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Abstract: This work focuses on investigating rough Marcinkiewicz integrals associated to specific
surfaces. Whenever the kernel functions belong to L7(S™~1) space, the L? boundedness of these
Marcinkiewicz integrals is confirmed. This finding along with Yano’s extrapolation argument prove
the L” boundedness of the aforementioned integrals under weaker conditions on the kernels. The
results in this work improve and generalize various previously known results on Marcinkiewicz
integrals.

Keywords: Marcinkiewicz integrals; rough operators; LP bounds; extrapolation

MSC: 42B20; 42B25; 42B35

1. Introduction

Let R™ be the m-dimensional Euclidean space with m > 2, and let S™-1 be the unit sphere
in R™ equipped with the normalized Lebesgue surface measure doy,(-). Also, let w' = w/|w| for
w e R™\ {0}.

Assume that & is a measurable function on R* and that © is a homogeneous function of degree
zero on R™, integrable over S"~! and satisfies the condition

/S O )dow(w) = 0. (1)

For appropriate mappings P : R" — R?and ¢ : R* — R, we consider the Marcinkiewicz integral
Mae,p ¢ defined, initially for f € C°(R?*1), by

2 1/2
i oy £~ Pl 501 = o]) |S|(niu_)ah(|w|)dw a)

Mopan(FE) = | [

where ¥ = (x,x4,1) € Rl and a = 7 + ik (1,x € R with T > 0).

Whenm =d, P(w) = w, ¢ =0,and h = 1, we denote M@,p,q,,h by Mg,. Also, whena =1, we
denote Mg , by Mg which is basically the classical Marcinkiewicz operator introduced by Stein in [1].
The study of the L boundedness of Mg has received a large amount of attention by many authors for
a long time. For instance, it was proved in [1] that Mg is bounded on L? (R™) for p € (1,2) provided
that the kernel function © belongs to the space Lipg (S™=1) for some B € (0, 1]. Later on, the authors of
[2] proved the L? boundedness of Mg for all p € (1, c0) under the condition @ € C!(S™~1). Thereafter,
Walsh [3] confirmed the L2(R™) boundedness of Mg whenever ® € L(logL)'/2(S"~1), and also he
found that the assumption ® € L(log L)'/?(S"~1) is optimal in the sense that if ® € L(logL)¢(S"~1)
for any € € (0,1/2), then the operator Mg will not be bounded on L?(R™). The result in [3] was
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improved in [4] for the case p € (1,00). On the other hand, the authors of [5] obtained the L
(1 < p < 00) boundedness of Mg if O lies in the space B,go’_l/ 2) (S™1) for some g > 1. Furthermore,

they showed that the assumption © € B,go’*l/ 2) (S™~1) is optimal in the sense that if ® € Béo,e) (Sm=1)

for any € € (—1, —1/2), then 9t may not be bounded on L2(R™). Here B,go's) (S™=1) is referred to the
block space that introduced in [6].

We point out that the study of the parametric Marcinkiewicz operator Mg , was initiated in [7]
and then continued by many authors. In addition, the study of singular integral operators with rough
kernels along surfaces was started in [8], and then continued by many researchers. For instance, the
authors of [9] studied the operator Mg p 4 when ¢ =0, ® € L(log L)Y smhHu Bgo’fl/z) (Sm1),
h e V,(R") for some y > 1,and P(w) = (P;(w), P2(w),- - - , P4(w)) is a polynomial mapping, where
each P; is a real valued polynomial on R™. In fact, they established the L” boundedness of Mg p 4, for
all|1/p —1/2| < min{1/+/,1/2}. Here, A, (R ) (with v > 1) refers to the collection of all functions &
that are defined on R" and satisfying

7\
||h||A7<R+>=sup(/2]. ()| l) <o

JEZ

The authors of [10] obtained the same results in [9] for the special cases P(w) = w and for the
case ¢ = 0 is replaced by the condition ¢ € C?>(R™) is convex and increasing function with ¢(0) = 0.
The L? boundedness of Mg p ¢, was investigated by many authors under various conditions on ©,
P, ¢, and h. We refer the readers to consult: For a background information and a sample of past
studies relevant to our current study [11-15], for its extensions and developments [16-21] and for
recent advances [22-31].

In the light of the results in [9] concerning the operator Mg p 4, in the case ¢ = 0 and of the
results concerning the operator Mg p 4, in the case P(w) = w, a question arises naturally is whether
the boundedness of the operator M@,p,¢,h holds under the same assumptions as in [9] and for certain
classes of functions ¢ ?

Our main focus in this paper will be answering the above question in affirmative as described in
the following results.

Theorem 1. Let P be a polynomial mapping given by P(w) = (P1(w), P2(w), - -+, P4(w)), where each P; is
a real valued polynomial on R™, and let ¢ be a function satisfying

¢(1) = ¢() + (1),

where ¥ is a polynomial, g (0) = 0 forall 1 < k < M, ™ is positive nondecreasing on R™ for all
1<k <M+1,and M = max{deg (i), deg(P)}. Assume that © € L1(S"~1) for some q € (1,2] satisfies
the condition (1) and that h € V. (R™) for some oy > 1. Then, a positive a constant C,, g j, (independent of ¢
and the coefficients of the polynomials P; and ) exists such that

1/2
Y
< . r
e L e T
forall [1/p —1/2| < min{1/9',1/2}, where Cp 0, = Cp|lh|lv. ) @] Lasn-1)-

By employing the estimate in Theorem 1 along using an extrapolation argument (see [32,33]), we
obtain the following:
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Theorem 2. Assume that P, ¢ and h are given as in Theorem 1.
(i) If® € L(log L)Y/2(S™~1), then

[Mopan || g, < Collal, o) (1@Nuogryaonty + 1) I sy
forall [1/p—1/2| < min{1/+/,1/2};

(ii) If © € B,go’_l/z) (S™=1) for some g > 1, then

HM®,7>,¢,h (f)

ey < Colle, @) (1€10-172 1) + 1) 1F s

forall |1/p —1/2| < min{1/+/,1/2}.

Remark 1.

(i) We notice that the main result in [9] is attained from Theorem 2 when we take ¢ = 0. Thus, our result
generalizes the result in [9].

(ii)  Since Lipg (S™1) ¢ Llog L)"/2(S™ 1) u Bgoﬁl/z) (S™=1), our results extend the results in [1,2,7].

(iii) our conditions on © in Theorem 2 are known to be the best possible in their respective classes for the special
casesm =d, P(w) =w, ¢ =0,h =1, and « =1 (see [3,5]).

(iv)  For the case <y > 2, our results give the LP boundedness of Me p ¢ for p in the full range (1, 00).

Throughout the rest of the paper, we assume that the letter C denotes a positive constant whose
value is independent of the essential variables and not necessary be the same at each appearance.

2. Some Lemmas

In this section, we give auxiliary lemmas which will play major roles in proving the main results
of this work. Let y > 2. For suitable mappings P : R” — R%, ¢ : R — Rand i : Rt — C; we
consider the family of measures {Ug p g, := U; 1 1 € R*} and its related maximal operators U; and
M;,, on R given by

_ 1 Oy)hr(w])
[ F01 = [ FP@(l) = e,
Gif(x) = sup |0y * £(3)],
leR+
and

o di

My f() = sup [0 161+ f(3)| T
jeZ K

where |U;| is defined similar to the definition of U; with replacing ® by |®| and & by |h|.

The following lemma comes from the the results in [34].

Lemma 1. Let P, ¢, h, and © be given as in Theorem 1. Then there exists a constant C;, > 0 such that for
f € LP(R*Y) with p > 9/, we have

15 () ety < Cponllfllpgan @
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and
M (F) I a1y < Cpon(In )| fll o masr)- 3)

Proof. It is easy to check that Holder’s inequality gives that
1G] * £ (%))

! /9
1/ ! 1 /
< Q@M%mMWW@Q(Z/émﬂmeU—PW%mH—ﬁmﬂwmwﬂ) .

1/2

By Minkowski’s inequality we have

" 1/9' * / 1/4
1G5 (Al < Cl@I iy lllw, @y (G UAT ) s gaen) ) 4)
where
_ 1 ®(w)
[ FO0 = |y TP
and
Yo(f) = sup ||[Y)| =],
leRL
It is clear that
Yo(H(E) < 2W(H)(3), (5)
where
e - - ©(w)|
WHA(E) = (igg /2/'§|w|§2i+1|f(x Plw),xasn = (@)= dw |

By Theorem 1.1 in [34], we deduce that

IW* (D llr @y < Cpll®llaggmy 1 fllr grasy 6)

forall 1 < p < oo. Thus, by (4)-(6), we prove the inequality (2) which gives directly (3). The proof of
this lemma is complete. O

Remark 2. Let 0 < my < mp < --- < m,, be non-negative integers. Then, for any w € R™, we can

write P(w) = % PO (w) + RY(Jw]), where P (w) = (P} (w), Py(w),..., Pj(w)), {Pj(w):1<v <
r=1

d,1 < r < M} are real-valued homogeneous polynomials of degree m, with |w|™ ¢ span{P],. ..,P{;},
RO = (Rgr)(l),Rér)(l),...,Rg)(l)), and {Rl(f)(l) :1<wv <d,1<r< M} bepolynomials on R of
degree less than m,. Let T, denote the number of elements of { = (B1,B2-..,Bm) € (NU{O})™ : |B| =

my} = {B(1),B(2),...,B(t)}. Write P[(w) = )Tj awP®), and define the linear mapping L, : R? — R
s=1
d d
by L,(Q) = <Z al Lo, Lol k€k>‘ For1 < r < M, set P,(w) = i PO (w) + W(|wl|) and
k=1 " k=1 " k=1

Po(w) = W(|w|). Hence, we have P(w) = Pp(w). For 1 < r < M, we let Ul(r) = Ue,p,pu and
6" f(®) = sup ||5" ]« £(2)].
leR*
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Now we have the following result concerning the measures Ul(r):

Lemma 2. Let P, ¢, ©, and h be given as in Theorem 1. Let {Ul(r) leRT,1<r< M}bea family of Borel
measures defined as in Remark 2. Then for y > 2, there exist positive constants 6, and C such that

j+
</; (C Tms1) dl) < Co(lnp)t/?, 7)
LANPNE 241" 172, jm ~ Ty
[ B ) < Contnp 2 (L) T, ®)

1/2 .
(6 i)~ 5"”<é,ém+1>!2il) < Coplinp) /2 (" |Ly(2)]) ™™, o)

y]+1
Jy 1o

where Coy = C||®||Lggn-1) 1]y, @+)-

Proof. By the definition of Ul(r), it is easy to get (7). In addition, the same arguments as in Proposition
5.1in [35] lead to (8). By a simple change of variable, we obtain

Wl
I,

which when combined with the trivial estimate (7), we conclude that

H]Jrl
Jy 1o

This ends the proof of the lemma. O

1/2
~ (7 A~ (r— dl im
61" (6, 2m1) =07V (& Grta) 2,) < Coplnp)2 (W™ [L1(D)1), (10)

(@ i) =BV (@ Tmen) ‘”) < Coplin) (™ L@))) . A

By employing similar arguments as that employed in [35], we get the following:

Lemma 3. Let P and ¢ be given as in Theorem 1, and let y > 2, h € V(R") with y > 1and © € L1(S*"1)
with 1 < q < 2. Then there exists C, @, > 0 such that
1/2
(Zimr)
JjEZ

‘ <]§ /uf“ 2dl>

forall |1/p —1/2| < min{1/9/,1/2}, where {T;(-,-), j € Z} is any set of functions on RA+1,

< Cpon(lnu)t/? (12)

Lp(Rd-H) LP(R”"H)

Proof. Since V,(RT) C V,(R") for any ¢ > 2, it suffices to prove this lemma only for the case

v € (1,2]. In this case, we have |1/p —1/2| < 1/9, which means that p € (33’2,22—77) First, if

peE2 2—7) then by duality there exists a function G € L (p/2)'(R4+1) such that G2y (Ri+) <1

and
2

—/RMZ/ e T P2 g s

LP (Rd+1

it 2dl 12
(2w
je
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Employing Schwartz’s inequality, we deduce that
I
-2
B T@[ < ClOlen 1ML, @) [ [, ©)
31
X ‘ﬁ(x—P(tw),de — ()| |h(t) |7 Y doy (w) — o
Thanks to Holder’s inequality and Lemma 1, we obtain
(2" weret)|
jez’# LP(RA+1)
2
< ClOlisignn)I3, e | ZIT LTSNS —
€L L(p/Z)(RdH
1/2||2
2 * =
< Cnp)]@n 1113 g, (2\ﬁ\) Rl
JEZ LP(RA+1)
1/22
2
< Connp) (Z’ﬂ) ’ (13)
JEZ LP(RA+1)

where G (%) = G(—%).
Now, if p € (%, 2), by duality there exists a class of functions {gj(%,/)} on R¥*! x R* such

that
HH”g]HLZ([W w1, | LY (Ri+1) =
and
u/* dl wr dl
2/ TP _/ 2/ (O Ti(%))g; (%, 1) o ds
Rd+1 i 1
jez’H LP(RA+1) JEZ
. 1/2
2
< CP(h‘V)l/z"H(gj)HL(p’/Z)(RdH (Z“ﬂ > ’ (14)
JEZ LP(RA+1)
where
]+1 zdl

Z/ |0y * gi(%,1)] K

jeZ M
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Since p < 2 we have p’ > 2. Hence by duality, there exists a function V € L(¥'/2) (R4+1) satisfying

||V|| o' /2) (R+1) <1land
]+1
2dl
[ L r2) (gt Z/Rm/ % 1) TV (R)dz
it i
< ClOlLggn1y (Z/ &% D"
]€Z L(p//2)(]Rd+1)
v * 2
x ”h”VW(RJr) ’6 \8|2_7(V)HL(p’/Z)’(RdH) < CP/@JZ' (15)

By the inequalities (14) and (15), we get (12) if p € ( 7 5,2), which in turn along with (13) ends
the proof of the lemma. O

3. Proof of Theorem 1

Let ® € LI(S" ') forsome 1 < g < 2and h € V,(R") for some ¢y > 1. Set u = 27'7. By
Minkowski’s inequality, we get
s N\ 172
dt
t )

(16)

1 O(w)
B e SO PE@ i = () (o

Me,pon(f)(%) < i(/w

j=0

< o (feser®) =c( [

For j € Z, let { A;} be a collection of C*((0,00)) functions satisfying the following:

o™« £(3)

241\ /2
o)

0 < A<1, %Aj(l):
je

supp (Aj) € [w =M, and

A0 _C
darm | —

where C,, is independent of {y/;j € Z}. Define the operator YT(?)(@, Za+1) = A (ILm(D))) F(Z, Car)-
Thus, for any f € C*(RY*1), Minkowski’s inequality yields

) L 2de\ 172 i
[ oM@ S) <c D RO, (17)
Rt t seZ
where
i CLdt 1/2
FO@ = ([ 12nEorY)
F(OED = DM T f(Ox, ) (0
jez ’
Thus, to prove Theorem 1, it suffices to show that
I Fs (F)ll L (ma+1y < Cpon(inp)'/? 2” Hf”Lp(RdH)- (18)

forall [1/p —1/2| < min{1/%/,1/2} and for some ¢ > 0.
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First, we estimate || F5(f)]| 12(re+1) as follows: By Plancherel’s Theorem, Fubini’s Theorem and
Lemma 2, we obtain

7Dl < T, ( [

24t N 2
"(E,8ai) t) (@ L) a8

jEZ
e o I 2
< Goalnn) T [, i@ 7A@ avo)| ety
JEZ
< Coullnp)2 " 1 / ]
jEZ
< Cp,@,h(hlﬂ)TS'|||f||L2(Rd+1)r (19)

where O; = {(g,€d+1> eERI xR :|Ly(Q)] € [‘Ltfffl,y*j+1]} and e € (0,1).
Now, let us estimate || Fs(f)|| Lp(ri+1)- By utilizing Lemma 3 and Littlewood-Paley theory, we

deduce
yit1 241 1/2
1Fs(A)lppgany < C (2/], (o™ «Tis 5 1)
jEZ K Lp(Rd+1)
1/2
< Cpon(lnp)t/? <2| +s*f|2>
JEZ LP(RA+1)
” 1/2
< .
< Gou(oriy) Wl 20

Consequently, by interpolating between (19) with (20), we get (18), which in turn along with (16)-(17)
completes the proof of Theorem 1.

4. Conclusions

In this paper, we obtained sharp L¥ bounds for parametric Marcinkiewicz integrals Mg p ¢ 1
whenever their kernel functions belong to the space L7(S" 1) for some g > 1. These estimates allow
us to employ Yano's extrapolation argument to prove the L” boundedness of Mg p ¢, whenever the
singular kernels functions @ are either in the space L(log L)'/%(S"~1) or in the space By (0-1/2) (Sm=1)
for some g > 1. Our results improve or extend several known results as those in [1-5,7- 10,13].
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