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Article

Variational Formulation of the Heat Equation with
Adjoint Fields: Bridging Dissipation and
Action Principles
Marco Aurélio dos Santos Bernardes

Department of Mathematics, University of Hamburg, Bundestrasse 55, Hamburg, 20146, Germany (last affiliation);
dr.ing.dossantosbernardes@gmail.com

Abstract: This paper presents a variational formulation of the heat equation using adjoint fields to
embed dissipation. By constructing a Lagrangian density L = T̃(ρcp

∂T
∂t − k∇2T)− γ

2 T̃2, we derive
coupled forward and backward-in-time dynamics for the temperature T) and the adjoint T̃. The action
S =

∫
L dVdt exhibits dimensional consistency kg · m2/s and non-monotonic behavior with respect to

the number of time steps M. A numerical example of heat diffusion on a 1D rod demonstrates the role
of the adjoint field in stabilizing solutions and quantifying sensitivity. This work bridges irreversible
thermodynamics with variational mechanics, offering insights into controlled dissipation in thermal
systems.

Keywords: variational formulation; heat equation; adjoint fields; action principles; thermal diffusion;
Euler-Lagrange equations

1. Introduction
The heat equation, ρcp

∂T
∂t = k∇2T, governs thermal diffusion in continua, but resists traditional

Lagrangian formulations due to its dissipative nature. However, recent advances in adjoint meth-
ods and non-equilibrium thermodynamics enable variational treatments of irreversible processes.
Although variational principles are well-established for conservative systems (e.g., Hamiltonian me-
chanics), dissipative processes like heat conduction resist traditional Lagrangian formulations due to
their inherent irreversibility. Recent advances in non-equilibrium thermodynamics and control theory,
however, suggest that adjoint fields can extend variational methods to irreversible systems. This paper
addresses this gap by reformulating the heat equation using adjoint fields, demonstrating that thermal
diffusion adheres to an action principle with dimensions kg · m2/s.

The heat equation, ρcp
∂T
∂t = k∇2T, governs thermal diffusion in continua, but resists traditional

Lagrangian formulations due to its dissipative nature. However, recent advances in adjoint meth-
ods and non-equilibrium thermodynamics enable variational treatments of irreversible processes.
Although variational principles are well-established for conservative systems (e.g., Hamiltonian me-
chanics), dissipative processes like heat conduction resist traditional Lagrangian formulations due to
their inherent irreversibility. Recent advances in non-equilibrium thermodynamics and control theory,
however, suggest that adjoint fields can extend variational methods to irreversible systems. This paper
addresses this gap by reformulating the heat equation using adjoint fields, demonstrating that thermal
diffusion adheres to an action principle with dimensions kg · m2/s.

2. Literature Review
2.1. Variational Principles for Dissipation

[1] introduced path probability functionals for irreversible processes, inspiring quadratic dissipa-
tion terms. Their work delves into the statistical dynamics of continuous stochastic processes, offering
insights into the behavior of systems away from equilibrium. The Onsager-Machlup function, serving

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 March 2025 doi:10.20944/preprints202503.2050.v1

©  2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202503.2050.v1
http://creativecommons.org/licenses/by/4.0/


2 of 11

as a Lagrangian-like function, is instrumental in defining a probability density for such processes, akin
to the Lagrangian in classical mechanics. [3] utilized auxiliary fields to model stochastic systems, prefig-
uring adjoint methods. The MSR formalism, a pivotal approach in statistical physics, employs auxiliary
fields to model stochastic systems, effectively prefiguring adjoint methods. This work addresses the
closure problem in the statistical treatment of homogeneous isotropic turbulence using techniques
developed for quantum field theory. [2] separated reversible and irreversible dynamics, aligning with
dual-field approaches. The GENERIC framework distinguishes between reversible and irreversible
dynamics, aligning with dual-field approaches. The authors of the work [8] introduce the concept
of thermal mass (relativistic equivalence of thermal energy) to unify heat conduction with analytical
mechanics. They derive Lagrange equations with kinetic/potential energies and dissipation, reducing
to Fourier’s law when inertial forces are negligible. Their work is grounded in analytical mechanics
and relativistic concepts, using thermal mass to analogize heat conduction with fluid/mechanical
systems. Explicitly links dissipation to Newtonian forces (e.g., resistant force fh = βhuh, where the
resistant force per unit volume fh is proportional (βh as the proportionality constant) to the thermal
mass velocity uh. This approach relies on approximations (e.g., u ≪ c) and lacks direct experimental
validation of thermal mass.

2.2. Adjoint Methods in Physics

In optimal control theory, adjoint equations are used to compute gradients for inverse problems.
The foundational work of [4] laid the groundwork for using adjoint methods in various fields, including
thermal systems. [5] extended Lagrangians to dissipative systems via contact geometry, providing a
modern perspective on variational mechanics. This approach has been instrumental in bridging the
gap between conservative and dissipative systems.

2.3. Recent Advances and Applications

[7] developed an adjoint-weighted variational formulation for solving inverse heat conduction
problems. This method provides a direct computational solution, demonstrating the effectiveness
of adjoint methods in handling complex thermal systems. [6] applied optimal control theory to
temperature optimization problems by coupling finite element and finite volume codes. Their work
highlights the robustness and accuracy of variational formulations in practical engineering applications.

2.4. Gaps and Contributions

Existing literature lacks explicit variational formulations of the heat equation with adjoint fields.
This work fills this void by demonstrating how dissipation emerges naturally from action principles.
Recent advances in adjoint methods and non-equilibrium thermodynamics, however, enable varia-
tional treatments of irreversible processes. This paper addresses this gap by reformulating the heat
equation with adjoint fields, demonstrating that thermal diffusion adheres to an action principle. Key
innovations include:

1. A Lagrangian density coupling T(x, t) and adjoint field T̃(x, t) to model dissipation.
2. Dimensional alignment of the action with classical mechanics.
3. Numerical validation of backward-in-time adjoint dynamics and parameter sensitivity.

The proposed approach not only ensures dimensional consistency with fundamental action prin-
ciples but also provides a mathematical bridge between irreversible thermodynamics and variational
mechanics.
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3. Theoretical Background
The theoretical foundation of this work lies in the intersection of variational mechanics and

non-equilibrium thermodynamics. This section elaborates on the key concepts and methodologies that
underpin the proposed variational formulation of the heat equation using adjoint fields.

3.1. Action and Dimensions

In classical mechanics, the concept of action S is fundamental. It is defined as the integral of the
Lagrangian L over time, and it has dimensions of kg · m2/s, equivalent to energy multiplied by time.
For thermal systems, the action can be interpreted through the integration of energy transfer processes,
such as heat flux over time, yielding quantities analogous to those in classical mechanics.

3.2. Adjoint Methods in Physics

Adjoint methods have a rich history in physics and engineering, particularly in the context of
optimal control theory. Introduced by [4], adjoint equations are used to compute gradients for inverse
problems, providing a powerful tool for optimizing system behavior. In modern variational mechanics,
[5] extended the use of Lagrangians to dissipative systems through contact geometry, bridging the gap
between conservative and non-conservative systems.

3.3. Adjoint Fields

The concept of adjoint fields is central to this work. Adjoint fields, denoted as T̃, act as Lagrange
multipliers that enforce the heat equation while modeling backward-in-time dynamics. This approach
is similar to the response fields used in the [3] (MSR) formalism, which models stochastic systems in
statistical physics. The adjoint field T̃ represents the sensitivity of the system to perturbations in the
temperature field T, providing a mechanism to incorporate dissipation into the variational framework.

The adjoint field T̃ acts as a sensitivity measure to deviations from equilibrium. Analogously to
thermodynamic forces (e.g., entropy gradients), T̃ quantifies the system’s response to perturbations in
T(x, t). For instance, T̃(x, t) encodes the sensitivity of the action functional to localized temperature
mismatches, akin to how entropy gradients drive heat flux in classical thermodynamics.

3.4. Heat Equation Revisited

The standard heat equation, given by

ρcp
∂T
∂t

= k∇2T (1)

describes thermal diffusion in continua, where ρ is the density, cp is the specific heat, and k is the
thermal conductivity. Units of this equation are J/(m3·s), reflecting the rate of energy transfer per unit
volume.

3.5. Lagrangian Density

To incorporate dissipation, we introduce a Lagrangian density L, that couples the temperature
field T with adjoint field T̃:

L = T̃(ρcp
∂T
∂t

− k∇2T)− γ

2
T̃2 (2)

where γ is is a damping coefficient that governs the strength of dissipation. The first term enforces
the heat equation, while the second term models energy loss through dissipation. The division by 2
in the dissipation term γ

2 T̃2 within the variational framework serves several critical purposes, rooted
in mathematical convenience, physical consistency with classical mechanics, and alignment with
optimization conventions, e.g. Quadratic Penalty Convention or Gradient Descent. The quadratic
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dissipation term γ
2 T̃2 is introduced to model energy loss. To ground this in thermodynamics, we

link γ to the entropy production rate. For a linear isotropic medium, γ corresponds to the inverse of
the thermal relaxation time, γ = τ−1, where τ−1 governs the timescale of irreversible heat exchange.
This aligns with the Onsager-Machlup framework, where dissipation is proportional to the square of
thermodynamic fluxes.

The action functional S is then defined as the integral of the Lagrangian density over space and
time:

S =
∫ t2

t1

∫
V
L dVdt (3)

3.6. Euler-Lagrange Equations

By varying the action functional with respect to the adjoint field T̃ and the temperature field T,
we derive the Euler-Lagrange equations for the system:

ρcp
∂T
∂t

= k∇2T + γT̃. (4)

ρcp
∂T̃
∂t

= −k∇2T̃. (5)

These equations describe the forward and backward dynamics of the system, respectively. The
forward equation includes a controlled dissipation term γ T̃2, while the adjoint equation models
backward diffusion, stabilizing numerical solutions.

3.7. Dimensional Analysis

The dimensional analysis of the Lagrangian density and the action functional ensures that the
derived equations are physically meaningful. The Lagrangian density has units of L = J/(m3·s), and
the action has units of S = J · s = kg · m2/s, consistent with the principles of variational mechanics.

3.8. Physical Interpretation

The minimization of the action functional implies that the system evolves to extremize S, balancing
heat diffusion and dissipation. The dissipation mechanism, modeled by the term γ T̃, is akin to the
Onsager-Machlup dissipation, providing a robust framework for understanding energy loss in thermal
systems.

4. Example: Heat Diffusion in a Rod
To illustrate the practical application of the proposed variational formulation, we consider the

problem of heat diffusion in a one-dimensional rod with fixed boundary conditions. This example
demonstrates both the forward and adjoint dynamics of the system.

4.1. Problem Setup

We examine a rod of length L = 1 meter, initially at a uniform temperature. The boundary
conditions are fixed as follows:

• Initial temperature: T(x, 0) = 0 for 0 ≤ x ≤ L,
• Boundary Conditions: T(0, t) = 100°C, T(L, t) = 0°C,
• Thermal Properties: ρcp = 1 J/(kg·K), k = 0.5 W/(m·K),

4.2. Forward Dynamics

The forward heat equation governing the temperature distribution is given by:
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ρcp
∂T
∂t

= k
∂2T
∂x2 (6)

Using finite-difference methods, we solve the forward heat equation numerically. The temperature
distribution T(x, t) is calculated in various time steps.

4.3. Adjoint Dynamics

The adjoint equation, derived from the variational formulation, is:

ρcp
∂T̃
∂t

= −k
∂2T̃
∂x2 (7)

Here, T̃ represents the adjoint field. This equation is solved backward in time, starting from a
final condition T̃(x, T) = 0.

Stability Analysis: A von Neumann stability criterion is applied to the backward-in-time adjoint

solver. For the discretized Equation (7), the amplification factor G satisfies |G| ≤ 1 when ∆t ≤ ρcp(∆x2)
2k ,

ensuring unconditional stability for the chosen parameters.
Parametric Study: Figure (8) illustrates the sensitivity of the action S to γ, ∆t, and ∆x. Re-

sults confirm that S stabilizes for ∆x < 0.01 m and γ ∈ [0.1, 1.0], guiding parameter selection for
practitioners.

4.4. Algorithm

The following steps outline the numerical solution to the heat conduction problem and its adjoint:

1. Initialization:

• Define parameters: rod length L, number of spatial points N, thermal diffusivity α, and total
time steps M.

• Calculate spatial step size ∆x and stable time step ∆t.
• Initialize temperature arrays T (forward solution) and Tadj (adjoint solution).

2. Boundary Conditions:

• Set fixed temperatures at the rod ends: T(0) = 100C and T(L) = 0C

3. Forward Equation:

• Iterate over time steps to update the temperature distribution using the finite difference
method.

4. Adjoint Equation:

• Define a target temperature profile Ttarget.
• Set the final condition for the adjoint field based on the difference between the final forward

solution and the target profile.
• Solve the adjoint equation backward in time, enforcing boundary conditions Tadj(0) = 0

and Tadj(L) = 0

5. Action Functional:

• Compute the action functional as the sum of the product of the forward and adjoint solutions
over space and time.

6. Visualization:

• Plot the temperature distribution and adjoint field at selected time steps.
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4.5. Results and Discussion

Figures 1 to 6, illustrate the temperature distribution T(x, t) and the adjoint field T̃, for time steps
M = 100, 1500 and 20000 respectively. Figure 7 highlights the non-monotonic behavior of the action as
the number of time steps increases.

The observed trend — where the action S initially decreases to a minimum at M ≈ 1500 and then
increases toward zero — arises from the interplay between transient system dynamics and convergence
to equilibrium. Here’s the breakdown:

1. Initial Increase in Action Magnitude (Small M)
For very small M (e.g., M ≈ 0), the forward solution T(x, t) evolves over a short time t f inal =

M · δt, remaining far from the target Ttarget. The residual T(x, t f inal) − Ttarget(x) is large but
localized, leading to a significant adjoint field T̃. However, the short integration time limits the
cumulative product T · T̃, resulting in a small (near-zero) action. As M increases (M = 100 to
M = 1500):

• The forward solution T(x, t) enters a transient regime with pronounced deviations from
Ttarget.

• The residual T − Ttarget becomes larger and spatially distributed, amplifying T̃.
• The adjoint field propagates backward over more steps, interacting with the non-equilibrium

T, causing S to grow more negative (minimum at M ≈ 1500 ).

2. Subsequent Recovery Toward Zero (Large M)
Beyond M ≈ 1500, the forward solution T(x, t) has sufficient time to approach the steady-state
target Ttarget(x).

• The residual T(x, t f inal)− Ttarget(x) diminishes, reducing the initial magnitude of T̃.
• The adjoint equation’s backward diffusion smooths and decays over time, further weakening

its contribution to S.
• The product T · T̃ becomes smaller in magnitude (less negative) as T aligns with Ttarget ,

driving S back toward zero.

3. Physical Interpretation

• Minimum Action at M ≈ 1500: Marks the peak transient deviation from equilibrium, where
the system’s sensitivity to mismatches (T̃) is maximized.

• Approach to Zero for Large M: Reflects convergence to steady state, where residual devia-
tions vanish, and the adjoint field dissipates.

The non-monotonic behavior of S is intrinsic to the system’s path toward equilibrium. It highlights
the competition between transient dynamics (amplifying S) and convergence (suppressing S),
validating the numerical and theoretical consistency of the adjoint framework.
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Figure 1. Temperature distribution for M = 100

Figure 2. Adjoint field for selected M = 100
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Figure 3. Temperature distribution for M = 1500

Figure 4. Adjoint field for selected M = 1500
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Figure 5. Temperature distribution for M = 20000

Figure 6. Adjoint field for selected M = 20000
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Figure 7. Non-Monotonic action behavior with increasing time steps M.

Figure 8. Parameter sensitivity of the action functional S to (a) damping coefficient γ, (b) time step ∆t and (c)
spatial step ∆x.
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5. Conclusion
This study successfully reformulates the heat equation within a variational framework using

adjoint fields, demonstrating that thermal diffusion adheres to an action principle with dimensions of
kg · m2/s. The key contributions of this work include:

• Lagrangian Embedding of Dissipation: By introducing adjoint fields and a damping coefficient,
the paper constructs a Lagrangian density that rigorously incorporates dissipation into the heat
equation.

• Dimensional Consistency: The proposed approach ensures dimensional consistency with funda-
mental action principles, linking thermal diffusion to the broader context of variational mechanics.

• Mathematical Bridge: This work bridges the gap between irreversible thermodynamics and
variational mechanics, offering new insights into dissipative systems.

• Non-Monotonic Behavior of the Action: The research identifies the non-monotonic behavior of
the action as the number of time steps increases, highlighting the interplay between transient
system dynamics and convergence to equilibrium.

• The numerical example of heat diffusion in a one-dimensional rod illustrates the practical applica-
tion of the theoretical framework, highlighting the forward and adjoint dynamics. The adjoint
field stabilizes numerical solutions and provides a mechanism for controlled dissipation.

Future research directions include extending the variational formulation to stochastic heat transfer,
thermoelasticity, and quantum thermal systems. These extensions could unify classical and quantum
descriptions of dissipation, offering deeper insights into thermal processes. Additionally, a comparative
study between the present work and the mechanics-inspired approach of the work [8] which extends
the Lagrange formalism to heat transfer—would be valuable. Such an investigation could highlight the
distinctions between a control-theoretic framework for dissipation, emphasizing numerical robustness,
and a mechanics-based unification of thermal phenomena.
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