

Article

Not peer-reviewed version

Photoelectrochemical Biosensor Based On 1D ZnIn_2S_4 Nanosheet Decorated 2D In_2O_3 Tube For Sensitive PSA Detection

[Huihui Shi](#) , [Jianjian Xu](#) , [Yanhua Wang](#) *

Posted Date: 24 March 2025

doi: [10.20944/preprints202503.1745.v1](https://doi.org/10.20944/preprints202503.1745.v1)

Keywords: photoelectrochemical; In_2O_3 - ZnIn_2S_4 ; hetero-interfaces; charge separation; PSA

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Photoelectrochemical Biosensor Based On 1D ZnIn₂S₄ Nanosheet Decorated 2D In₂O₃ Tube For Sensitive PSA Detection

Huihui Shi ^{1,2}, Jianjian Xu ³ and Yanhu Wang ^{2,*}

¹ Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

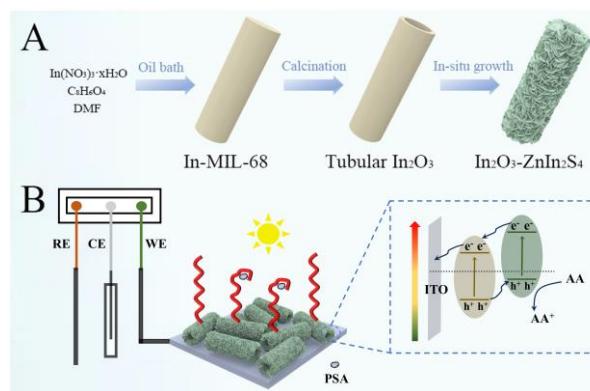
² Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

³ Department of Food and Drug, Weihai Ocean Vocational College, Weihai 264300, China

* Correspondence: wyloving633@163.com

Abstract: In photoelectrochemical biosensing, efficient electron-hole separation is crucial to obtain preferred photocurrent response and analytical performance; thus, constructing developed heterointerfaces with high carriers transfer efficiency is an effective way for sensitive evaluation of analytes. Herein, 1D ZnIn₂S₄ nanosheet decorated 2D In₂O₃ tube was developed to integrate with prostate antigen (PSA)-sensitive aptamer for PSA sensitive detection. Benefiting from photoelectric effect and specific 1D/2D hierarchical structure, In₂O₃-ZnIn₂S₄ displayed enhanced optical absorption and photocarrier separation, thus superior photoelectrochemical response. Proposed bioassay protocol possessed the linear range from 0.001 to 50 ng/mL and a detection limit at 0.00037 ng/mL. In addition, this biosensor exhibited satisfy anti-interface ability and stability, which also could be extended to other quantitative platforms for detecting else proteins.

Keywords: photoelectrochemical; In₂O₃-ZnIn₂S₄; hetero-interfaces; charge separation; PSA


1. Introduction

Photoelectrochemical (PEC) bioanalysis, featuring high sensitivity and simple equipment, has been used to quantify various analytes through photocurrent variation [1,2]. Essentially, sensing signals strongly depend on light-electricity conversion process and carrier separation efficiency of photoactive materials. Thus, besides recognition units, photoactive materials with superior PEC performance are crucial factors when designing sensitive PEC biosensors. Indium oxide (In₂O₃), a typical moderate-band-gap n-type semiconductor, has been widely used in photoelectrochemistry due to its high chemical stability, low resistivity, low toxicity, and easy preparation [3,4]. However, pure In₂O₃ suffered from poor PEC performance, which was mainly contributed to high carrier rate, limited photon utilization, and deficient surface active sites. Multiple reports have been demonstrated heterojunction construction by coupling else semiconductor with different band gaps could prominently enhance PEC performance of In₂O₃-based materials [5–8].

Up to now, multiple In₂O₃-based heterostructures, such as In₂O₃/Co₃O₄ [9], In₂O₃/g-C₃N₄ [10], In₂O₃/CdS [11], and In₂O₃/In₂S₃ [12], have been prepared with improved photoelectric transformation efficiency. However, mismatched lattice between these semiconductors and In₂O₃ usually increase heterointerface impedance and restrict carriers separation. Compared with above mentioned semiconductors, 2D layered ZnIn₂S₄ has drawn increasing attention due to short carrier migration pathways, rich active sites, and similar lattice parameters [13,14]. High lattice matching degree of In₂O₃ and ZnIn₂S₄ is conducive to the formation of compact interface and thus greatly decreases charge immigration impedance of the heterointerface, and finally facilitates spatial charge separation [15]. A significant challenge is that ZnIn₂S₄ sheets tend to agglomerate into nanoclusters, causing low specific surface area and reduced active sites [16,17]. Supporting carriers including CdS nanocube,

NiMoO_x nanorod, FeWO₄ flower, and Co₉S₈ tube, favor lamellar growth and inhibit agglomerate [18–21]. Thus, it is of great favor to employ 1D In₂O₃ as the supporter to offer abundant area for nanosheet growth and conduction paths for photogenerated carrier transport. With such design, branched ZnIn₂S₄ nanosheets on In₂O₃ tubes could facilitate solar-light harvesting and intimate heterointerface could modulate the migration pathway for extending the photogenerated charge lifetime.

In this work, a 1D/2D heterostructure was designed by decorating ZnIn₂S₄ nanosheets onto In₂O₃ tubes to integrate with the prostate antigen (PSA)-sensitive aptamer for PSA quantification. The overall heterostructure preparation process involved template method and in-situ growth strategy where MIL-68 was transformed into tubular In₂O₃ and further modification of ZnIn₂S₄ nanosheets (Figure 1A). Under visible light, nanosized heterogeneous interface favored the effective separation and migration of electron-hole pairs, endowing hybrid with desirable PEC performance (Figure 1B). Furthermore, modified aptamer on the PEC electrodes could specifically binding with target, thus a relevance between PSA concentration and photocurrent response was established. Such simple and efficient sensing protocol has great potential in other biomolecule quantification.

Figure 1. (A) Schematic illustration of In₂O₃-ZnIn₂S₄ synthesize route. (B) Schematic illustration of PEC electrode and sensing mechanism.

2. Materials and Methods

2.1. Preparation of Hollow Tubular In₂O₃

Tubular In₂O₃ was synthesized by sequential hydrothermal and thermal methods. Initially, indium nitrate hydrate (0.06 g) and 1,4-benzenedicarboxylic acid (0.06 g) were dissolved in 40 mL N,N-dimethylformamide, and further stirred for 5 min at room temperature. Resultant solution was heated at 120 °C for 30 min, followed by filtrated and washed with ethanol to obtain white MIL-68. Finally, an annealing procedure at 500 °C was performed for 2 h in a muffle furnace, yielding light yellow In₂O₃ tubes.

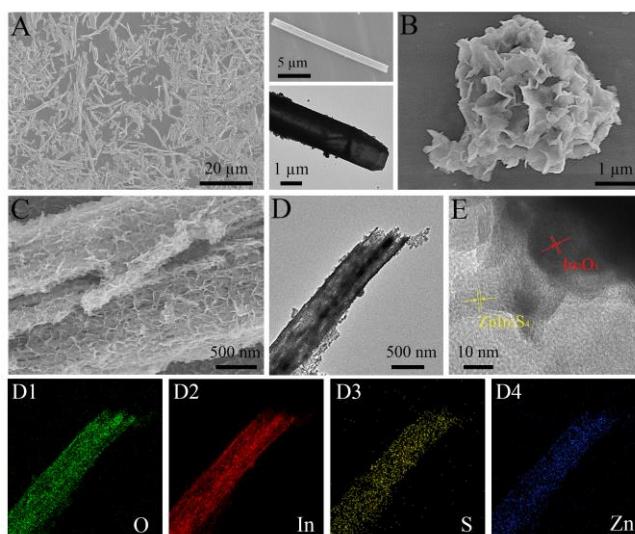
2.2. Synthesis of Branched Sheet Embedded Tubular In₂O₃-ZnIn₂S₄

Briefly, as-prepared In₂O₃ tubes (0.1 g) and ZnIn₂S₄ precursor (0.05 g of zinc chloride, 0.23 g indium chloride, and 0.24 g thioacetamide) were fully dissolved in 30 mL deionized water and then stirred continuously for 30 min at 80 °C in an oil bath. The obtained precipitate In₂O₃-ZnIn₂S₄ was collected, centrifuged, washed with deionized water, and dried under vacuum. Nanosheet-based ZnIn₂S₄ clusters were synthesized using the same method without the addition of In₂O₃.

2.3. Fabrication of Sensing Platform and Analysis Protocol

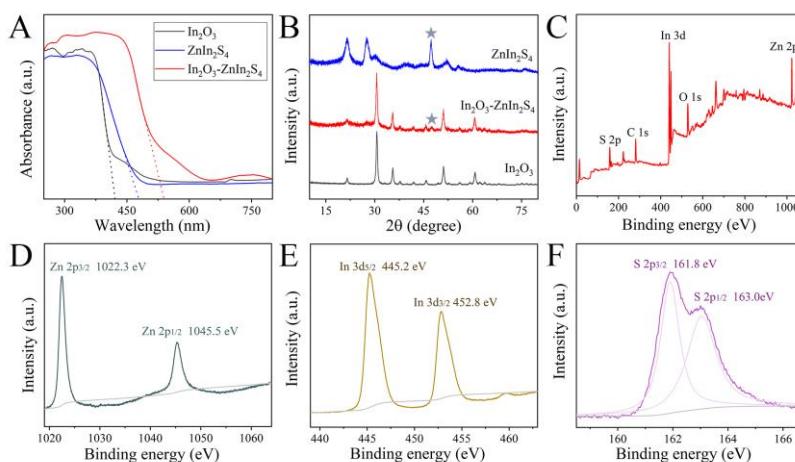
FTO glass was pre cleaned sequentially with acetone, ethanol, and deionized water under violent ultrasonication. In order to obtain an attractive PEC signal, 1 mL prepared In₂O₃-ZnIn₂S₄ solution was spin-coated onto the FTO glass, followed by drying under an infrared lamp for 30 min. 50 µL chitosan aqueous solution (0.08 wt%) in 1% acetic acid was dropped onto FTO electrode and

then 5 wt% glutaraldehyde solution was applied onto the electrode to trigger amino groups for subsequent biomolecule modification. After that, the electrode was dealt with 20 μ L 1 μ M aptamer for 70 min at 4°C, followed by the addition of 10 μ L of 2wt% bovine serum albumin (BSA) to block non-specific binding sites. Obtained working electrode was stored at 4°C and denoted as FTO/In₂O₃-ZnIn₂S₄/aptamer/BSA. Before PEC measurements, FTO/In₂O₃-ZnIn₂S₄/aptamer/BSA was incubated with 20 μ L PSA at room temperature for 30 min. Notably, FTO electrodes were thoroughly cleaned by PBS buffer (pH=7.4, 0.01 M) after each step. All PEC signals were generated by a typical three-electrode system (FTO working electrode, counter electrode and reference electrode) in 0.1 M ascorbic acid (AA) solution.


2.4. Detection Limit Calculation

Detection limit was obtained by the formula $I_{LOD} = I_{blank} + 3S_{blank}$, where I_{blank} and S_{blank} are average photocurrent of 10 independent samples (without PSA) and corresponding standard deviation, respectively. Then, I_{LOD} was brought into the regression curve to obtain detection limit.

3. Results and Discussion


3.1. Morphology and Structure Characterization

Hybrid In₂O₃-ZnIn₂S₄ was synthesized by template method and in-situ growth technique, and further investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), and high-resolution TEM (HRTEM). Apparently, a highly dispersed tube microstructure with well-defined tube walls and cavities was found for In₂O₃ (Figure 2A), providing adequate space for ZnIn₂S₄ growth. While pure ZnIn₂S₄ displayed irregular clusters assembled by a large amount of nanosheets (Figure 2B and Figure S1). After loading nanosheets onto In₂O₃, as-prepared composite exhibited uniform and dense coverage of ultrathin nanosheets, and O, In, S, and Zn elements were evenly distributed on the single tube (Figure 2C and D). Significantly, compared self-assembled ZnIn₂S₄ nanosheet clusters, interconnected nanosheets is beneficial for increasing specific surface area and providing sufficient active sites. Furthermore, a tight interfacial junction between In₂O₃ and ZnIn₂S₄ was successfully constructed where lattice spacing of 0.29 and 0.32 nm were ascribed to the In₂O₃ (2 2 2) and ZnIn₂S₄ (1 0 2) crystal planes, respectively (Figure 2E) [22]. These images demonstrated the successful fabrication of branched sheet embedded tubular hybrid and heterostructure.

Figure 2. (A) SEM images of (A) pure In₂O₃, (B) pure ZnIn₂S₄, and (C) In₂O₃-ZnIn₂S₄. (D) TEM image, elemental mappings and (E) HRTEM image of In₂O₃-ZnIn₂S₄.

Optical properties, crystalline phases, and chemical states were also measured by UV-vis absorption spectra, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy, respectively. As shown in Figure 3A, a typical absorption edge at ~425 nm and poor light-harvesting capacity in visible light region were demonstrated for pure In_2O_3 . For hybrid $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$, a robust photoabsorption in UV and visible light region to ~542 nm was obtained. Using Tauc plots method [23], the bandgap energies (E_g) of In_2O_3 , ZnIn_2S_4 , $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$ were calculated to be 2.9, 2.58, and 2.29 eV, respectively. Furthermore, XRD patterns of above materials were shown in Figure 3B. Nine distinct diffraction peaks at 21.5° , 30.6° , 35.5° , 37.7° , 41.8° , 43.7° , 51.1° , 55.9° , 60.7° in black curve were well-matched with characteristic standard In_2O_3 data (JCPDS No. 06-0416) [24]. Except diffraction peaks of In_2O_3 , additional peak at 47.2° gathered from $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$ was assigned to $(1\ 1\ 0)$ crystal plane of pure ZnIn_2S_4 . To probe the elemental valence details, X-ray photoelectron spectroscopy (XPS) was performed with C 1s peak as the standard reference. In the survey spectrum, the presence of In, O, Zn, and S elements was confirmed, consistent with above mentioned mapping diagram. In specific, two binding energies at 1022.3 and 1045.5 eV were attributed to Zn 2p $3/2$ and Zn 2p $1/2$ of Zn^{2+} chemical state. Two prominent peaks presented at 445.2 eV (In 3d $5/2$) and 452.8 eV (In 3d $3/2$) were recorded, which were similar to that of standard In^{3+} . S 2p spectrum could be deconvoluted into two characteristic S^{2-} peaks at 161.8 and 163.0 eV. In a word, above mentioned results matched each other, illustrating the successful fabrication of tubular $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$.

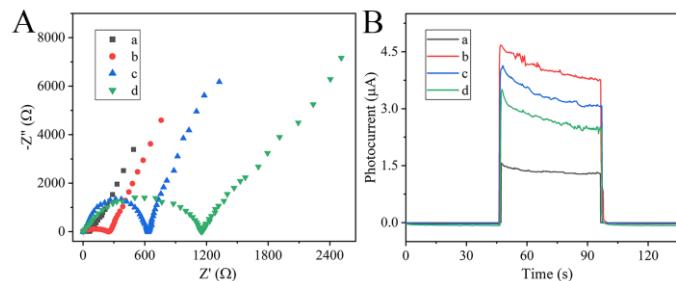


Figure 3. (A) UV-vis absorption spectra and (B) XRD patterns of In_2O_3 , ZnIn_2S_4 , and $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$. High-resolution XPS spectra of (C) $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$, (D) Zn 2p, (E) In 3d, and (F) S 2p.

3.2. PEC and EIS Behaviors

Stepwise modification process of PSA sensing platform was estimated by electrochemical impedance spectroscopy (EIS) where the larger radius always means lower charge transfer rate (Figure 4A). It could be observed that the electron-transfer resistance (Ret) elevated dramatically after immobilization of $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$ complex onto the FTO surface due to their low conductivity. With the identify element and blocking agent modification progress, Ret witnessed an upward trend. This is because large steric hindrance of aptamer and BSA diminished charge transfer capacity. Moreover, the transient photocurrent responses were also measured using 0.1 M ascorbic acid solution as the sacrificial agent (Figure 4B). As expected, FTO/ $\text{In}_2\text{O}_3\text{-ZnIn}_2\text{S}_4$ (red curve) showed a significant photocurrent enhancement compared with FTO/ In_2O_3 (black curve) thanks to the heterointerfaces promoting photogenerated electron-hole separation. Under visible light radiation, photoinduced electrons and holes were generated on the In_2O_3 and ZnIn_2S_4 surface. Driven by the internal electric field, photoinduced electrons and holes were accumulated on the conduction band of ZnIn_2S_4 and valance band of In_2O_3 , respectively. An enhanced anodic photocurrent was obtained and holes were captured by electron donor (ascorbic acid). After photoelectrode incubated with non-conductive

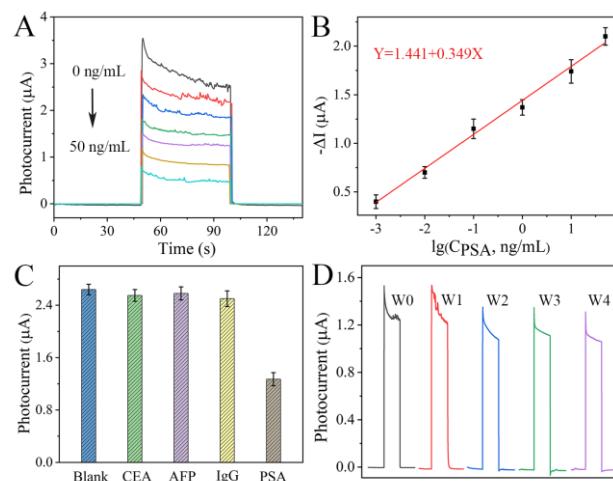

aptamer and BSA, the continuously decreasing photocurrent value was obtained (blue and green curves). EIS and PEC response demonstrated continuous fixation of biomolecules on the FTO electrode.

Figure 4. (A) EIS spectra of (a) FTO, (b) FTO/In₂O₃-ZnIn₂S₄, (c) FTO/In₂O₃-ZnIn₂S₄/aptamer, and (d) FTO/In₂O₃-ZnIn₂S₄/aptamer/BSA in 5.0 mM [Fe(CN)₆]^{3-/4-} containing 0.1 M potassium chloride. (B) Photocurrent responses of (a) FTO, (b) FTO/In₂O₃-ZnIn₂S₄, (c) FTO/In₂O₃-ZnIn₂S₄/aptamer, and (d) FTO/In₂O₃-ZnIn₂S₄/aptamer/BSA in 0.1 M ascorbic acid solution.

3.3. Analytical Performance

PSA level, as an early portent of prostate dysfunction, is associated with prostate cancer, underscoring the importance of sensitive PSA detection. Thus, based on this well-designed PEC biosensor, we further explored its capability for the quantification of PSA antigen. According to analysis protocol mentioned in experimental section, PSA at different concentrations was applied onto photoelectrodes and acquired PEC signals were analyzed. After incubation with 0.001 ng/mL PSA, the photocurrent intensity abated (red curve in Figure 5A). This may because aptamer-PSA binding events enlarged steric hindrance and inhibited the diffusion of ascorbic acid to electrode surface. As PSA concentration increased from 0.001 to 50 ng/mL, the photocurrent intensity gradually reduced. In other words, there was an excellent negative correlation between photocurrent and logarithmic value of PSA concentrations and corresponding regression curve was $-\Delta I = 1.441 + 0.349 \lg C_{PSA}$ (ng/mL) (Figure 5B). This proposed PEC sensing platform possessed a linearity (R^2) at 0.991 with a detection limit at 0.00037 ng/mL ($S/N=3$). Such performance is primarily because rapid photoinduced charges separation and specific biometric events.

Figure 5. (A) Photocurrent responses of FTO/In₂O₃-ZnIn₂S₄/aptamer/BSA at different PSA concentrations (0, 0.001, 0.01, 0.1, 1, 10, 50 ng/mL) and (B) the calibration curve between $-\Delta I$ and logarithm of PSA concentration. (C) Photocurrent of proposed biosensing platform in the presence of 1 ng/mL CEA, AFP, IgG, and blank. (D) Photocurrent of PEC biosensor at different storage times from 0 to 4 weeks.

To further assess proposed PEC biosensors, both selectivity and stability were monitored. As illustrated in Figure 5C, significant photocurrent change was only appeared in the presence of 1 ng/mL PSA not other substances including carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), and immunoglobulin G (IgG). This result indicated those interferences had almost no impact on sensing performance. Moreover, the photocurrent response of FTO/In₂O₃-ZnIn₂S₄/aptamer/BSA electrodes on 4th week maintained 85% of original value. Results indicated acceptable storage stability.

4. Conclusions

In summary, we successfully constructed an effective PEC biosensor based on FTO/In₂O₃-ZnIn₂S₄ sensitization structure and PSA-sensitive aptamer for sensitive analysis of PSA. In₂O₃ tubes were firstly prepared by two-step hydrothermal and annealing methods, followed by the in-situ growth of ZnIn₂S₄ nanosheets. In this process, generated tubular composite established efficient energy level matching between In₂O₃ and ZnIn₂S₄. This intimate interface contacts inhibited the photocarrier recombination and made effective migration of photoinduced electrons and holes, thus obtaining desirable initial PEC signals. Besides, biological binding sites on hybrid contributed to aptamer-protein event and further achieved PSA sensing. The constructed PEC biosensor. The constructed PEC biosensor presented a wide detection range from 0.001 to 50 ng/mL, with a detection limit down to 0.00037 ng/mL. Developed PEC sensing platform has high sensitivity, satisfying selectivity and stability, and guide the optimal PEC electrode construction for PSA detection.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on Preprints.org, experimental section (reagents and apparatus); Figure S1: Enlarged SEM image of ZnIn₂S₄.

Author Contributions: H.S.: Conceptualization, methodology, and writing-original draft. J. X.: data curation, investigation, and validation. Y.W.: Funding acquisition, formal analysis, writing-reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Funding: Please add: This research was funded by the Excellent Youth Innovation Team in Universities of Shandong (2022KJ133), and the Science, Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences) (2024RCKY025)..

Data Availability Statement: Data will be made available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Homer, M. K.; Kuo, D. Y.; Dou, F. Y.; Cossairt, B. M., Photoinduced charge transfer from quantum dots measured by cyclic voltammetry. *J. Am. Chem. Soc.* 2022, 144, 14226-14234.
2. Qin, Y.; Zhang, J.; Tan, R.; Wu, Z.; Liu, M.; Li, J.; Xu, M.; Gu, W.; Zhu, C.; Hu, L., Small-molecule probe-induced *in situ*-sensitized photoelectrochemical biosensor for monitoring α -Glucosidase activity. *ACS sensors* 2023, 8, 3257-3263.
3. Ding, H.; Feng, Y.; Xu, Y.; Xue, X.; Feng, R.; Yan, T.; Yan, L.; Wei, Q., Self-powered photoelectrochemical aptasensor based on MIL-68(In) derived In₂O₃ hollow nanotubes and Ag doped ZnIn₂S₄ quantum dots for oxytetracycline detection. *Talanta* 2022, 240, 123153.
4. Nam, B.; Ko, T.-K.; Hyun, S.-K.; Lee, C., NO₂ sensing properties of WO₃-decorated In₂O₃ nanorods and In₂O₃-decorated WO₃ nanorods. *Nano Convergence* 2019, 6, 40.
5. Zhao, F.; Cao, W.; Wang, P.-H.; Wang, J.; Yu, L.; Qiao, Z.; Ding, Z.-J., Fast and sensitive detection of CO by Bi-MOF-derived porous In₂O₃/Fe₂O₃ core-shell nanotubes. *ACS sensors* 2023, 8 (12), 4577-4586.
6. Han, C.; Zhang, X.; Huang, S.; Hu, Y.; Yang, Z.; Li, T. T.; Li, Q.; Qian, J., MOF-on-MOF-derived hollow Co₃O₄/In₂O₃ nanostructure for efficient photocatalytic CO₂ reduction. *Adv. Sci.* 2023, 10, 2300797.

7. Shi, L.; Benetti, D.; Wei, Q.; Rosei, F., MOF-derived $\text{In}_2\text{O}_3/\text{CuO}$ p-n heterojunction photoanode incorporating graphene nanoribbons for solar hydrogen generation. *Small* 2023, 19, 2300606.
8. Cao, Y.; Lu, K.; Chen, Y.; Zheng, Q.; Huang, C.; Jia, N., $\text{In}_2\text{O}_3/\text{Bi}_2\text{S}_3$ S-scheme heterojunction-driven molecularly imprinted photoelectrochemical sensor for ultrasensitive detection of dlorfenicol. *ACS Appl. Mater. Interfaces* 2023, 15, 58397-58405.
9. Han C.; Zhang X.; Huang S.; Hu Y.; Yang Z.; Li T.; Li Q.; Qian J., MOF-on-MOF-derived hollow $\text{Co}_3\text{O}_4/\text{In}_2\text{O}_3$ nanostructure for efficient photocatalytic CO_2 reduction. *Adv. Sci.* 2023, 10 2300797.
10. Liu, X.; Zhang L.; Li Y.; Xu X.; Du Y.; Jiang Y.; Lin K., A novel heterostructure coupling MOF-derived fluffy porous indium oxide with $\text{g-C}_3\text{N}_4$ for enhanced photocatalytic activity, *Mater. Res. Bull.* 2021, 133, 111078.
11. Ren J.; Yuan K.; Wu K.; Zhou L.; Zhang Y., A robust $\text{CdS}/\text{In}_2\text{O}_3$ hierarchical heterostructure derived from a metal-organic framework for efficient visible-light photocatalytic hydrogen production, *Inorg. Chem. Front.* 2019, 6, 366-375.
12. Yang, J.; Zhu, X.; Yu, Q.; He, M.; Zhang, W.; Mo, Z.; Yuan, J.; She, Y.; Xu, H.; Li, H., Multidimensional $\text{In}_2\text{O}_3/\text{In}_2\text{S}_3$ heterojunction with lattice distortion for CO_2 photoconversion. *Chinese J. Catal.* 2022, 43, 1286-1294.
13. Luo, D.; Peng, L.; Wang, Y.; Lu, X.; Yang, C.; Xu, X.; Huang, Y.; Ni, Y., Highly efficient photocatalytic water splitting utilizing a $\text{WO}_3\text{-x}/\text{ZnIn}_2\text{S}_4$ ultrathin nanosheet Z-scheme catalyst. *J. Mater. Chem. A* 2021, 9, 908-914.
14. Ding, S.; Medic, I.; Steinfeldt, N.; Dong, T.; Voelzer, T.; Haida, S.; Rabeah, J.; Hu, J.; Strunk, J., Ultrathin defective nanosheet subunit ZnIn_2S_4 hollow nanoflowers for efficient photocatalytic hydrogen evolution. *Small Struct.* 2023, 4, 2300091.
15. Lu, P.; Liu, K.; Liu, Y.; Ji, Z.; Wang, X.; Hui, B.; Zhu, Y.; Yang, D.; Jiang, L., Heterostructure with tightly-bound interface between In_2O_3 hollow fiber and ZnIn_2S_4 nanosheet toward efficient visible light driven hydrogen evolution. *Appl. Catal. B Environ.* 2024, 345, 123697.
16. Wang, J.; Sun, S.; Zhou, R.; Li, Y.; He, Z.; Ding, H.; Chen, D.; Ao, W., A review: Synthesis, modification and photocatalytic applications of ZnIn_2S_4 . *J. Mater. Sci. Technol.* 2021, 78, 1-19.
17. Lin, Y.; Fang, W.; Xv, R.; Fu, L., TiO_2 nanoparticles modified with ZnIn_2S_4 nanosheets and Co-Pi groups: Type II heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting. *Int. J. Hydrogen Energ.* 2022, 47, 33361-33373.
18. Liu, M.; Xiong, J.; Kong, D.; Liu, Y.; Wu, H.; Li, F.; Hu, H.; Wang, D.; Guo, X.; Jiao, Y.; Zhang, Z., Anchoring ZnIn_2S_4 nanosheets on oxygen-vacancy NiMoO_x nanorods for efficient photocatalytic hydrogen evolution. *Sep. Purif. Technol.* 2025, 359, 130608.
19. Kong, D.; Hu, X.; Geng, J.; Zhao, Y.; Fan, D.; Lu, Y.; Geng, W.; Zhang, D.; Liu, J.; Li, H.; Pu, X., Growing ZnIn_2S_4 nanosheets on FeWO_4 flowers with pn heterojunction structure for efficient photocatalytic H_2 production. *Appl. Surf. Sci.* 2022, 591, 153256.
20. Wang, M.; Zhang, G.; Guan, Z.; Yang, J.; Li, Q., Spatially separating redox centers and photothermal effect synergistically boosting the photocatalytic hydrogen evolution of ZnIn_2S_4 nanosheets. *Small*, 2021, 17, 2006952.
21. Liu, T.; Shen, H.; Wang, M.; Feng, Q.; Chen, L.; Wang, W.; Zhang, J., Fabrication of ZnIn_2S_4 nanosheets decorated hollow CdS nanostructure for efficient photocatalytic H_2 -evolution and antibiotic removal performance. *Sep. Purif. Technol.* 2023, 315, 123698.
22. Wang, S.; Guan, B. Y.; Lou, X. W. D., Construction of $\text{ZnIn}_2\text{S}_4\text{-In}_2\text{O}_3$ hierarchical tubular heterostructures for efficient CO_2 photoreduction. *J. Am. Chem. Soc.* 2018, 140, 5037-5040.
23. Chang, Y.-S.; Choi, M.; Baek, M.; Hsieh, P.-Y.; Yong, K.; Hsu, Y.-J., CdS/CdSe co-sensitized brookite $\text{H}: \text{TiO}_2$ nanostructures: Charge carrier dynamics and photoelectrochemical hydrogen generation. *Appl. Catal. B Environ.* 2018, 225, 379-385.
24. Lu, P.; Liu, K.; Liu, Y.; Ji, Z.; Wang, X.; Hui, B.; Zhu, Y.; Yang, D.; Jiang, L., Heterostructure with tightly-bound interface between In_2O_3 hollow fiber and ZnIn_2S_4 nanosheet toward efficient visible light driven hydrogen evolution. *Appl. Catal. B Environ.* 2024, 345, 123697.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.