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Abstract: This work focuses on investigating rough Marcinkiewicz integrals associated to specific
surfaces. Whenever the kernel functions belong to Lq(Sm−1) space, the Lp boundedness of these
Marcinkiewicz integrals is confirmed. This finding along with Yano’s extrapolation argument prove
the Lp boundedness of the aforementioned integrals under weaker conditions on the kernels. The
results in this work improve and generalize various previously known results on Marcinkiewicz
integrals.
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1. Introduction
Let Rm be the m-dimensional Euclidean space with m ≥ 2, and let Sm−1 be the unit sphere

in Rm equipped with the normalized Lebesgue surface measure dσm(·). Also, let w′ = w/|w| for
w ∈ Rm \ {0}.

Assume that h is a measurable function on R+ and that Θ is a homogeneous function of degree
zero on Rm, integrable over Sm−1 and satisfies the condition∫

Sm−1
Θ(w′)dσm(w′) = 0. (1)

For appropriate mappings P : Rm → Rd and ϕ : R+ → R, we consider the Marcinkiewicz integral
MΘ,P ,ϕ,h defined, initially for f ∈ C∞

0 (Rd+1), by

MΘ,P ,ϕ,h( f )(x̃) =

∫ ∞

0

∣∣∣∣∣ 1
lα

∫
|w|≤l

f (x −P(w), xd+1 − ϕ(|w|)) Θ(w)

|w|m−α h(|w|)dw

∣∣∣∣∣
2

dl
l

1/2

,

where x̃ = (x, xd+1) ∈ Rd+1 and α = τ + iκ (τ, κ ∈ R with τ > 0).

When m = d, P(w) = w, ϕ ≡ 0, and h ≡ 1, we denote MΘ,P ,ϕ,h by MΘ,α. Also, when α = 1, we
denote MΘ,α by MΘ which is basically the classical Marcinkiewicz operator introduced by Stein in [1].
The study of the Lp boundedness of MΘ has received a large amount of attention by many authors for
a long time. For instance, it was proved in [1] that MΘ is bounded on Lp(Rm) for p ∈ (1, 2) provided
that the kernel function Θ belongs to the space Lipβ(Sm−1) for some β ∈ (0, 1]. Later on, the authors of
[2] proved the Lp boundedness of MΘ for all p ∈ (1, ∞) under the condition Θ ∈ C1(Sm−1). Thereafter,
Walsh [3] confirmed the L2(Rm) boundedness of MΘ whenever Θ ∈ L(logL)1/2(Sm−1), and also he
found that the assumption Θ ∈ L(log L)1/2(Sm−1) is optimal in the sense that if Θ ∈ L(logL)ϵ(Sm−1)

for any ϵ ∈ (0, 1/2), then the operator MΘ will not be bounded on L2(Rm). The result in [3] was
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improved in [4] for the case p ∈ (1, ∞). On the other hand, the authors of [5] obtained the Lp

(1 < p < ∞) boundedness of MΘ if Θ lies in the space B(0,−1/2)
q (Sm−1) for some q > 1. Furthermore,

they showed that the assumption Θ ∈ B(0,−1/2)
q (Sm−1) is optimal in the sense that if Θ ∈ B(0,ϵ)

q (Sm−1)

for any ϵ ∈ (−1,−1/2), then MΘ may not be bounded on L2(Rm). Here B(0,ε)
q (Sm−1) is referred to the

block space that introduced in [6].
We point out that the study of the parametric Marcinkiewicz operator MΘ,α was initiated in [7]

and then continued by many authors. In addition, the study of singular integral operators with rough
kernels along surfaces was started in [8], and then continued by many researchers. For instance, the
authors of [9] studied the operator MΘ,P ,ϕ,h when ϕ ≡ 0, Θ ∈ L(log L)1/2(Sm−1) ∪ B(0,−1/2)

q (Sm−1),
h ∈ ∇γ(R+) for some γ > 1, and P(w) = (P1(w), P2(w), · · · , Pd(w)) is a polynomial mapping, where
each Pj is a real valued polynomial on Rm. In fact, they established the Lp boundedness of MΘ,P ,ϕ,h for
all |1/p − 1/2| < min{1/γ′, 1/2}. Here, ∆γ(R+) (with γ > 1) refers to the collection of all functions h
that are defined on R+ and satisfying

∥h∥∆γ(R+)
= sup

j∈Z

(∫ 2j+1

2j
|h(l)|

γ dl
l

)1/γ

< ∞.

The authors of [10] obtained the same results in [9] for the special cases P(w) = w and for the
case ϕ ≡ 0 is replaced by the condition ϕ ∈ C2(R+) is convex and increasing function with ϕ(0) = 0.
The Lp boundedness of MΘ,P ,ϕ,h was investigated by many authors under various conditions on Θ,
P , ϕ, and h. We refer the readers to consult: For a background information and a sample of past
studies relevant to our current study [11–15], for its extensions and developments [16–21] and for
recent advances [22–31].

In the light of the results in [9] concerning the operator MΘ,P ,ϕ,h in the case ϕ ≡ 0 and of the
results concerning the operator MΘ,P ,ϕ,h in the case P(w) = w, a question arises naturally is whether
the boundedness of the operator MΘ,P ,ϕ,h holds under the same assumptions as in [9] and for certain
classes of functions ϕ ?

Our main focus in this paper will be answering the above question in affirmative as described in
the following results.

Theorem 1. Let P be a polynomial mapping given by P(w) = (P1(w), P2(w), · · · , Pd(w)), where each Pj is
a real valued polynomial on Rm, and let ϕ be a function satisfying

ϕ(l) = ψ(l) + φ(l),

where ψ is a polynomial, φ(k)(0) = 0 for all 1 ≤ k ≤ M, φ(k) is positive nondecreasing on R+ for all
1 ≤ k ≤ M + 1, and M = max{deg(ψ), deg(P)}. Assume that Θ ∈ Lq(Sm−1) for some q ∈ (1, 2] satisfies
the condition (1) and that h ∈ ∇γ(R+) for some γ > 1. Then, a positive a constant Cp,Θ,h (independent of ϕ

and the coefficients of the polynomials Pj and ψ) exists such that

∥∥∥MΘ,P ,ϕ,h( f )
∥∥∥

Lp(Rd+1)
≤ Cp,Θ,h

(
γ

(q − 1)(γ − 1)

)1/2

∥ f ∥Lp(Rd+1)

for all |1/p − 1/2| < min{1/γ′, 1/2}, where Cp,Θ,h = Cp∥h∥∇γ(R+)∥Θ∥Lq(Sm−1).

By employing the estimate in Theorem 1 along using an extrapolation argument (see [32,33]), we
obtain the following:
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Theorem 2. Assume that P , ϕ and h are given as in Theorem 1.
(i) If Θ ∈ L(log L)1/2(Sm−1), then∥∥∥MΘ,P ,ϕ,h( f )

∥∥∥
Lp(Rd+1)

≤ Cp∥h∥∇γ(R+)

(
∥Θ∥L(log L)1/2(Sm−1) + 1

)
∥ f ∥Lp(Rd+1)

for all |1/p − 1/2| < min{1/γ′, 1/2};

(ii) If Θ ∈ B(0,−1/2)
q (Sm−1) for some q > 1, then∥∥∥MΘ,P ,ϕ,h( f )

∥∥∥
Lp(Rd+1)

≤ Cp∥h∥∇γ(R+)

(
∥Θ∥q(0,−1/2)(Ss−1) + 1

)
∥ f ∥Lp(Rd+1)

for all |1/p − 1/2| < min{1/γ′, 1/2}.

Remark 1.

(i) We notice that the main result in [9] is attained from Theorem 2 when we take ϕ ≡ 0. Thus, our result
generalizes the result in [9].

(ii) Since Lipβ(Sm−1) ⊂ L(log L)1/2(Sm−1) ∪ B(0,−1/2)
q (Sm−1), our results extend the results in [1,2,7].

(iii) our conditions on Θ in Theorem 2 are known to be the best possible in their respective classes for the special
cases m = d, P(w) = w, ϕ ≡ 0, h ≡ 1, and α = 1 (see [3,5]).

(iv) For the case γ > 2, our results give the Lp boundedness of MΘ,P ,ϕ,h for p in the full range (1, ∞).

Throughout the rest of the paper, we assume that the letter C denotes a positive constant whose
value is independent of the essential variables and not necessary be the same at each appearance.

2. Some Lemmas
In this section, we give auxiliary lemmas which will play major roles in proving the main results

of this work. Let µ ≥ 2. For suitable mappings P : Rm → Rd, ϕ : R+ → R and h : R+ → C; we
consider the family of measures {℧Θ,P ,ϕ,h,l := ℧l : l ∈ R+} and its related maximal operators ℧∗

h and
Mh,µ on Rd+1 given by

∫
Rd+1

f d℧l =
1
lα

∫
l/2≤|w|≤l

f (P(w), ϕ(|w|))Θ(y)h(|w|)
|w|m−α dw,

.

℧∗
h f (x̃) = sup

l∈R+

||℧l | ∗ f (x̃)|,

and

Mh,µ f (x̃) = sup
j∈Z

∫ µj+1

µj
||℧l | ∗ f (x̃)|dl

l
,

where |℧l | is defined similar to the definition of ℧l with replacing Θ by |Θ| and h by |h|.
The following lemma comes from the the results in [34].

Lemma 1. Let P , ϕ, h, and Θ be given as in Theorem 1. Then there exists a constant Cp > 0 such that for
f ∈ Lp(Rd+1) with p > γ′, we have

∥℧∗
h( f )∥Lp(Rd+1) ≤ Cp,Θ,h∥ f ∥Lp(Rd+1) (2)
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and
∥Mh,µ( f )∥Lp(Rd+1) ≤ Cp,Θ,h(ln µ)∥ f ∥Lp(Rd+1). (3)

Proof. It is easy to check that Hölder’s inequality gives that

||℧l | ∗ f (x̃)|

≤ C∥Θ∥
1/γ′

L1(Sm−1)∥h∥∇γ(R+)

1
l

l∫
l/2

∫
Sm−1

|Θ(w)|| f (x −P(tw), xd+1 − ϕ(t))|γ
′
dσm(w)dt

1/γ′

.

By Minkowski’s inequality we have

∥℧∗
h( f )∥Lp(Rd+1) ≤ C∥Θ∥

1/γ′

L1(Sm−1)∥h∥∇γ(R+)

(
∥Υ∗

l (| f |γ
′
)∥L(p/γ′)(Rd+1)

)1/γ′

, (4)

where ∫
Rd+1

f dΥl =
1
lα

∫
1/2l≤|w|≤l

f (P(w), ϕ(|w|)) Θ(w)

|w|m−α dw

and

Υ∗
Θ( f ) = sup

l∈R+

||Υl | ∗ f |.

It is clear that

Υ∗
Θ( f )(x̃) ≤ 2W∗( f )(x̃), (5)

where

W∗( f )(x̃) =

(
sup
j∈Z

∫
2j≤|w|≤2j+1

| f (x −P(w), xd+1 − ϕ(|w|))| |Θ(w)|
|w|m

dw

)
.

By Theorem 1.1 in [34], we deduce that

∥W∗( f )∥Lp(Rd+1) ≤ Cp∥Θ∥L1(Sm−1)∥ f ∥Lp(Rd+1) (6)

for all 1 < p < ∞. Thus, by (4)-(6), we prove the inequality (2) which gives directly (3). The proof of
this lemma is complete.

Remark 2. Let 0 < m1 < m2 < · · · < mM be non-negative integers. Then, for any w ∈ Rm, we can

write P(w) =
M
∑

r=1
P (r)(w) +R(r)(|w|), where P (r)(w) = (Pr

1(w), Pr
2(w), . . . , Pr

d(w)), {Pr
ν(w) : 1 ≤ ν ≤

d, 1 ≤ r ≤ M} are real-valued homogeneous polynomials of degree mr with |w|mr /∈ span{Pr
1 , . . . , Pr

d},

R(r)(l) = (R(r)
1 (l),R(r)

2 (l), . . . ,R(r)
d (l)), and {R(r)

ν (l) : 1 ≤ ν ≤ d, 1 ≤ r ≤ M} be polynomials on R of
degree less than mr. Let τr denote the number of elements of {β = (β1, β2 . . . , βm) ∈ (N∪ {0})m : |β| =

mr} = {β(1), β(2), . . . , β(τr)}. Write Pr
k (w) =

τr
∑

s=1
as,kwβ(s), and define the linear mapping Lr : Rd → Rτr

by Lr(ζ) =

(
d
∑

k=1
ar

1,kζk, . . . ,
d
∑

k=1
ar

τr ,kζk

)
. For 1 ≤ r ≤ M, set Pr(w) =

r
∑

k=1
P (k)(w) + W(|w|) and

P0(w) = W(|w|). Hence, we have P(w) = PM(w). For 1 ≤ r ≤ M, we let ℧(r)
l = ℧Θ,Pr ,ϕ,h,l and

℧(r)∗
h f (x̃) = sup

l∈R+

||℧(r)
l | ∗ f (x̃)|.
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Now we have the following result concerning the measures ℧(r)
l :

Lemma 2. Let P , ϕ, Θ, and h be given as in Theorem 1. Let {℧(r)
l : l ∈ R+, 1 ≤ r ≤ M} be a family of Borel

measures defined as in Remark 2. Then for µ ≥ 2, there exist positive constants δr and C such that(∫ µj+1

µj

∣∣∣℧̂(r)
l (ζ, ζm+1)

∣∣∣2 dl
l

)1/2

≤ CΘ,h(ln µ)1/2, (7)

(∫ µj+1

µj

∣∣∣℧̂(r)
l (ζ, ζm+1)

∣∣∣2 dl
l

)1/2

≤ CΘ,h(ln µ)1/2
(

µjmr |Lr(ζ)|
)− 1

4mr ln µ , (8)

(∫ µj+1

µj

∣∣∣℧̂(r)
l (ζ, ζm+1)− ℧̂(r−1)

l (ζ, ζm+1)
∣∣∣2 dl

l

)1/2

≤ CΘ,h(ln µ)1/2
(

µjmr |Lr(ζ)|
) 1

4mr ln µ , (9)

where CΘ,h = C∥Θ∥Lq(Sm−1)∥h∥∇γ(R+).

Proof. By the definition of ℧(r)
l , it is easy to get (7). In addition, the same arguments as in Proposition

5.1 in [35] lead to (8). By a simple change of variable, we obtain(∫ µj+1

µj

∣∣∣℧̂(r)
l (ζ, ζm+1)− ℧̂(r−1)

l (ζ, ζm+1)
∣∣∣2 dl

l

)1/2

≤ CΘ,h(ln µ)1/2
(

µjmr |Lr(ζ)|
)

, (10)

which when combined with the trivial estimate (7), we conclude that(∫ µj+1

µj

∣∣∣℧̂(r)
l (ζ, ζm+1)− ℧̂(r−1)

l (ζ, ζm+1)
∣∣∣2 dl

l

)1/2

≤ CΘ,h(ln µ)1/2
(

µjmr |Lr(ζ)|
) 1

4mr ln µ . (11)

This ends the proof of the lemma.

By employing similar arguments as that employed in [35], we get the following:

Lemma 3. Let P and ϕ be given as in Theorem 1, and let µ ≥ 2, h ∈ ∇γ(R+) with γ > 1 and Θ ∈ Lq(Sα−1)
with 1 < q ≤ 2. Then there exists Cp,Θ,h > 0 such that∥∥∥∥∥∥

(
∑
j∈Z

∫ µj+1

µj

∣∣℧l ∗ Tj
∣∣2 dl

l

)1/2
∥∥∥∥∥∥

Lp(Rd+1)

≤ Cp,Θ,h(ln µ)1/2

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Tj
∣∣2)1/2

∥∥∥∥∥∥
Lp(Rd+1)

(12)

for all |1/p − 1/2| < min{1/γ′, 1/2}, where {Tj(·, ·), j ∈ Z} is any set of functions on Rd+1.

Proof. Since ∇γ(R+) ⊆ ∇2(R+) for any γ ≥ 2, it suffices to prove this lemma only for the case
γ ∈ (1, 2]. In this case, we have |1/p − 1/2| < 1/γ′, which means that p ∈ ( 2γ

3γ−2 , 2γ
2−γ ). First, if

p ∈ [2, 2γ
2−γ ), then by duality there exists a function G ∈ L(p/2)′(Rd+1) such that ∥G∥

L(p/2)′ (Rd+1)
≤ 1

and ∥∥∥∥∥∥
(

∑
j∈Z

∫ µj+1

µj

∣∣℧l ∗ Tj
∣∣2 dl

l

)1/2
∥∥∥∥∥∥

2

Lp(Rd+1)

=
∫
Rd+1 ∑

j∈Z

∫ µj+1

µj

∣∣℧l ∗ Tj(x̃)
∣∣2 dl

l
|G(x̃)|dx̃.
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Employing Schwartz’s inequality, we deduce that

∣∣℧l ∗ Tj(w̃)
∣∣2 ≤ C∥Θ∥Lq(Sm−1)∥h∥γ

∇γ(R+)

l∫
1
2 l

∫
Sm−1

|Θ(w)|

×
∣∣Tj(x −P(tw), xd+1 − ϕ(t))

∣∣2|h(t)|2−γdσm(w)
dt
t

.

Thanks to Hölder’s inequality and Lemma 1, we obtain∥∥∥∥∥∥
(

∑
j∈Z

∫ µj+1

µj

∣∣℧l ∗ Tj
∣∣2 dl

l

)1/2
∥∥∥∥∥∥

2

Lp(Rd+1)

≤ C∥Θ∥Lq(Sm−1)∥h∥γ
∇γ(R+)

∥∥∥∥∥∑
j∈Z

∣∣Tj
∣∣2∥∥∥∥∥

L(p/2)(Rd+1)

∥∥∥M|h|2−γ ,µ(G)
∥∥∥

L(p/2)′ (Rd+1)

≤ C(ln µ)∥Θ∥Lq(Sm−1)∥h∥γ
∇γ(R+)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Tj
∣∣2)1/2

∥∥∥∥∥∥
2

Lp(Rd+1)

∥∥∥℧∗
|h|2−γ(G)

∥∥∥
L(p/2)′ (Rd+1)

≤ C2
p,Θ,h(ln µ)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Tj
∣∣2)1/2

∥∥∥∥∥∥
2

Lp(Rd+1)

, (13)

where G(x̃) = G(−x̃).
Now, if p ∈ ( 2γ

3γ−2 , 2), by duality there exists a class of functions {gj(x̃, l)} on Rd+1 ×R+ such
that ∥∥∥∥∥∥∥gj∥L2([µj ,µj+1], dl

l )

∥∥∥
l2

∥∥∥
Lp′ (Rd+1)

≤ 1

and ∥∥∥∥∥∥
(

∑
j∈Z

∫ µj+1

µj

∣∣℧l ∗ Tj
∣∣2 dl

l

)1/2
∥∥∥∥∥∥

Lp(Rd+1)

=
∫
Rd+1 ∑

j∈Z

∫ µj+1

µj

(
℧l ∗ Tj(x̃)

)
gj(x̃, l)

dl
l

dx̃

≤ Cp(ln µ)1/2∥∥H(gj)
∥∥1/2

L(p′/2)(Rd+1)

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Tj
∣∣2)1/2

∥∥∥∥∥∥
Lp(Rd+1)

, (14)

where

H(gj)(x̃) = ∑
j∈Z

∫ µj+1

µj

∣∣℧l ∗ gj(x̃, l)
∣∣2 dl

l
.
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Since p < 2 we have p′ > 2. Hence by duality, there exists a function V ∈ L(p′/2)′(Rd+1) satisfying
∥V∥

L(p′/2)′ (Rd+1)
≤ 1 and

∥∥H(gj)
∥∥

L(p′/2)(Rd+1)
= ∑

j∈Z

∫
Rd+1

∫ µj+1

µj

∣∣℧l ∗ gj(x̃, l)
∣∣2 dl

l
V(x̃)dx̃

≤ C∥Θ∥Lq(Sm−1)

∥∥∥∥∥
(

∑
j∈Z

∫ µj+1

µj

∣∣gj(x̃, l)
∣∣2 dl

l

)∥∥∥∥∥
L(p′/2)(Rd+1)

× ∥h∥γ
∇γ(R+)

∥∥∥℧∗
|g|2−γ(V)

∥∥∥
L(p′/2)′ (Rd+1)

≤ C2
p,Θ,h. (15)

By the inequalities (14) and (15), we get (12) if p ∈ ( 2γ
3γ−2 , 2), which in turn along with (13) ends

the proof of the lemma.

3. Proof of Theorem 1
Let Θ ∈ Lq(Sm−1) for some 1 < q ≤ 2 and h ∈ ∇γ(R+) for some γ > 1. Set µ = 2γ′q′ . By

Minkowski’s inequality, we get

MΘ,P ,ϕ,h( f )(x̃) ≤
∞

∑
j=0

∫
R+

∣∣∣∣∣ 1
lα

∫
2−j−1l<|w|≤2−j l

f (x −P(w), xd+1 − ϕ(|w|)) Θ(w)

|w|m−α h(|w|)dw

∣∣∣∣∣
2

dt
t

1/2

≤ 2τ

(2τ − 1)

(∫
R+

|℧l ∗ f (x̃)|2 dt
t

)1/2
= C

(∫
R+

∣∣∣℧(M)
l ∗ f (x̃)

∣∣∣2 dt
t

)1/2
. (16)

For j ∈ Z, let {Aj} be a collection of C∞((0,∞)) functions satisfying the following:

0 ≤ Aj ≤ 1 , ∑
j∈Z

Aj(l) = 1,

supp (Aj) ⊆ [µ−j−1, µ−j+1], and
∣∣∣∣dnAj(l)

dln

∣∣∣∣ ≤ Cn

ln ,

where Cn is independent of {µj; j ∈ Z}. Define the operator T̂j( f )(ζ, ζd+1) = Aj(|LM(ζ)|) f̂ (ζ, ζd+1).
Thus, for any f ∈ C∞

0 (Rd+1), Minkowski’s inequality yields

(∫
R+

∣∣∣℧(M)
l ∗ f (x̃)

∣∣∣2 dt
t

)1/2
≤ C ∑

s∈Z
Fs( f )(x̃), (17)

where

Fs( f )(x̃) =
(∫

R+
|Js( f )(x̃, t)|2 dt

t

)1/2
,

Js( f )(x̃, t) = ∑
j∈Z

℧(M)
l ∗ Tj+s ∗ f (x̃)χ

[µj ,µj+1))
(t).

Thus, to prove Theorem 1, it suffices to show that

∥Fs( f )∥Lp(Rd+1) ≤ Cp,Θ,h(ln µ)1/2 2−
ε|s|
2 ∥ f ∥Lp(Rd+1). (18)

for all |1/p − 1/2| < min{1/γ′, 1/2} and for some ε > 0.
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First, we estimate ∥Fs( f )∥L2(Rd+1) as follows: By Plancherel’s Theorem, Fubini’s Theorem and
Lemma 2, we obtain

∥Fs( f )∥2
L2(Rd+1) ≤ ∑

j∈Z

∫
Oj+s

(∫ µj+1

µj

∣∣∣℧̂(M)
l (ζ, ζd+1)

∣∣∣2 dt
t

)∣∣∣ f̂ (ζ, ζd+1)
∣∣∣2dζdζd+1

≤ C2
p,Θ,h(ln µ) ∑

j∈Z

∫
Oj+s

∣∣∣µjmM LM(ζ)
∣∣∣± ϵ

q′γ′
∣∣∣ f̂ (ζ, ζd+1)

∣∣∣2dζdζd+1

≤ C2
p,Θ,h(ln µ) 2−ε|s| ∑

j∈Z

∫
Oj+s

∣∣∣ f̂ (ζ, ζd+1)
∣∣∣2dζdζd+1

≤ C2
p,Θ,h(ln µ) 2−ε|s|∥ f ∥2

L2(Rd+1), (19)

where Oj =
{
(ζ, ζd+1) ∈ Rd ×R : |LM(ζ)| ∈ [µ−j−1, µ−j+1]

}
and ε ∈ (0, 1).

Now, let us estimate ∥Fs( f )∥Lp(Rd+1). By utilizing Lemma 3 and Littlewood–Paley theory, we
deduce

∥Fs( f )∥Lp(Rd+1) ≤ C

∥∥∥∥∥∥
(

∑
j∈Z

∫ µj+1

µj

(∣∣∣℧(M)
l ∗ Tj+s ∗ f

∣∣∣)2 dl
l

)1/2
∥∥∥∥∥∥

Lp(Rd+1)

≤ Cp,Θ,h(ln µ)1/2

∥∥∥∥∥∥
(

∑
j∈Z

∣∣Tj+s ∗ f
∣∣2)1/2

∥∥∥∥∥∥
Lp(Rd+1)

≤ Cp,Θ,h

(
γ

(γ − 1)(q − 1)

)1/2

∥ f ∥Lp(Rd+1). (20)

Consequently, by interpolating between (19) with (20), we get (18), which in turn along with (16)-(17)
completes the proof of Theorem 1.

4. Conclusions
In this paper, we obtained sharp Lp bounds for parametric Marcinkiewicz integrals MΘ,P ,ϕ,h

whenever their kernel functions belong to the space Lq(Sm−1) for some q > 1. These estimates allow
us to employ Yano’s extrapolation argument to prove the Lp boundedness of MΘ,P ,ϕ,h whenever the

singular kernels functions Θ are either in the space L(log L)1/2(Sm−1) or in the space B(0,−1/2)
q (Sm−1)

for some q > 1. Our results improve or extend several known results as those in [1–5,7–10,13].
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