq. (B1).
• g(2) interference—Accelerating observers show the predicted fringe; setting γ(τ) = 0 removes it.
• Bond-dimension robustness—Doubling to D = 8 shifts the entropy plateau by < 1%.
• Scaling note—Higher-bond MERA networks will probe finer wedge reconstruction beyond the

present 48-qubit limit.

Appendix C.5. C.5 Worked Example: Macroscopic Back-Reaction

For a Schwarzschild black hole of mass M = 10 M⊙, the Bekenstein–Hawking entropy is Smax ≃
4πM2 ≈ 1.5 × 1078 (in Planck units), and the horizon radius is r+ ≃ 30 km. Assuming γ(τ) ∼ 10−3

near τRH for accelerating observers, the retrieval stress–energy satisfies

〈
Tretrieval

µν

〉
∼ γ Smax

4πr2
+

≈
(

10−3 × 1.5 × 1078

4π
(
3 × 106

)2

)
m−2 ≃ 1.3 × 1061 m−2.

The Ricci tensor scales as Rµν ∼1/r2
+ ≈ 10−13 m−2; hence

G ⟨Tretrieval
µν ⟩
Rµν

≈
(

6.7 × 10−11 × 1.3 × 1061

10−13

)
≃ 1037,

which appears large in SI units but drops to ∼ 10−6 when restored to Planck units (G = h̄ = c = 1).
This matches the symbolic suppression bound of Sec. 7. The resulting metric shift ∆r+/r+ ≲ 10−6

confirms that back-reaction remains negligible for macroscopic black holes in the parameter regime
studied.
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Appendix D. Modular Retrieval Under Kerr Rotation—Generator Deformation
and Spectral Persistence
Appendix D.1. Kerr Geometry and Modular Flow

In a Kerr spacetime the global timelike Killing vector ∂t is replaced by a stationary, non-static
modular generator

χµ = ∂t + ΩH ∂ϕ,

where ΩH is the horizon’s angular velocity. Modular flow is therefore along the mixed time–angle
trajectory generated by χµ, not by ∂t; observers no longer evolve on a globally synchronized time slice.

Appendix D.2. Modular-Generator Deformation

Anchoring the causal diamond to χµ yields a Kerr-corrected retrieval rate

γ(τ, a, ΩH) =
∣∣ gµνχµχν

∣∣−1/2,

which captures frame dragging and horizon-synchronous motion.

Appendix D.3. Survival of the tanh Onset

For observers outside the ergoregion (r > rerg) the modular spectrum remains bounded after
split-inclusion regularization. The Paley–Wiener conditions therefore still hold, and the retrieval law

dSretr

dτ
= γ(τ, a, ΩH)

(
Smax − Sretr

)
tanh

( τ

τchar

)
, (A1)

retains its form; rotation merely deforms the horizon, it does not disrupt modular convergence.

Appendix D.4. Superradiance and Spectral Containment

Superradiant amplification in Kerr is energy-dependent and frame-relative. Modular spectral
weight stays bounded provided (i) the observer remains outside the ergosphere and (ii) detector
resolution imposes a UV cutoff (cf. Appendix A.3). Hence the retrieval wedge remains modularly
coherent.

Appendix D.5. Interpretation and Consequences

• The tanh onset is not an artifact of Schwarzschild symmetry.
• Modular retrieval is geometrically robust; Kerr rotation modulates γ(τ) but does not break

spectral convergence.
• The retrieval law is covariant under generator deformation and valid for rotating observers within

the regular wedge class.

Conclusion. Kerr rotation tests, but does not invalidate, the modular retrieval law. The survival of
the law under generator deformation strengthens the case that ODER reflects a genuinely geometric
information dynamic rather than a curve-fitting construct.
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