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Abstract: Disorders of metabolism have been seen in multiple autoimmune diseases including SLE 
and Sjogren’s disease. The current studies were designed to evaluate mutations in genes involved 
with metabolism in a cohort of patients with Sjogren’s disease diagnosed from clinical criteria and 
the presence of antibodies to salivary gland antigens. Patients included in these studies met criteria 
for Sjogren’s disease and were able to get genetic studies. There were 194 of these patients and 192 
had mutations in one or more gene involved with metabolism: 188 patients had mutations in 
mitochondrial respiratory chain genes, 17 patients had mutations in mitochondrial tRNA genes, 10 
patients had mutations in mitochondrial DLOOP regions, 6 patients had mutations involved with 
carnitine transport, 6 patients had mutations in genes causing mitochondrial depletion and 7 patients 
had glycogen storage diseases. In all cases, treatment of the metabolic disorder led to symptomatic 
improvement in energy, exercise tolerance, gastrointestinal dysmotility and management of 
infections. In conclusion, metabolic disorders are common in patients with Sjogren’s disease and may 
be one of the factors leading to the initiation of the disease. Treatment of patients with Sjogren’s 
disease should include treatment of the underlying / associated metabolic disorder. 
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1. Introduction 

Understanding of the pathophysiology of autoimmune diseases has been rapidly advancing in 
the last several years. While dysregulated immune function has been appreciated for decades, 
appreciation of dysregulated metabolism in autoimmune diseases is relatively recent [1–7]. 
Abnormal mitochondrial function was first observed in SLE [8–15] but has been observed in Sjogren’s 
disease as well [16–26]. We observed that many of the symptoms attributable to Sjogren’s disease 
were in fact related to the underlying metabolic disease in particular patients. We therefore sought 
to determine the number of patients with mutations in genes associated with metabolism in a cohort 
of patients with Sjogren’s disease seen in our clinics. 

2. Results 

The first issue to address is the autoantibodies expressed by the patients in this study. They all 
met American – European clinical criteria for Sjogren’s disease with clinical signs of dry eye and dry 
mouth and positive Schirmer’s tests, except only 13 of the patients had SSA antibodies. All the 
patients had autoantibodies associated with Sjogren’s disease, but the majority had antibodies to SP1 
and CA6 (Figure 1), which are salivary gland specific antigens [27–30]. Many of the patients expressed 
more than one autoantibody. Interestingly, 54% of the patients with SP1 autoantibodies expressed 
IgM autoantibodies while 67% of the patients with CA6 autoantibodies expressed IgG 
autoantibodies. These patients might by called seronegative Sjogren’s patients by some investigators 
because of their lack of SSA expression. 

Genetic studies looking for metabolic disorders were done on these patients because of 
symptoms that are consistent with adult- onset metabolic disorders: fatigue, exercise intolerance, 
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recurrent infections, accelerated osteoarthritis, gastrointestinal dysmotility including gastroparesis, 
gastroesophageal reflux and constipation and in some cases dyspnea. In all cases, whole exome 
sequencing and sequencing of the mitochondrial genome was performed by GeneDx. Of the patients 
studied, 192 (99%) had mutations in genes associated with metabolic function (Figure 2). Some 
patients carried more than one mutation. Rare missense mutations in mitochondrial respiratory chain 
genes were common: complex 1 – 76, complex 3 – 44, complex 4 – 19 and complex 5 – 49. One patient 
had a mutation in the succinate dehydrogenase gene, which is involved with complex 2 of the 
mitochondrial respiratory chain but also the citric acid cycle. Six patients had mutations associated 
with carnitine: CPT2 – 4 and SLC22A5 – 2. Mutations in various mitochondrial tRNA were seen in 17 
patients and 10 patients had rare MT-DLOOP mutations. One patient had a PDSS2 mutation 
associated with CoQ10 deficiency, and 6 patients had mutations associated with mitochondrial 
depletion syndrome: POLG – 3, MCME1 – 1, RRMP8 – 1 and thymidine kinase – 1. Seven patients 
had mutations in genes causing glycogen storage diseases: Pompe disease – 1, Forbes – Cori disease 
– 1, McArdle’s Disease -1, phosphofructokinase deficiency (type IX) – 1 and lactate dehydrogenase 
deficiency (type XI) – 3. The result in all these mutations is inefficient generation of ATP and in the 
case of the glycogen storage diseases, difficulty handling complex carbohydrates.  

The treatment of mitochondrial disorders involves several medications, each of which works by 
a different mechanism, so a synergistic effect is seen [31]. The first medication is CoQ10, which is 
involved with transporting electrons between complex 1 and 3 of the mitochondrial respiratory chain 
and helps generate ATP more efficiently [32,33]. Creatine generates ATP through the creatine 
phosphate shuttle and discourages replication of abnormal mitochondria [34]. Carnitine brings fatty 
acids into the mitochondria so they can undergo beta oxidation to generate NADH [26,35]. Folic acid 
is a co-factor for several respiratory chain enzymes [36]. N-acetyl cysteine is a potent antioxidant 
[37,38] and the amino acid glutamine acts as an alternative energy source [39,40]. The doses of these 
medications vary for individual patients, but all patients have noted some benefit from them with 
regards to fatigue, exercise tolerance and decreasing infection rate. With regards to the glycogen 
storage diseases, patients are taught to avoid complex carbohydrates and supplement with simple 
sugars [41–46]. At the same time, since glycogen storage diseases are generally associated with 
mitochondrial dysfunction, we usually add the medications listed above that are used to treat 
mitochondrial diseases [47,48]. These patients saw significant improvement in fatigue and exercise 
tolerance with this regimen.  

 

Figure 1. Autoantibodies Identified in Patients in this Study. Figure Legend: This figure demonstrates the 
number of patients with particular autoantibodies included in this study. SP1 = salivary protein 1, CA6 = carbonic 
anhydrase 6, PSP = parotid secretory protein, SS = Sjogren’s syndrome. 
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Figure 2. Mutations in Genes Involved with Metabolism in Patients with Sjogren’s Disease. Figure Legend: This 
figure demonstrates the number of patients with particular mutations in genes involved with metabolism. MRC 
= mitochondrial respiratory chain.MT = mitochondrial, Mito depletion genes included POLG, MCME, RRMP8 
and thymidine kinase. Glycogen storage diseases included Pompe, Forber – Cori, McArdle’s, 
phosphofructokinase deficiency and lactate dehydrogenase deficiency. 

3. Discussion 

We have demonstrated in this study that Sjogren’s patients with symptoms consistent with a 
metabolic disorder, fatigue, exercise intolerance, gastrointestinal dysmotility and recurrent 
infections, often have mutations in genes important for metabolism. The identification of the 
metabolic disorder is helpful in suggesting therapies to improve disease symptoms. It is certainly 
true that all these patients come from a clinic that specializes in metabolic disorders so there is some 
bias regarding patient selection. Interestingly, when patients with metabolic disorders are evaluated 
as a group there is a very high incidence of Sjogren’s disease [26,49]. 

Mitochondrial dysfunction has been observed in patients with Sjogren’s disease by several 
investigators [16,17,21,22,50–52]. The question becomes whether mitochondrial dysfunction occurs 
secondary to the inflammation in the salivary glands or whether it is a primary process contributing 
to the development of the disease. One way that mitochondrial dysfunction could contribute to 
disease pathogenesis is by decreasing the ability to handle infections thus leading to more tissue 
damage and the increased likelihood that normal autorecognition is turned into pathologic 
autoreactivity [53–56]. Mitochondrial dysfunction could lead to modification of various proteins and 
other molecules involved with signaling and genetic function [56]. Alternatively, inefficient 
mitochondrial function could lead to reliance on glycolytic metabolism, which tends to encourage 
the actions of effector rather than regulatory lymphocytes and other immune cells [57–64]. 
Interesting, IL-14 (a-taxilin) was recently shown to stimulate glycolysis [65]. The Il-14 transgenic 
mouse has been shown to be an excellent model for Sjogren’s disease [66,67]. Recent studies have 
demonstrated that blocking glycolysis inhibits the development of Sjogren’s disease manifestations 
in this animal model [68]. 

This manuscript has weaknesses because it describes patients followed as part of normal clinical 
service and does not describe a research study designed to address a particular research question. 
Furthermore, while all of the patients had autoantibodies associated with Sjogren’s disease, only a 
few patients had SSA antibodies, which are the only autoantibodies in the official America – 
European diagnostic criteria for Sjogren’s disease [69]. Nonetheless, these patients all met the 
necessary clinical criteria and demonstrated autoreactivity by the presence of autoantibodies directed 
towards salivary and lacrimal gland antigens – the diagnostic criteria may have to expand to include 
additional autoantibodies. Furthermore, expression of SSA versus SP1/CA6/ PSP may denote 
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different stages of disease and/or different types of Sjogren’s disease that are driven by different 
metabolic and immunologic abnormalities [27,66,68,70–72]. 

Whether metabolic abnormalities are a primary or secondary function in patients with Sjogren’s 
disease, treatment based on these abnormalities is helpful for the patients symptomatically and may 
lead to other new forms of therapy. 

4. Materials and Methods 

4.1. Patients 

All the patients discussed in this manuscript were followed in the Immunology clinics of SUNY 
at Buffalo School of Medicine. They had clinical symptoms of xerostomia and xerophthalmia with 
positive Schirmer’s tests performed by their Ophthalmologists. Some patients had demonstration of 
decreased salivary flow. All patients had serologic testing for antibodies to SSA, SSB, salivary gland 
protein 1 (SP1), carbonic anhydrase 6 (CA6) and parotid secretory protein (PSP) as part of their 
routine medical care. Because all patients had complaints of fatigue, exercise intolerance, accelerated 
osteoarthritis and recurrent infections, genetic studies were obtained as part of their routine medical 
care. Twenty-seven percent of the patients had associated gastrointestinal dysmotility. The patients 
ranged in age from 21-81 years (mean 54.2 +/- 13.5 years). Eighty-nine percent of the patients were 
female.  

4.2. Genetic Studies 

Sequencing of the mitochondrial genome and whole exome sequencing was performed by 
GeneDx (Gaithersburg, MD). 

5. Conclusions 

Patient with Sjogren’s disease frequently have an underlying metabolic disorder that is 
responsible for some of the symptoms attributed to the disease. Treatment of the metabolic disorder 
leads to symptomatic improvement in the patients. 
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SSA = Sjogren’s syndrome A = anti – Ro 
SSB = Sjogren’s syndrome B = anti- LA 
ATP = adenosine triphosphate 
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