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Abstract: Ambient Assisted Living (AAL) leverages technology to support the elderly and individuals
with disabilities. A key challenge in AAL systems is efficient human activity recognition (HAR), yet no
study has systematically compared single-view (SV) and multi-view (MV) HAR. This review addresses
this gap by analyzing the evolution from SV to MV-HAR, covering benchmark datasets, feature
extraction methods, and classification approaches. We examine how HAR systems have transitioned
to MV with advanced deep learning architectures optimized for AAL, improving accuracy and
robustness. Additionally, we explore machine learning and deep learning models—including CNNs,
RNNs, LSTMs, TCNs, and GCNs—as well as lightweight transfer learning techniques for resource-
constrained environments. Key challenges such as data remediation, privacy, and generalization are
discussed alongside potential solutions like sensor fusion and advanced learning methods. Our study
provides insights into advancements and future directions, guiding the development of intelligent,
efficient, and privacy-compliant HAR systems for AAL.

Keywords: ambient assisted living; lightweight deep learning; activity recognition; machine learning;
wearable sensors; smartphones; context-aware; deep learning

1. Introduction
Human Activity Recognition (HAR) is Human Activity Recognition (HAR) a fundamental re-

search area, particularly in Ambient Assisted Living (AAL) environments where safety, independence,
and well-being of elderly and disabled people are of major concern. The continuous evolution of
sensor technologies, along with the power of deep learning, has revolutionized the area, making
it possible to monitor and classify human activities with high accuracy in real time. Multi-view
HAR (MV-HAR), which integrates data from multiple sensors, has emerged as a robust solution to
overcome the limitations of single-view approaches. This review focuses on the advancements in
lightweight deep learning models that optimize HAR systems, allowing them to operate efficiently in
resource-constrained AAL environments. By synthesizing recent research, this paper identifies gaps
and suggests future directions for enhancing HAR systems’ scalability and computational efficiency.

1.1. Applications in Ambient Assisted Living (AAL)

Precise, versatile HAR solutions are of key relevance to AAL systems. Lightweight deep learning
models are particularly well suited to AAL applications. MV-HAR has a lot to offer:

• Fall Detection: Fall detection is required to ensure the safety of the elderly living alone.
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• Activity Monitoring: Provides a means of monitoring Activities of Daily Living (ADLs), which
can detect physical and cognitive health changes when there are abnormalities detected in MV-
HAR.

• Anomaly Detection: Detection of significant deviations from normal patterns can be reflective of
health events, e.g., falls.

• By LIFEBYTES: MV-HAR monitors exercises and guides rehabilitation progress monitoring.

1.2. Integration in AAL Systems

The synergy of multi-view HAR and lightweight deep learning models provides an end-to-end
solution for developing ubiquitous and real-time Ambient Assisted Living (AAL) systems. We present
in this paper case studies and applications that have been favorably affected using this synergistic
framework as evidenced through high inference accuracy for daily activity and system performance
[1]. The potential of such technologies for assisting daily activity and emergent event detection (e.g.,
falls and medical events) is particularly highlighted.

1.3. Multi-View Human Activity Recognition

To counter the limitation of single-view Human Activity Recognition systems, one of the solutions
is MV-HAR. MV-HAR uses multiple synchronized high-resolution wide-angle cameras of various
views to fuse information from multiple views to provide a complete and detailed description of
complex activities. Even though hand-crafted features dominated early research of MV-HAR, deep
learning-based approaches now prevail over traditional ones.

1.4. Background

HAR involves using sensors and algorithms to detect and classify human activities based on
data streams, such as those generated by accelerometers, gyroscopes, and cameras. This technology
is crucial in diverse fields, including healthcare, smart environments, and industrial monitoring. In
the context of AAL, HAR plays a vital role in tracking daily activities, predicting health risks, and
providing timely assistance to the elderly and individuals with disabilities.

Historically, HAR systems relied on single-view sensors, which posed challenges due to limited
perspectives and occlusions. To address these shortcomings, MV-HAR has been introduced, allowing
for more comprehensive monitoring by incorporating data from multiple sources, such as fixed and
wearable cameras. The challenge lies in the computational complexity of these systems, which impedes
their real-time deployment in environments like AAL, where resources are often limited. Lightweight
deep learning models, designed for efficiency and accuracy, have shown promise in tackling this
challenge by optimizing sensor data processing without compromising performance.

1.5. Motivation

The rapid increase in global life expectancy has created a pressing need for technologies that
support independent living for the elderly and disabled. AAL systems, powered by HAR, can monitor
individuals’ daily activities and provide crucial insights into their well-being, offering a safety net in
scenarios like fall detection and health monitoring. However, the high computational demands of
traditional HAR systems, particularly when using deep learning models, present significant challenges
in deploying these technologies in real-time, resource-constrained environments.

This review is motivated by the need to explore recent advancements in lightweight deep learning
models that address these computational challenges. By examining the integration of multi-view data
and deep learning techniques, we aim to identify solutions that can enhance the efficiency, scalability,
and accuracy of HAR systems in AAL environments. Moreover, this paper highlights the potential for
lightweight models, such as Mobile LeNet and Mobile Neural Architecture Search Network (MnasNet),
to outperform more complex systems, making them ideal for real-time applications in AAL settings.
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In this review, we make the following key contributions to the field of multi-view human activity
recognition (MV-HAR) for Ambient Assisted Living (AAL):

1. Comprehensive Analysis of MV-HAR Methods: We provide a detailed survey of the state-of-
the-art MV-HAR methods, exploring the transition from single-view to multi-view approaches.
This includes a comparative evaluation of existing models and a discussion on how multi-view
architectures enhance the accuracy and robustness of HAR systems in AAL environments.

2. Focus on Lightweight Deep Learning Models: We highlight the advantages of lightweight
deep learning architectures tailored for resource-constrained AAL settings. Our review covers
novel techniques that balance computational efficiency with accuracy, making them suitable for
real-time applications in AAL.

3. Examination of Key Challenges and Solutions: We address several pressing challenges in
the field, including issues related to data heterogeneity, privacy concerns, and the need for
generalizable HAR models. In response, we explore solutions such as sensor fusion, transfer
learning, and privacy-preserving techniques that improve the efficacy of HAR systems.

4. Guideline for Future Research: By synthesizing the current progress and identifying gaps in the
literature, we offer a set of guidelines and future directions aimed at developing more intelligent,
scalable, and privacy-compliant AAL systems. This serves as a foundation for researchers looking
to innovate in the intersection of MV-HAR and AAL.

The rest of the paper is organized as follows: Section 3 explains the dataset in detail. Section
4 explains the proposed methodology in detail, such as data preprocessing, techniques, positional
activity and skeleton extraction, segmentation, and classification approaches. Section 5 provides the
experimental analysis, such as performance and accuracy. Section 6 concludes the paper.

2. Related Work
Recent research on Human Activity Recognition (HAR) has extensively explored the use of

machine learning and deep learning techniques to achieve significant improvements in both accuracy
and computational efficiency [2–13]. Deep learning models have revolutionized HAR, particularly
through the use of lightweight architectures designed for resource-constrained environments like
Ambient Assisted Living (AAL) systems [14,15]. These models, such as Mobile LeNet (M-LeNet)
and Mobile Neural Architecture Search Network (MnasNet), offer superior performance in AAL
scenarios due to their ability to handle multi-view data from various sensors, including fixed cameras
and wearable devices [16]. Several studies have demonstrated the effectiveness of lightweight CNN
architectures for improving HAR systems’ computational efficiency and scalability [17]. For instance,
the integration of multi-view data collection and lightweight deep learning models has been shown to
significantly enhance the ability to monitor activities in AAL environments. Using the Robot Human
Monitoring-Human Activity Recognition-Skeleton (RHM-HAR-SK) dataset, lightweight models such
as M-LeNet and MnasNet have outperformed more complex models by offering a balance between
accuracy and computational resource demands [18]. In addition, HAR research has expanded to
include hybrid deep learning models that incorporate both conventional and emerging methods,
addressing challenges such as sensor data synchronization and privacy concerns [17,19]. These hybrid
models leverage multi-modal data sources, such as accelerometer data, video sequences, and audio
signals, which improve HAR system robustness and generalization across different environments
and activities [20]. The integration of skeleton information has also been explored to enhance activity
recognition, particularly in detecting critical events like falls, which are vital in AAL systems [18].
Other studies have explored the potential of large language models to automate the filtering and
taxonomy creation of relevant academic papers in the HAR domain, which has accelerated the pace of
research [17]. These taxonomies categorize deep learning models into two main types: conventional
models, which rely on traditional feature extraction techniques, and hybrid models, which combine
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multiple modalities to enhance HAR system performance [15]. This approach has allowed researchers
to identify gaps in the literature, particularly in terms of data diversity, privacy preservation, and
computational limitations in real-time applications [21]. Further, the rise of multimodal HAR systems,
which integrate information from various sensor types, including video and inertial data, has proven
effective in increasing the accuracy and applicability of HAR in real-world scenarios. For example,
studies using the UP-Fall detection dataset have demonstrated that integrating multi-head CNNs with
LSTM networks yields superior performance over traditional HAR methods, particularly in healthcare
applications [22]. Challenges such as computational intensity and reliance on multimodal data remain,
but recent innovations in deep learning architectures have shown promise in addressing these issues
[23].

3. Benchmark Dataset
To compare deep learning and machine learning model employment on HAR, researchers have

proposed various benchmark datasets [24]. Motion dataset contains motion signals of embedded
wearble sensors of wearables or smartphone multi-sensors on body positions: chest, forearm, head,
pocket, or wrist. Wearables can be worn on the head, shin, forearm, chest, upper arm, thigh, waist, and
legs. If you like wearing your smartphone in your pocket and your smartwatch on your right wrist
(because you are right-handed), you may do so. Sensors found in the datasets There are accelerometers
(A), gyroscopes (G), magnetometers (M) and others (e. g., object, temperature, ambient [24]. We have
also recorded the ages and weights heights etc., of the participants varied in each of the datasets. Simple
(walk, run, lie down), complex (cook, clean), postural transitions (sit to stand) Detailed descriptions
and information regarding the benchmark datasets are presented in Table 1 [25]

Table 1. List of Publicly Available HAR for AAL Related Benchmark Datasets

Dataset
Name

Number of
Activities

Activity Type Number of
Subjects

Sampling
Frequency

Devices Used Device Position Latest
Perfor-
mances

PAM-AP2
[26]

12 ADLs, Postural,
Complex

9 100Hz 3 IMU units, 1
Heart rate monitor

Wrist, chest, domi-
nant ankle

HHAR
[27]

6 ADLs 9 Highest
Available

Smartwatches,
Smartphones

Smartphone on
waist, pouch

MHEA-
LTH [28]

12 ADLs 10 50Hz Shimmer2 sensors Right wrist, left an-
kle, chest

UCI-HAR
[29]

6 ADLs 30 50Hz Smartphone Left belt, no spe-
cific position

OPPOR-
TUNITY
[30]

6 ADLs, Complex 4 - Body-worn, Ob-
ject, Ambient
Sensors

Upper body, hip,
leg, shoes

WISDM
[31]

18 ADLs, Postural,
Complex

51 20Hz Smartphone,
Smartwatch

Right pant pocket,
dominant hand
(watch)

UniMiB-
SHAR [32]

17 ADLs, Falls 30 50Hz Smartphone Left & right
trouser pockets

Mobi-Act
[33]

16 ADLs, Falls 66 100Hz Smartphone Trouser pocket

HHAR
[27]

6 Daily living activ-
ity, Sports fitness
activity

9 Highest
Available

Accelerometer, Gy-
roscope

Smartphone on
waist, pouch

99.99%

MHEA-
LTH [34]

12 Atomic activity,
Daily living activ-
ity, Sports fitness
activity

10 50Hz Accelerometer,
Gyroscope, Mag-
netometer, Electro-
cardiogram

Right wrist, left an-
kle, chest

97.83%

OPPOR-
TUNITY
[35]

17 Daily living activ-
ity, Composite ac-
tivity

4 - Acceleration, Rate
of Turn, Mag-
netic field, Reed
switches

Upper body, hip,
leg, shoes

100%

WISDM
[36]

6 Daily living activ-
ity, Sports fitness
activity

33 20Hz Accelerometer, Gy-
roscope

Right pant pocket,
dominant hand
(watch)

97.8%

UCI-HAR
[37]

6 Daily living activ-
ity

30 50Hz Accelerometer, Gy-
roscope

Left belt, no spe-
cific position

95.90%
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Table 1. cont. List of Publicly Available HAR for AAL Related Benchmark Datasets

Dataset
Name

Number of
Activities

Activity Type Number of
Subjects

Sampling
Frequency

Devices Used Device Position Latest
Perfor-
mances

PAMA-P2
[38]

18 Daily living activ-
ity, Sports fitness
activity, Compos-
ite activity

9 100Hz Accelerometer,
Gyroscope, Mag-
netometer, Tem-
perature

Wrist, chest, domi-
nant ankle

94.72%,
82.12%,
90.27%

DSADS
[39]

19 Daily living activ-
ity, Sports fitness
activity

8 45Hz Accelerometer,
Gyroscope, Mag-
netometer

- 99.48%

Real-
World [40]

8 Daily living activ-
ity, Sports fitness
activity

15 7 Acceleration - 95%

Exer. Ac-
tivity [41]

10 Sports fitness ac-
tivity

20 - Accelerometer, Gy-
roscope

- -

UTD-
MHAD
[42]

27 Daily living activ-
ity, Sports fitness
activity, Compos-
ite activity, Atomic
activity

8 - Accelerometer, Gy-
roscope, RGB cam-
era, depth camera

- 76.35%

TUD [43] 34 Daily living activ-
ity, Sports fitness,
Composite activ-
ity

1 - Accelerometer - -

SHAR [44] 17 Daily living activ-
ity, Sports fitness
activity, Atomic ac-
tivity

30 - Accelerometer Left & right
trouser pockets

82.79%

USC-HAD
[45]

12 Daily living activ-
ity, Sports fitness
activity

14 - Accelerometer, Gy-
roscope

- 97.25%

Mobi-Act
[46]

13 Daily living activ-
ity, Atomic activity

50 100Hz Accelerometer, Gy-
roscope, Orienta-
tion sensors

Trouser pocket 75.87%

Motion
Sense [47]

6 Daily living activ-
ity

24 50Hz Accelerometer, Gy-
roscope

- 95.35%

CASAS
[48]

7 Daily living activ-
ity, Composite ac-
tivity

1 - Temperature,
Infrared mo-
tion/light sensor

- 88.4%

Skoda [49] 10 Daily living activ-
ity, Composite ac-
tivity

1 - Accelerometer - 97%

Wida-r3.0
[50]

6 Atomic activity 1 - Wi-Fi - 82.18%

HAPT [51] 12 Human activity 30 50Hz Accelerometer, Gy-
roscope

- 92.14%,
98.73%
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Table 2. Sensor data modality-based HAR models and performance.

Author Year Dataset Name
Modality

Sensor
Name

Methods Classifier Accuracy
%

Ignatov et al. [52] 2018 WISDM
UCI HAR IMU Sensor CNN SoftMax 93.32

97.63
Jain et al. [53] 2018 UCI HAR IMU Sensor Fusion based SVM,KNN 97.12

Chen et al. [54] 2019
MHEALTH

PAMAP2
UCI HAR

IMU CNN SoftMax 94.05, 83.42
81.32

Alawneh et al. [55] 2020 UniMib Shar
WISDM

Accelerometer
IMU Senso r Bi-LSTM SoftMax 99.25

98.11

Lin et al. [56] 2020 Smartwach Accelerometer
gyroscope Dilated CNN SoftMax 95.49

Zhang et al. [57] 2020 WaFi CSI Wafi signal Dense-LSTM SoftMax 90.0

Nadeem et al. [58] 2021
WISDM

PAMAP2
USC-HAD

IMU HMM SoftMax
91.28
91.73
90.19

kavuncuoug et al. [59] 2021 Fall and ADLs
Accelerometer

Gyroscope
Magnetometer

ML SVM, K-NN 99.96
95.27

Lu et al. [60] 2022 WISDM, PAMAP2
UCI-HAR

IMUs
Accelerometers
Accelerometers

CNN-GRU SoftMax
96.41
96.25
96.67

Kim et al. [61] 2022 WISDM
USC-HAR IMUs CNN-BiGRU SoftMax 99.49

88.31

Sarkar et al. [62] 2023

UCI-HAR
WISDM, MHEALTH

PAMAP2
HHAR

IMUs
Accelerometers
Accelerometers

CNN with GA SVM

98.74
98.34
99.72
97.55
96.87

Semwal et al. [63] 2023
WISDM

PAMAP2
USC-HAD

IMUs CNN and LSTM SoftMax
95.76
94.64
89.83

Yao et al. [64] 2024
PAMAP2

USC-HAD, UniMiB-SHAR
OPPORTUNITY

IMUs
Accelerometers ELK ResNet SoftMax

95.53
97.25
82.79
87.96

Wei et al. [65] 2024
WISDM

PAMAP2
USC-HAD

IMU TCN-Attention SoftMax
99.03
98.35
96.32

El-Adawi et al. [66] 2024 MHEALTH IMU GAF+DenseNet169 SoftMax 97.83

Ye et al. [67] 2024 OPPT, PAMAP2 IMU CVAE-USM GMM 100
82.12

Kaya et al. [68] 2024 UCI-HAPT
WISDM,PAMAP2 IMU Deep CNN SoftMax

98
97.8
90.27

Zhang et al. [69] 2024 Shoaib, SisFall
HCIHAR, KU-HAR IMU 1DCNN-Att

-BiLSTM SVM

99.48
91.85
96.67
97.99

Zhang et al. [70] 2024 DSADS
HAPT IMU Multi-STMT SoftMax 99.86

98.73

Saha et al. [71] 2024 UCI HAR
Motion-Sense IMU FusionActNet SoftMax 97.35

95.35

4. Feature Extraction and Machine Learning Based Approach
4.1. Multi-View HAR for AAL

The presence of such datasets such as the RHM dataset is strongly favorable for multi-view Human
Activity Recognition (HAR). These datasets all record an enormously large variety of activities from
multiple views so that the models can learn to recognize human activities in three-dimensional space.
Multi-view data eliminates the limitations of single-view systems such as occlusion and perspective
distortion and thus enhances the ability of the system to recognize complex activities [25]. Such data
like the RHM dataset are an important contribution towards the creation of multi-view HAR. They
capture diverse activities from many different views so that models can be trained better to represent
human actions in 3D. Multi-view data can provide relief from single-view system limitations such
as occlusion and perspective distortion for the best opportunity for accurate recognition of complex
activities [72]. Through the exploitation of sensor data from different views and perspectives, multi-
view HAR facilitates the ability of the system to identify activities more accurately. It covers different
applications like environmental sensors, wearable sensors, and vision-based systems and targets the
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requirement for the unification of data sources across the applications. HAR system design in complex
AAL environments comprises the combination of advanced methods like sensor fusion consisting of
data-level, feature-level, and decision-level fusion.

4.2. Feature Extraction in Human Activity Recognition

The data segments obtained from the previous step are used for feature extraction, the most
important stage in the Human Activity Recognition (HAR) pipeline. Feature extraction may be
manual or automatic. Machine learning-based methods adopt these pipelines of data acquisition, data
preprocessing and segmentation, feature extraction with hand-crafted features, feature selection, and
finally, classification [73] depicts in Figure 1.

Figure 1. Human Activity Recognition using conventional ML-based techniques

4.3. Manual Feature Extraction

Domain knowledge is required to hand-engineer frequency domain features, time domain features,
and other information features of signals. The majority of conventional ML classifiers like Naïve Bayes
(NB), Random Forest (RF), and Support Vector Machines (SVM) have provided high accuracy in human
activity recognition. Nevertheless, such conventional pattern recognition methods are feature-based
and require domain knowledge. In addition, the learned features after embracing these procedures are
heavily application-dependent and do not scale up.

Figure 2. Categorization of the Deep Learning model

4.4. Feature Learning

DL-based approaches can learn features automatically without any manual feature engineering.
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5. Deep Learning Models
Machine learning has attracted researchers to explore deep learning models for Human Activity

Recognition (HAR) due to their potential for high reward. Figure 3 illustrates the HAR using DL
approaches for feature extraction and classification. These models are usually categorized based
on the input data they receive [24]. The HAR pipeline can be simplified with Deep Learning (DL)
methods. DL has been shown to achieve outstanding empirical performance in many applications such
as image synthesis, image segmentation, image classification, object detection, activity recognition,
and human gait analysis [74]. DL algorithms are composed of multiple abstraction levels constructed
through the neurons. Feature maps are obtained from the input feature maps of the preceding layer
through the non-linear functions of each layer. Hierarchical abstraction enables DL algorithms to
learn one level-specific feature for each domain of application. Deep Learning uses a Deep Neural
Network (DNN) architecture where a specific loss function is optimized for feature extraction as well
as determination of the classification boundaries [75].

Figure 3. Flowchart of the DL based systems.

5.1. DL Categories Based on Sensory Cues

On the basis of the imagery signal type it can be divided into the following two categories:

5.1.1. Imaging of Sensory Signals

Convolutional Neural Networks (CNNs) are most appropriate for extracting the features of
images and classifying large amounts of image data. The technique is also effective for time-series
analysis where sensor data is converted into time-series images and passed through the CNN. A
smartphone-based platform was shown by Alemayoh et al., where raw sensor data is accepted and
14 × 60 virtual images are constructed. A CNN (1C-1P-2C-2P-1DL) is employed to classify images into
eight activities [76].

Some of the multimodal approaches, such as that of Lawal et al., incorporate wearable sensor
signals into frequency images. Their effectiveness with the fusion technique is demonstrated with their
two-stream CNN model [77]. Qin et al. propose heterogeneously processing sensor data, modeling the
signals as images with two channels and propose residual fusion using the Lawal et al.’s layers [78]. It
has been quantitatively evaluated and compared with state of the art on the HHAR and MHEALTH
datasets [79].

5.2. Raw Sensory Data

Deep learning methodologies with their local dependency modeling and preservation of scaling-
invariance are of immense usefulness for feature learning and classification of time series data. They
are thus gaining increasing popularity for human activity recognition systems. Interdisciplinary
research on CNNs, LSTMs, and hybrid deep learning techniques for improving the performance of
HAR systems is an active research field [80].
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5.3. Multi-View HAR with CNN-Based Methods in AAL

Convolutional Neural Networks (CNNs) have played a major role in Human Activity Recognition
(HAR) modeling due to their capability of efficiently classifying images as well as raw time-series data
(low-level information) of various sensors. CNNs are efficient due to their capability of discovering
local dependencies, scale-invariant features, and learning complicated non-linear relationships within
the input data—desired characteristics making CNNs of great utility for HAR applications [81]. CNNs
were utilized to transform raw sensor data for HAR. Novel strategies are founded upon novel CNN
structures for sensor data types, i.e., tri-axial accelerometer data typically used in smartphones. Small
pool sizes of convolutional layers are best suited for extracting and discriminating valuable features
with better activity recognition accuracy [82,83]. There has also been research that has combined CNNs
with statistical features to learn local as well as global features of the signal. A hybrid approach like
this maintains detailed information of the signal at various scales. Multi-parallel CNN systems have
been suggested for user-dependent activity recognition to emphasize local feature extraction and
combination of features. However, CNNs are computationally demanding, something often referred to
as "frugality." This has led to efforts at optimization and hence efficient CNN models that are effective
but less demanding. Techniques like Lego filters and Conditionally Parameterized Convolutions
optimize the efficiency of the HAR process [84]. Also, applying pre-trained CNNs with dimensionality
reduction like PCA and then hybrid classifiers like SVMs can optimize runtime—a major concern on
smartphones where battery power is precious. Fair enough, CNNs are good at recognizing simple
actions but discriminating more complex and related actions is not easy. Ensemble CNNs with different
architecture are being suggested as the answer to make HAR systems more sensitive and specific [85].
Transfer learning schemes, for instance, the proposal of Heterogeneous Deep CNN (HDCNN) models,
generalize across different sensor domains. Since HAR detectors are position-dependent on sensor
placement, other studies have explored determinant-agnostic methods [86]. These systems attempt
to work regardless of sensor placement on the body but lose accuracy at certain instances. Deep
learning models are now being constructed to be sensor position robust with satisfactory performances
on practical data. The "cold-start" problem or vanishing gradients in CNNs remains even now and
has led to even more complex network architecture such as residual networks in CNNs. These are
aimed towards more detailed activity-type recognition of varied dynamic activities for enhancing the
applicability of HAR in Ambient Assisted Living (AAL) environments [87]. The future of HAR with
CNNs in AAL environments requires continued research into architecture designs, hybrid models,
and deep learning strategies. This will upgrade the perception, interaction, and functionality of HAR
systems in AAL and promote the well-being and independence of users. Recent advancements in
Human Activity Recognition (HAR) have seen the ubiquitous adoption of Convolutional Neural
Networks (CNNs) for sensor data analysis of wearables and mobile devices. Ignatov et al. [52]
employed a deep learning technique that takes advantage of CNNs for sensor data-based HAR in
real-time. Their proposed technique aims at local feature extraction using CNNs with the assistance
of simple-to-compute statistical features that detect global time series patterns. They tested their
technique using UCI and WISDM datasets with high accuracy for various users and datasets. This
is proof of their deep learning technique being effective without requiring complex computational
hardware and hand-crafted feature engineering. Taking advantage of the power of CNNs, Chen et
al. [54] proposed the semi-supervised deep learning method optimized for imbalanced HAR using
multimodal wearable sensor data. Their model addresses the shortage of fewer labeled samples and
class imbalance using the pattern-balanced model that finds heterogenous patterns. With the recurrent
convolutional attention networks, their model is capable of finding the most significant features across
sensor modalities, which highly empowers the model to work in imbalanced data environments. Kaya
et al. [68] proposed the 1D-CNN-based method for accurate HAR from sensor data with special focus
on raw accelerometer and gyroscope sensor data. Their model was tested on three publicly released
datasets—UCI-HAPT, WISDM, and PAMAP2—demonstrating the strength and flexibility of the model
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towards various data sources. The method simplifies feature extraction without accuracy degradation
and thus is highly suitable for AAL applications in real-time. In another recent research work, Zhang
et al. [88] proposed ConvTransformer, which is a novel method that combines CNNs, Transformer
networks, and attention mechanisms to address the dual issue of extracting detailed and general
features of sensor data. The hybrid method takes the power of CNNs in extracting local patterns while
Transformers and attention mechanisms enable the model to learn global context, making it highly
suitable for complex HAR in multi-view AAL environments.

5.4. RNN, LSTM, and Bi-LSTM in HAR for AAL

Recurrent Neural Networks (RNNs) have been at the core of recent Human Activity Recognition
(HAR) studies due to their capacity in dealing with temporal dependencies in sensor data. For instance,
Ordonez et al. [89] demonstrated how RNNs play a crucial role in capturing the sequentiality of
sensor data, which is critical in guaranteeing activity recognition accuracy. Traditional RNNs, however,
are prone to suffering from gradient vanishing issues, a problem that necessitated the development
of Long Short-Term Memory (LSTM) networks [90]. LSTM networks retain information for longer
sequences, thus addressing the issues brought about by long-range dependencies in HAR applications.

LSTMs are suitable for Human Activity Recognition (HAR) since they are capable of processing
sequential time-series data without vanishing or exploding gradients by maintaining long-term
dependencies. While CNNs excel at image recognition through discovering spatial correlations, LSTM
models use feedback connections to discover time patterns. A review of LSTM-based HAR systems,
challenges, and future research directions is given. Early studies on on-body sensor placements
explored LSTM models, but most did not crowdsource enough data from a diverse range of individuals
to generalize to more than a few basic activities. On the computation limitation side, Agarwal et al.
proposed an edge-device-friendly lightweight LSTM model but did not test it on complex activities.
Extending this idea, Rashid et al. focused on energy efficiency and sensor data processing [91].
To overcome the vanishing gradient issue, Zhao et al. suggested a residual bi-directional LSTM
architecture that concatenates forward and backward states to improve performance. Their approach
maintained high performance in the dynamic and complex setting of HAR [91]. In [89], Wang and Liu
suggested a Hierarchical Deep Long-Short Term Memory (H-LSTM) model, reducing the interference of
noise and making feature learning easier in time-frequency domains. Similarly, Ashry et al. suggested
a cascaded LSTM model that fused raw signal information and feature-based information, reducing
the need for large-scale training datasets.

To address the local feature analysis weaknesses in traditional HAR approaches, a new hybrid
deep learning framework was proposed. It took advantage of the convolutional capability of CNNs
(layer-wise) for feature extraction, while LSTM units processed sequential information. The LSTM
performance was also enhanced with the use of Extreme Learning Machine (ELM) classifiers. On
the other hand, Zhou et al. addressed the problem of insufficient sensor labels. Their approach was
to train a semi-supervised LSTM model combined with a Deep Q-Network, which annotates data
automatically, improving performance in noisy and well-labeled dataset settings.

Researchers have also explored the use of attention-based Bidirectional LSTM (Bi-LSTM) models
to further improve the performance of HAR systems [55,57,92,93]. Such models have been shown
to achieve superior performance compared to other deep learning-based methods, as validated by
experimental comparisons on several benchmark datasets. The results, as indicated in Table 2, show
that attention-based Bi-LSTM models can achieve high accuracy for different user groups and datasets,
while requiring relatively modest computational resources and without large-scale manual feature
engineering.

Saha et al. [94] suggested Fusion ActNet, a new method for HAR that uses sensor data to dif-
ferentiate between static and dynamic actions. The model includes individual residual networks for
both actions and a decision guidance module. The method is trained in two stages and has been
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thoroughly experimented upon using benchmark datasets, and it has been shown to be efficient in
complex HAR scenarios, particularly in Ambient Assisted Living (AAL) environments where a wide
range of activities have to be accurately detected. Murad et al. [90] have highlighted the merits
of using Deep Recurrent Neural Networks (DRNNs) for HAR, specifically in capturing long-range
dependencies in variable-length input sequences from body-worn sensors. Unlike traditional meth-
ods that fail to consider temporal correlations, DRNNs—unidirectional, bidirectional, and cascaded
LSTM networks—yield state-of-the-art performance on several benchmark datasets. They compared
DRNNs to traditional machine learning techniques like Support Vector Machines (SVM) and k-Nearest
Neighbors (KNN) and other deep learning methods like Deep Belief Networks (DBNs) and CNNs,
consistently demonstrating the superior performance of DRNNs in human activity recognition.

5.5. Integration of CNN and LSTM-Based Techniques

In recentthe last several years, there has been significant progressdevelopment in the develop-
mentdesign of hybrid deep learning models that combine different architectures to achieve high
accuracyperformance in Human Activity Recognition (HAR). One popular approach involvesis inte-
gratingto integrate Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM)
networks to leverage the strengths of both models. ForHybrid example, hybrid CNN-LSTM models,
for example, have demonstratedbeen improvedfound to achieve superior performance in varioussev-
eral applications, including sleep-wake detection using heterogeneous sensors [63,95]. These models
benefitexploit fromthe ability of CNNs’ ability to extract local spatial features from sensor data and
the ability of LSTMs’ capability to capturemodel temporal dependencies, making them particular-
lyextremely effective in HAR scenariosapplications where both spatial and temporal information are
crucialrelevant.

Another notable design is the TCCSNet, which, alongcombined with CSNet, enhances human
behavior detectionrecognition by leveraging both temporal and channel dependencies [96]. These
architectures effectively combine the strengths of both CNNs and LSTMs, allowing for more accu-
rate recognition of complex human activities by modeling both spatial and temporal aspects of the
data. Ordóñez et al. furthertook explored this integration one step further by developingpresenting
a CNN-LSTM-based model for HAR [89]. Their approach involvesrelies extractingon featuresfea-
ture fromextraction over raw sensor data by using CNNs, which are thenadditionally processedfed
byto LSTM recurrent units to model complex temporal dynamics. This model also supports mul-
timodal sensor fusion, enablingmeaning it tocan handleprocess data from multiple sensor types
withoutof thesensors needwithout for manual feature designengineering. The evaluation on bench-
mark datasets such as Opportunity and Skoda revealedshowed significant performance improvements
over traditional methods, underscoringshowcasing the effectiveness of this hybrid approach in HAR
applications.

Zhang et al. introducedsuggested a multi-channel deep learning network, called the 1DCNN-Att-
BiLSTM hybrid model, whichthat combines 1D CNNs with attention mechanisms and Bidirectional
LSTM units [57]. ThisThe model was evaluated using publicly accessibleavailable datasets, and the
resultsperformance metrics showed improved recognition performance compared to both machine
learning and deep learning models. TheHybridization hybrid approach of integrating CNNs and
LSTMs, along with attention mechanisms, providespresents a robustpromising framework forto
handlingsolve the complexitiesproblems of multi-view HAR in Ambient Assisted Living (AAL)
settings.

El-Adawi et al. developedsuggested a HAR model withinin the context of a Wireless Body Area
Network (WBAN) context,environment utilizingwith a novel approach thatof integratesintegrating
the Gramian Angular Field (GAF) and DenseNet [66]. In this model, time series data is converted
intoto 2D images using the GAF technique, which areis theninput processedto by DenseNet in order to
achieve high accuracy in performance accuracy. This innovativenovel methodapproach demonstrates
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the potential offor combiningintegrating different deep learning techniquesapproaches and data
transformation methods tofor enhanceenhancing HAR, particularly in environments like AAL where
sensor data from body-wornwearable devicessensors is prevalent.

5.6. TCN Approaches for Multi-View Human Activity Recognition in Ambient-Assisted Living

Recent advancementsadvances in Human Activity Recognition (HAR), particularly withinin the
context of Ambient-Assisted Living (AAL) paradigm, have been increasingly focusedgeared ontowards
leveraging deep learning models toin processthe processing and analyzeanalysis of data collected from
variousdiverse sensors. These sensors, which can be categorized as user-driven, environment-driven, or
object-driven, playare atasked crucialwith rolerecording in capturing the intricaciesdynamics of human
activity acrossin differentdiverse contextsenvironments [97]. Traditional methods have struggledbeen
toineffective effectivelyin capturerecording the temporal dependencies inherentof in sensor-driven
time series data. However, recent progressadvances in deep learning, particularly through the use
of Transformer models withfounded on multi-head attention mechanisms, hashave significantlyfun-
damentally enhanced the ability to model thesesuch temporal relationshipsdependencies [98]. This
capability is essentialcritical forin accuratelyidentifying recognizing and predictingforeseeing activities
in dynamic AAL environments with precision, where the activities of interest may change over time.

One of the keymost significant challenges in HAR is themaking adaptation of these systems adapt-
able to recognize new activities in ever-changing environments. To addressmitigate this, researchers
have emphasized the importancenecessity ofto incorporatingincorporate information about sensor
frequency information and conductingexamine thorough analyses of both time and frequency domains.
Thisin approachdepth. notNot only improvesdoes this improve the understanding of sensor-driven
time series data, but also facilitates the development of more robustefficient HAR systems [99]. InBased
responseon to these challenges, Kim et al. [97] introducedpresented a Contrastive Learning-based
Novelty Detection (CLAN) method for HAR thatbased utilizeson sensor data. The CLAN method is
particularly effectivecapable inof handling temporal and frequency features, as well as thecomplicated
complexactivity dynamics of activities and variationssensor inmodality sensor modalitiesdiversity.
By leveraging data augmentation to create diversediversified negative pairs, this method enhances-
reinforces the ability to detect novel activities even when they share common features with known
activities. The two-tower model employed by CLAN extractslearns invariant representations of
known activities, thus improving the system’s ability to recognizedetect new activities with similar
characteristicsfeatures.

ExpandingExtending on these concepts, Wei et al. [65] proposed a Time Convolutional Network
with Attention Mechanism (TCN-Attention-HAR) specifically designed to optimize HAR usingfrom
wearable sensor data. The TCN-Attention-HAR model addresses criticalfundamental challengesissues
in temporal feature extraction and the gradient issues commonlytypically encountered inby deep
networks. ByThrough optimizingthe optimization of temporal convolution sizes and incorporat-
ingthe use of attention mechanisms, the model effectivelycan prioritizesconcentrate on important
information, resulting in more accurate activity recognition. This approach is particularly advanta-
geoususeful in AAL scenariosapplications, where the need for real-time, and lightweight processing
isare paramountcritical. Zhang et al. [93] furtherwent advanceda thestep fieldfurther with the de-
velopmentintroduction of Multi-STMT, a multilevel model that integratescombines spatiotemporal
attention and multiscale temporal embedding to enhance HAR using wearable sensors. The Multi-
STMT model combines Convolutional Neural Networks (CNNs) with Bidirectional Gated Recurrent
Units (BiGRUs) and attention mechanisms tofor capturecapturing subtle differences inbetween human
activities. This integrationmakes allows the model tocapable accuratelyof distinguishdistinguishing
between similar activities effectively, makingand as such, it particularlyis valuableof tremendous
worth in multi-view HAR applications withinin AAL environments. Additionally, the Conditional
Variational Autoencoder with Universal Sequence Mapping (CVAE-USM) proposed by Zhang et al.
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[93] addresses the challengeproblem of non-independent and identically distributed (non-i.i.d.) data
in cross-user scenarios. By leveraging the temporal relationshipsdependencies withinin time-series
data and combining Variational Autoencoder (VAE) withand Universal Sequence Mapping (USM)
techniques, CVAE-USM effectively aligns user data distributions effectively,and capturingextracts
common temporal patterns acrossamong differentvarious users. This approach significantly enhances
the accuracy of activity recognition accuracy, particularly in multi-view AAL settingsscenarios where
between-user data variabilityvariation across users is a majorserious concern.

5.6.1. TCN-Based Methods in Multi-View HAR for AAL

The adoption of Temporal Convolutional Networks (TCNs) in multi-view HAR for AAL envi-
ronments offers unique advantages, particularly in terms of efficient temporal modeling. TCNs are
specifically designed to handle sequential data by applying convolutional operations along the tempo-
ral dimension. This structure allows TCNs to effectively capture long-range dependencies and patterns
in activity sequences, which are crucial for accurate recognition in multi-view settings. Moreover, the
integration of attention mechanisms within TCN frameworks, as seen in the TCN-Attention-HAR
model, allows for dynamic weighting of important temporal features, ensuring that the most relevant
information is emphasized during the recognition process. This capability is particularly beneficial in
AAL environments, where real-time decision-making is critical, and the system must be lightweight
enough to operate efficiently on limited hardware.

The combination of TCNs with other deep learning models, such as CNNs and BiGRUs, further
enhances their effectiveness in multi-view HAR. These hybrid models, like the Multi-STMT, can
simultaneously capture spatial and temporal dependencies, providing a comprehensive understanding
of human activities across different views. This multi-view capability is essential in AAL environments,
where activities may be observed from various angles and perspectives.

In summary, the integration of TCN-based methods into multi-view HAR systems for AAL
represents a significant advancement in the field. These methods not only improve the accuracy and ef-
ficiency of activity recognition but also ensure that the systems remain lightweight and responsive—key
requirements for real-world applications in Ambient-Assisted Living.

5.7. GCN-Based Multi-View HAR for AAL

Graph Convolutional Neural Networks (GCNNs) have emerged as a crucial tool in the field of
Human Action Recognition (HAR), especially within the context of multi-view analysis for Ambient-
Assisted Living (AAL) environments. Unlike traditional deep learning models like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), which are designed to handle
Euclidean data structures such as images, text, and sequential data, GCNNs excel at processing non-
Euclidean data where the relationships between data points are more complex and graph-structured.
This unique capability makes GCNNs particularly well-suited for HAR in AAL settings, where
understanding the nuanced movements of individuals across multiple views is critical.

5.7.1. The Role of GCNs in Multi-View HAR

GCNs, first introduced by Franco Scarselli, have since evolved into a powerful framework for
learning from graph-structured data [100]. In the context of HAR, human skeleton data, which consist
of joint coordinates and their interconnections, can be naturally represented as a graph. Each joint
is modeled as a node, while the connections between joints (e.g., bones) are treated as edges. This
graph-based representation enables GCNNs to capture the intricate spatial dependencies between
joints, which is essential for recognizing complex actions, especially when viewed from multiple
angles.

In multi-view HAR, the challenge is further compounded by the need to integrate information
from different perspectives. GCNs are uniquely positioned to address this challenge due to their ability
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to aggregate and process information across multiple views, ensuring that the resulting models can
effectively generalize across varying conditions typical of AAL environments.

5.7.2. Spectral GCN-Based Methods

Spectral GCNs leverage the principles of spectral graph theory, utilizing the eigenvalues and
eigenvectors of the Graph Laplacian Matrix (GLM) to transform graph data from the spatial domain
into the spectral domain [101]. This transformation facilitates the application of convolutional op-
erations on graph-structured data. However, while effective, spectral GCNs have historically faced
limitations in computational efficiency—a significant consideration in lightweight models for AAL
applications. Kipf et al. [102] addressed this limitation by introducing a simplified version of spectral
GCNs, where the filter operation is constrained to only one-hop neighbors. This enhancement sig-
nificantly reduces computational overhead, making spectral GCNs more feasible for real-time HAR
applications, including those required in AAL settings. Nevertheless, the fixed nature of the graph
structure in spectral GCNs can be a limitation when dealing with the dynamic and variable nature of
human actions viewed from multiple perspectives.

5.7.3. Spatial GCN-Based Methods

Spatial GCNs have become the focal point of research in GCN-based HAR, particularly for
multi-view scenarios. Unlike spectral GCNs, spatial GCNs operate directly on the graph in the spatial
domain, allowing for more intuitive and flexible modeling of dynamic human actions. This flexibility is
especially crucial in AAL environments, where actions must be recognized accurately across different
views and conditions.

A significant advancement in this domain was the introduction of the Spatio-Temporal Graph
Convolutional Network (ST-GCN) by Yan et al. [103]. The ST-GCN model is designed to handle both
spatial and temporal aspects of human motion, capturing the evolving relationships between joints
over time. In the context of multi-view HAR, ST-GCNs can effectively integrate information from
various viewpoints, providing a holistic understanding of the action being performed.

Further enhancing the flexibility of GCNs in multi-view HAR, Shi et al. [104] developed the
Two-Stream Adaptive Graph Convolutional Network (2s-AGCN). This model introduces an adap-
tive mechanism that allows the network to learn the graph topology dynamically, making it highly
adaptable to diverse datasets and varying viewpoints typical in AAL settings. The inclusion of an
attention mechanism further improves the model’s ability to focus on the most critical joints and their
connections, ensuring robustness in action recognition across multiple views.

Shiraki et al. [105] advanced this concept with the Spatiotemporal Attentional Graph Convolu-
tional Network (STA-GCN), which specifically addresses the varying importance of joints in different
actions. STA-GCN not only considers the spatial relationships but also the temporal significance of
joints, making it particularly effective for multi-view HAR where the importance of certain joints may
vary depending on the action and the viewpoint.

5.7.4. Recent Innovations of GCN

Recent innovations, such as the Shift-GCN model introduced by Shi et al. [106], have pushed the
boundaries of multi-view HAR further by expanding the receptive field of spatiotemporal graphs and
employing lightweight techniques to reduce computational costs [107]. This approach aligns well with
the goals of AAL, where lightweight models must balance efficiency and accuracy. Other approaches,
such as the Partial-Based Graph Convolutional Network (PB-GCN) developed by Thakkar et al. [108]
and Li et al. [56], focus on segmenting the human skeleton into distinct parts, allowing the network to
learn more focused and specialized representations of human actions. These methods are particularly
useful in multi-view HAR, where the ability to isolate and analyze specific body parts can lead to more
accurate recognition of complex actions.
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The use of GCN-based methods in multi-view HAR for AAL is unique due to their ability to
capture and integrate spatial-temporal dependencies from multiple perspectives. These methods
allow for the development of lightweight, yet highly accurate models that are essential for real-time
applications in AAL. The ongoing advancements in spatial GCNs, particularly with the integration
of attention mechanisms and adaptive learning techniques, are setting new standards in the field,
enabling more robust and flexible human action recognition systems. By leveraging these innovations,
your survey paper aims to highlight the cutting-edge developments in GCN-based multi-view HAR,
offering insights into how these methods can be optimized for AAL applications. This focus on
lightweight, efficient models makes your work particularly relevant for practical implementations,
ensuring that the systems are both scalable and effective in real-world AAL environments. In summary,
the unique advantages of GCN-based methods, particularly the flexibility and efficiency offered by
spatial GCNs, make them highly suitable for multi-view human activity recognition in ambient-
assisted living scenarios. By continuously refining these models and integrating innovative techniques
like attention mechanisms and residual connections, researchers are pushing the boundaries of what is
possible in HAR, making systems more accurate, adaptable, and efficient.

Table 3. Summary of challenges and future enhancements in HAR

Challenge Description
Scarcity of annotated data Deep learning models are trained and evaluated on labeled data.

However, all sensory data need to be collected and labeled, which
makes it costly and time-consuming.

Limited performance in
outdoor environments

HAR models are known to have poor performance in outdoor en-
vironments due to variable lighting, noise, and different weather
conditions.

Difficulty recognizing
complex activities and
postural transitions

Simple activities and postural transitions may not be properly
recognized by many HAR models.

Hyperparameter opti-
mization

HAR models can particularly affect accuracy if the requisite hy-
perparameters are not properly tuned.

Fusion of multimodal sen-
sor data

By fusing data from different sensors, data of various formats and
resolutions can be combined to enhance the information available
to HAR systems.

Performance limitations
in unsupervised learning

One of the most common problems with unsupervised HAR mod-
els is their accuracy compared to supervised models.

5.8. Transfer Learning-Based Lightweight Deep Learning

Traditional deep learning models are computationally intensive and challenging to deploy in real-
time edge-based Ambient Assisted Living (AAL) systems due to their high computational demands.
The previous chapter discussed the architecture and functioning of lightweight models such as Mo-
bileNet, SqueezeNet, and EfficientNet, along with approaches to reduce computational requirements,
including depth-wise separable convolutions and squeeze-and-excitation blocks [109–111]. Further-
more, model compression and quantization techniques are reviewed to enhance the deployability of
deep learning models in AAL systems [112].

Many researchers have introduced lightweight deep learning models that balance computational
efficiency and model performance. These models, optimized for real-time processing, are crucial for
AAL applications, where precise and fast activity recognition is essential [113,114]. Techniques such
as model pruning, quantization, and knowledge distillation enable the derivation of compact and
efficient models without significantly compromising accuracy [115,116].

This section focuses on the evolution of Multi-View Human Activity Recognition (MV-HAR)
beyond traditional methodologies and explores how integrating multiple viewpoints enhances perfor-
mance. By leveraging multiple sensors or cameras positioned at different angles, MV-HAR improves
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visibility and ensures highly accurate activity detection [117]. The significance of energy-efficient
processing in real-time applications, such as mobile devices and large-scale smart environments,
is underscored. In the context of assistive living, personalized service options and proactive care
strategies play a crucial role [101,118].

By integrating multiple camera perspectives, we demonstrate significant improvements in recog-
nition accuracy, offering a scalable and practical solution for AAL systems with constrained computa-
tional resources. This initiative aims to enhance the quality and customization of support services for
residents, including fall detection and home security. Leveraging advancements in machine learning,
the proposed approach promotes safer and more comfortable living environments.

5.8.1. Resource Efficiency with Lightweight Deep Learning

Deep learning models scale out at the expense of higher computational complexity and storage.
To mitigate these and improve model size and speed, lightweight deep learning techniques have been
developed, including model compression, pruning, quantization, and knowledge distillation. These
techniques aim for smaller and faster models with as minimal compromises in accuracy as possible
and are thus suitable for power-constrained devices typical of most AAL settings.

6. Problems, Challenges, and Current/Future Directions
Although multi-view Human Activity Recognition (HAR) has made significant advances, it is

still faced with many challenges, such as data synchronization, privacy protection, and the need for
universal models. Solving these challenges will require new solutions, such as new synchronization
techniques, secure data processing, and adaptive models—models that do not require large amounts
of data to train and can simply adapt to changes in the environment. With the rapid development
of micro-electromechanical systems and sensor technology, the recognition task of HAR has gained
increasing attention in recent years. It is a crucial problem for a variety of applications such as ambient
assisted living, smart homes, sports, and work injury detection. HAR is a new field where recent
development driven by deep learning has opened up new possibilities. However, these solutions are
still limited by problems that restrict their practical applicability.

Labeled data is a precious commodity in NLP and one of the largest bottlenecks in HAR. Deep
learning models require vast quantities of labeled data to train and test. However, acquiring and
labeling this data is a time-consuming and costly process. This shortage of data can lead to models
overfitting and failing to generalize well to real-world situations [? ]. HAR models perform poorly
in outdoor environments due to parameter variation when counting specific movements, i.e., push-
ups and squats. Most HAR models are trained and tested in controlled laboratory environments.
Outdoor environments are uncontrollable and contain several dozen factors—i.e., light, noise, and
weather—that greatly affect sensor data. Therefore, high-performance HAR models in controlled
environments may not offer the same accuracy outdoors. In addition, HAR models are challenged
when they have to handle complex activities and postural transitions. Most HAR tasks consider simple
activities such as walking, sitting, and sleeping. Daily activities also involve cooking, cleaning, and
dressing. Moreover, HAR models are not effective in identifying falls and other postural transitions.
One of the pitfalls involves the need for meticulous hyperparameter tuning in order to realize the
best model performance. Hyperparameters are settings of learning algorithms that one may adjust to
derive optimum results. However, the vast number of hyperparameters can render it challenging to
determine the most suitable settings for any problem. One other challenge is presented by the fusion
of multimodal sensor data. Most HAR systems utilize only one type of sensor, e.g., an accelerometer.
However, fusion of data from different sensors—e.g., gyroscopes and magnetometers—can enhance
the performance of HAR. This leads to the challenge of how to fuse data from such heterogeneous
sources optimally. The final limitation of HAR models is with regard to their expected performance in
unsupervised learning. Supervised machine learning requires human labeling, while clustering is akin
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to supervised learning without the human element. Unsupervised learning differs from supervised
learning because the latter requires labeled data, which is typically expensive and time-consuming
to create. Yet, the majority of unsupervised HAR models are inferior to even the poorer performing
supervised models. In summary, there are some challenges for HAR that need to be considered to
advance the field and improve its applications. Addressing these challenges will enable researchers to
develop more precise and suitable HAR models for various environments. Although MV-HAR, when
combined with lightweight models, holds promise for ambient assisted living (AAL), there remain
several challenges to be tackled, including:

• Limited Multi-view AAL Datasets: There is a shortage of multi-view datasets for AAL, making
it difficult to develop and compare models.

• Real-World Deployment: Privacy concerns, environmental robustness, and typical real-world
AAL settings must be taken into account.

In summary, HAR for AAL using data acquired from diverse angles and leveraging low-cost deep
learning approaches has a promising future. New directions such as sensor fusion, transfer learning,
and latent domain adaptation offer potential for enhancing HAR systems. To solve these issues, the
research community must adopt an interdisciplinary approach to developing systems that are not just
accurate, but also privacy-compliant, and adaptable to individual needs. According to the insights
provided in these researches, this review will synthesize the knowledge that is available, enlighten the
gaps that are present, and provide future research directions.

7. Conclusions
Lightweight Deep Learning approachtechnique citedreferenced synergizes multi-view HAR and

is shownproven to realizehave high potential in accuracy and efficiency of the implementation of
Activity Recognition in Ambient Assisted Living (AAL). SignificantGreat progressefforts hashave
been made by researchers intowards the directioncreation of building reliable HAR systems thatwith
translatedirect directlytranslation tointo improvement inof the quality of life of assisted living in-
dividualsusers. LimitationsConstraints inrelated termsto of computational requirements, sensor
fusioncombination, and robustness are overcomemet, ultimately leading the way to more effective
and userfriendly-friendlyto-use AAL systems. What are some promising directions for future research
directions? Future advancementadvancements of HAR systems can be achieved bythrough further
developmentevolutions of lightweight architecturesarchitecture, exploration of transfer learning for
personalization, and robust privacy-preserving techniquesmechanisms. These effortsare alongaccom-
panied with the developmentproduction of multi-view datasets with a large rangeactivity ofvariety
activitiesand are essentialrequired for the advancementadvancements of AAL to addressreach the
elderly and disabled people in order to helpallow them attainto achieve acceptable standardslevels of
safety, health and quality of life.
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