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Abstract: A continuous increase of Artificial Intelligence (AI) based functions can be expected for future
aviation systems, posing significant challenges to traditional development processes. Established
systems engineering frameworks, such as the V-model, are not adequately addressing the novel
challenges associated with AI-based systems. Consequently, the European Union Aviation Safety
Agency (EASA) introduced the W-shaped process as an advancement of the V-model to set a regulatory
framework for the novel challenges of AI Engineering. In contrast, the agile Development Operations
(DevOps) approach, widely adopted in software development, promotes a never-ending iterative
development process. This article proposes a novel concept that integrates aspects of DevOps into the
W-shaped process to create an AI Engineering framework suitable for aviation-specific applications.
Furthermore, it builds upon proven ideas and methods using AI Engineering efforts from other
domains. The proposed extension of the W-shaped process, compatible with ongoing standardizations
from the G34/WG-114 Standardization Working Group, a joint effort between EUROCAE and SAE,
addresses the need for a rigorous development process for AI-based systems while acknowledging its
limitations and potential for future advancements. The proposed framework allows for a re-evaluation
of the AI/ML constituent based on information from operations, enabling improvement of the system’s
capabilities in each iteration.

Keywords: AI engineering; W-shaped process; DevOps; ConOps; OD; ODD; model-based systems
engineering; aviation; AI certification; safety-by-design

1. Introduction
Aviation, like any other industry, is profiting from current advances in Artificial Intelligence (AI)

and Machine Learning (ML). However, unlike some other industries, aviation relies on numerous
safety-critical systems, which are subject to strict certification processes. As such, AI-based systems
for aviation have to be certified according to the same standards as traditional systems [1]. To ensure
the certification of AI-based systems, a transparent and structured development process is necessary.
The current state-of-the-art and industry standard in aviation is the well-established V-model process
for verification and validation (V&V) [2]. It is, however, not suitable for the development process of
AI-based systems, which cannot be understood as traditional software [3,4]. Typically, the V-model
focuses on executing tests in a predetermined order, which does not align with the iterative and
dynamic nature of the development of AI-based systems. Given the long history and general success
of the V-model, any new standard for these AI-based systems should comply with the V-model to
ease adoption. To address this issue, the European Union Aviation Safety Agency (EASA) introduced
processes for the development of AI-based systems, such as the W-shaped process [5,6]. The proposed
W-shaped process is executed parallel to the V-model [2], adding dedicated AI constituent require-
ments and certain tasks for data management and model training. Furthermore, it ensures sufficient
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generalization and robustness capabilities for AI-based systems. The W-shaped process supports
an iterative process during the implementation phase, allowing for feedback loops in training and
testing. Due to the iterative training, V&V, and testing, the W-shaped process ensures that the AI-based
system is continually assessed and improved, ultimately leading to a more robust and trustworthy AI
system [6]. Still, in its current setup, the W-shaped process is only applicable for supervised learning,
although including first ideas from unsupervised and self-supervised; reinforcement learning is not yet
addressed in the W-shaped process [6]. Due to its ability to combine classical development methods
with novel requirements of AI-based systems, the W-shaped process has already been used in domains
other than aviation [7]. However, the EASA learning assurance process and thus the whole structure
of the W-shaped process and the proposed extended W-shaped process are not without critique [8].
It has been noted by other works, that, although the general process is indisputable, some objectives
proposed by EASA can only be verified empirically while others are outright impossible to verify.

Nevertheless, the W-shaped process is not the only process currently undergoing standardization
activities for the development of AI-based systems in aviation [9]. Another proposed framework is
currently being developed under the G34/WG-114 Standardization Working Group, a joint effort
between EUROCAE and SAE, for the Machine Learning Development Lifecycle (MLDL) [10]. The
MLDL process aims to ensure comprehensive management and interoperability of model-based
data throughout the development process, supporting the certification/approval process of AI-based
systems in aviation [10].

Applying the Development Operations (DevOps) cycle, which merges development and oper-
ations into a holistic process aiming for continuous improvement, is nowadays the state of the art
in software development. By adopting continuous integration and continuous deployment (CI/CD)
practices, DevOps enhances collaboration through rapid feedback and is an agile approach. This
characteristic fits well with the complexity in the development of AI-based systems, which requires
iterations early in the development phase in contrast with linear processes [11]. Therefore, a process
combining both the advantages of the W-shaped process and the DevOps cycle promises to ease
the development of AI-based systems in aviation by streamlining the AI Engineering process. The
possibility to continuously deploy updated ML models even after the first deployment offers a more
flexible development framework. However, the increase in flexibility comes at the cost of a non-fixed
requirements list. While software-based components can be updated iteratively, hardware components
in aviation cannot. Thus, fully integrating DevOps in both software and hardware into the standard
aviation development process is still subject to current research. In this work, several approaches for
the development of AI-based systems, such as the W-shaped process and the proposed framework
by the G34/WG-114 Standardization Working Group are investigated, and further advancements
incorporating the DevOps cycle are outlined.

To efficiently capture all requirements, a Concept of Operations (ConOps) is created. The ConOps
documentation outlines all stakeholder requirements based on their specific needs and expectations,
helping with the communication between stakeholders [12,13]. Moreover, a fixed high-level require-
ments list is essential to ensure compatibility between independently developed subsystems, where
each subsystem could potentially be an AI-based subsystem [14]. Each subsystem, however, must have
its own detailed but mutable requirements list, which can be updated throughout the development
process. The requirements list for a subsystem is currently being derived by combining the ConOps
documentation with more specific requirements derived from the W-shaped process’s requirements
process. As the development progresses along the W-shaped process, the focus shifts to data gathering,
analysis, and dataset preparation. In case of a required re-evaluation of the requirements, the W-shaped
process already allows for this procedure to happen in the aforementioned steps. Thus, allowing for
the requirements list to be updated iteratively. The AI Engineering framework presented here advances
this process structure and puts more emphasis on a potential re-evaluation of the whole architecture
based on monitoring feedback to enhance the AI-based (sub)system’s capabilities in each iteration.
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This integration is achieved by further deepening the incorporation of certain DevOps concepts into
the W-shaped process-based framework.

As part of the ConOps, a clear definition of the expected operational environment is not only
helpful but required by EASA for all future AI applications in aviation. This idea has been developed in
the automotive domain, where methodologies for the development of safety-critical AI-based systems
are further advanced, and has since been standardized [15–18]. Different terms describing different
aspects of the environment have been defined. Starting with the Operational Domain (OD), in the
automotive domain it is defined as the set of all possible operating conditions. Next, driven by the
design of the Automated Driving System (ADS), is the Operational Design Domain (ODD). It defines
the operating conditions for which the ADS has been designed. In the aviation domain, however,
EASA proposed slightly different definitions which will be used from here on [6]. What SAE and ISO
define as an ODD, EASA defines as an OD, the operating conditions for the full system. The term
ODD has been repurposed and under EASA definition describes the operating conditions of only the
AI/ML constituent, that part of the full system that contains the artificial intelligence. It can be a subset,
but also a superset of the OD and it might depend on the parameter in question whether the OD or
ODD covers a broader range of values. The ODD being a superset of the OD helps in improving the
performance of the AI/ML constituent by allowing a broader range of values and thus more variety,
especially in the border regions. A more complete introduction to ConOps, OD, and ODD will be
given in Section 5.1.

The paper is structured as follows. First, in Section 2, the current state of the art is discussed,
focusing on both the evolution from the V-model to EASA’s W-shaped process as well as DevOps and
traditional software development processes. For both topics, prior research concerning the expansion
towards the development of AI-based systems is discussed. Based on those findings, the current
challenges in AI Engineering focusing on the aviation domain are discussed in Section 3. Following,
in Section 4, the extension potential of the W-shaped process is discussed. Here, the main focus
is the missing operations phase from the DevOps framework, which is crucial for the continuous
improvement of AI-based systems. Next, in Section 5, a new framework is proposed that combines the
strengths of the W-shaped process with ideas from DevOps. Besides the aforementioned operations
phase, the new framework also starts earlier in the development process, with the creation of a ConOps
document, and thus also counties further than the W-shaped process. After proposing this updated
framework, a comparison to the Machine Learning Development Lifecycle defined by the G34/WG-114
Standardization Working Group is made in Section 6. In this section, the focus is on the differences
between the two frameworks and possible conflicts that arise from these differences. Examples of how
the framework applies to specific AI-based systems are given. Finally, in Section 7, the results of the
paper are discussed, and in Section 8 conclusions are drawn.

2. State of the Art
Clearly defined engineering frameworks are the basis for a safe development process. As such,

they are crucial in the development and later certification in aviation, from small subsystems and
parts up to the full aircraft. Here, the V-model [19] is the current standard in the development of
aircraft. However, it is not suitable for the new challenges that arise in the development of AI-based
systems. Therefore, the W-shaped process [6] has been developed while still being based on the same
ideas and principles as the V-model. On the contrary, in modern software engineering, DevOps is
the current default for AI-based systems as it offers shorter iterations and increased feedback. To
better understand the history and reasoning of those two frameworks, the following section formally
introduces both frameworks and highlights their differences.

2.1. The W-Shaped Process for AI-Based Applications

In February of 2020, EASA issued their first version of the Artificial Intelligence Roadmap for
AI-based applications in aviation [20] followed by the publication of a concept paper for level 1
machine learning applications [21]. Therein proposed is the novel concept of learning assurance for
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providing means of compliance. To achieve compliance, learning assurance is the assurance that all
actions of the AI-based systems that could result in an error have been identified and corrected [21]. To
help with the learning assurance, EASA proposed the W-shaped learning assurance process, covering
dedicated AI/ML constituent requirements throughout the process. This W-shaped process stands
in the longstanding line of different versions of the initial V-model. One of the first processes in the
realm of software development was the waterfall model [22,23] in which the development process is
divided into separate phases. Each phase needs to be finalized before the next phase can be started.
Years later the V-model was developed and, in its various types and forms, became the standard
process for safety-critical applications in aviation [24]. The principal idea was to separate development
and testing activities and track the required steps on all system levels [25]. Later, the V-model was
introduced to the verification and validation of software [19]. However, the structure of the process
allowed extensive testing of the developed software only after it had been finalized. This issue led to
the development of a W-shaped adjustment of the classical V-model, the first mention of a W-model,
similar to the W-shaped process [25]. This model is also known as the VV-model, Double-V-model,
or Two-V-model [26,27]. Since in software development 30 % to 40 % of the activities are related to
testing, launching testing activities early is crucial [25]. Therefore, the idea was to bridge the gap
between development and testing for software applications by introducing an early testing phase
which is illustrated by the second V-model placed on top. Consequently, testing starts parallel to
the development process instead of after the finalization. It has also been mentioned, that models
simplify reality but their simplifications make them successful in their applications [25]. Aspects such
as resource allocation seem to be equal in the W-model, however, depending on the application reality
might be different.

Based on this early W-model, further adjustments to other applications took place. Later, the
W-model was adjusted to testing software product lines [28]. The left side of the W covers the
domain engineering while the right side covers application engineering. In their work, several test
procedures for variability and regression tests are addressed. Other works adjusted the W-model
towards component-based software development using two conjoined V’s. One V is defined for the
component development process while the other V stands for the system development process [29].
By having a dedicated V-model for the component life-cycle, component V&V can be executed and
pre-verified components are stored in the repository.

The most recent adjustment of the W-shaped process is EASA’s adaptation towards AI-based
systems for aviation applications [21]. Two years later, in 2023, the newly proposed W-shaped process
was first applied to a use case outside the aviation domain [7]. This study outlined an approach for
the implementation of a reliable resilience model based on machine learning. Liquefied natural gas
bunkering served as a use case to show, that the system can learn from incomplete data and still give
predictions on the latent states and enhance system resilience.

Out of a joint project with EASA, Daedalean published two reports applying the W-shaped
process to visual landing guidance [30] and visual traffic detection [31]. Based on both use cases,
Daedalean went through the steps of the W-shaped process identifying points of interest for future
research activities, standard developments, and certification exercises. The first report [30] focused
on the theoretical aspects of learning assurance only considering non-recurrent convolutional neural
networks. Some of the main findings included that traditional development assurance frameworks
are not adapted to machine learning, a lack of standardized methods for evaluating the operational
performance of the ML applications, and the issue of bias and variance in ML applications. As an
outlook for future work, the risks associated with various types of training frameworks and inference
platforms were identified. However, the types of changes applied to a model after certification were
not discussed. The second report [31] aimed at software/hardware platforms for implementing
neural networks and other tools in the development and operational environments. Regarding the
safety assessment, out-of-distribution detection, filtering and tracking to handle time dependencies,
and uncertainty prediction were investigated. Aspects, such as changes after the type certificate,
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proportionality, and non-adaptive supervised learning, were not covered by the report and remain
topics for future investigation.

Initiated by EASA, the MLEAP project [32] aimed at investigating the challenges and objectives of
the W-shaped process and alleviating the remaining limitations on the acceptance of ML applications
in aviation. Three aeronautical AI-based use cases, namely speech-to-text in air traffic control, drone
collision avoidance (ACAS Xu), and vision-based maintenance inspection were used. One goal of the
project was to identify promising methods and tools and preliminary testing them on toy use cases,
followed by validation of those results on more complex aviation use cases. The report states that the
OD definition is challenging as estimating the completeness and representativeness requires knowledge
of the exact extent and distribution of certain phenomena. It further states that the currently publicly
available set of tools and methods for the development of AI-based systems lack operationalizability.
One of the main conclusions of the joint report is that data is the centerpiece of the development
process as it severely influences the model’s performance [32].

2.2. DevOps and Traditional Software Development

DevOps, a term combining the “development” and “operations” of a product, was developed
by the software development domain to enable continuous delivery and integration of products. In
conventional heavyweight development methods, for example, the waterfall model, the process often
leads to longer development times and poor communication between teams, resulting in delays and
inefficiencies [33,34]. To address this problem, the Manifesto for Agile Software Development has been
written [35], promoting transparency and improving communication within teams. Nevertheless, some
problems continued even after the introduction of Agile methods [36,37]. Conflicts arose between
the development and operations teams, particularly during the deployment of new features [38].
Additionally, maintaining and updating software as needed was not always straightforward [39]. To
solve this, the development and operations teams needed to collaborate more closely to streamline
processes. As an extension of Agile methodology, DevOps was introduced to enhance collaboration
and communication [40]. It emphasizes continuous integration and delivery, ensuring more frequent
software updates and improvements. Previous works [41] outline four key requirements for DevOps
in the context of software development within the automotive domain: deployability, modifiability,
testability, and monitorability. These elements support the processes of continuous delivery, integration,
and deployment. The authors also suggest that to enhance the effectiveness of DevOps, three additional
principles should be considered: modularity, encapsulation, and compositionality [41].

Given its general success, DevOps has also been introduced into the aviation domain. It has
helped to enhance the airline booking system by streamlining interactions between development and
operations teams [42]. Moreover, in Industry 4.0, the collaborative practices used in DevOps have
proven beneficial in addressing the gaps between traditional industrial production environments and
the requirements of Industry 4.0. As such, Industrial DevOps led to the development of a modular
platform designed to integrate and monitor production systems [43]. Apart from industry applications,
DevOps and Agile methods have also gained attention in the scientific community [44]. DevOps has
been shown to enhance collaboration among researchers throughout the development cycle [45].

Despite, or maybe because, of its overall positive adaption into many domains, new ideas for the
DevOps cycle are still being developed. Integrating machine learning workflows into the DevOps
cycle is also being considered to manage complex software components that involve ML components.
Some advantages of using DevOps include streamlined ML artifact versioning, as well as support
for testing and deploying ML models through continuous integration. Moreover, combining DevOps
and ML workflows can enhance collaboration between data scientists and software engineers [46].
The research for using DevOps in ML applications has also led to the development of the Machine
Learning Operations (MLOps) framework [47]. This DevOps derivate focuses on methodologies and
development approaches aimed at operationalizing machine learning products by leveraging DevOps
and adapting it for the specific needs of machine learning applications [48]. MLOps integrates machine
learning, software engineering, and data engineering to bridge the gap between development and
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operations [49]. Although DevOps practices already provide continuous integration and delivery
and enhance team collaboration, other derivations of DevOps put the focus more on the safety of the
system. Thus, SafeOps has been developed, designed to improve the safety of autonomous systems
through a model of “continuous safety” inspired by DevOps principles [50]. SafeOps emphasizes
continuous monitoring, feedback loops, and integration across development and operational phases,
ensuring that autonomous systems remain compliant with safety standards during operation. The
three pillars of SafeOps are diagnosis, measurement, and modification, which provide continuous safety
assurance and faster deployment [50]. Similar to these safety considerations, security aspects in the
software development lifecycle are addressed by yet another derivate, DevSecOps [51]. It focuses
on integrating Development, Security, and Operations. To ensure security, the team incorporates
security-focused tools into the CI/CD pipeline. For faster development cycles, DevSecOps relies on
automated security tools.

2.3. Differences in Philosophy Between the W-Shaped Process and the DevOps Cycle

Both EASA’s W-shaped process and the DevOps cycle aim at achieving reliable software and
system development, but they approach the development lifecycle with different philosophies and
goals. Historically, the W-shaped process was defined for safety-critical applications such as avionics
and aircraft systems in the aviation sector, focusing on safety, regulatory compliance, and rigorous
testing. In contrast, the DevOps cycle is a widely adopted approach for general software engineering.
It is centered around continuous integration, delivery, and deployment to accelerate development
cycles while maintaining high-quality output. Furthermore, it encourages collaboration between
development and operations teams. Considering the process structure, one apparent difference
between both methodologies is the sequential and structured phases of the W-shaped process compared
to the cyclical, iterative, and constantly looping phases of the DevOps cycle. The W-shaped process
progresses linearly from system requirements and moves through design and development before
finishing with a well-documented testing and V&V phase. On the contrary, documentation during the
DevOps cycle is kept to a required minimum focusing on code and release comments.

In the context of testing, the W-shaped process heavily focuses on formal verification and valida-
tion typical for safety-critical aviation applications. This includes exhaustive documentation as well
as testing at each stage, thus ensuring each step meets compliance standards before moving to the
next. Here, DevOps emphasizes the automation of tasks through CI/CD, allowing for faster and more
frequent updates and thus releases. Automated testing is integrated throughout the process to identify
issues as early as possible.

Feedback loops are key to identifying issues early on in the development phase. The W-shaped
process emerged from the V-model to promote early feedback through predefined feedback loops. It
allows for iterations during both the model training and implementation. On the contrary, the DevOps
cycle features continuous feedback loops throughout the development. Arguably, this continuous
feedback is one of the most important features of the DevOps cycle and therefore one core difference
in comparison to the W-shaped process.

Furthermore, both methodologies differ in terms of typical cycle length. The W-shaped process
defines the whole development process until the final product release after passing the AI/ML
constituents requirement verification. The DevOps cycle is theoretically an ongoing, never-ending loop
of continuous improvement and frequent deliveries compared to the one delivery of the W-shaped
process. Thus, one single iteration of the DevOps cycle is shorter compared to the W-shaped process.

3. Current Challenges in AI Engineering for Aviation
AI Engineering is gaining significant attention due to the increase of AI-based functions in safety-

critical areas such as aviation, robotics, and the automotive sector. At its core, AI Engineering focuses
on systematically developing every aspect of an AI component or function throughout its entire
lifecycle. Thereby, the development and V&V processes constitute a considerable amount of the entire
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challenge. In addition to the accompanying processes, other aspects such as requirements engineering,
data generation, monitoring, and many others play a crucial role.

Specifically, the integration of AI in aviation systems poses a significant challenge because of the
inherent risk that comes with deploying passenger aircraft. Therefore, AI engineers are required to
be meticulous when using CI/CD processes. Updates, in particular, need to be executed in a safe,
reliable, and transparent manner. Additionally, there are many aspects to consider due to the human-
AI interaction in assistance systems that are developed right now. Ensuring applicable interactions
between humans and AI-based systems will require additional engineering work. Especially when
AI-based systems are being used as assistants, the interface between the human and the AI requires
exhaustive investigation, commonly explored through research in the field of Human-in-the-Loop
(HTL) [52]. Here, different approaches to how an AI-based system and humans can complement
each other prevail, from the strict separation of roles, e.g., human oversight performed by a human
supervisor, to collaborating as equal teammates in either a cooperative or collaborative approach [5,53].
Thus, depending on the specific use case, different approaches may be preferable. In addition to the
different concepts of how the human-in-the-loop approach is implemented in the individual use cases,
there are also questions about human factors that need to be taken into account. For instance, the
issue of human trust is also relevant to the safety of the overall system as overtrust or mistrust of
the AI-based system can lead to potential errors that could compromise the safe operation of said
system [54].

As already mentioned, sufficient data to train and evaluate the model is essential in providing
safe AI-based systems. In that context, sufficient not only compels to cover all relevant scenarios
but also to provide them with the necessary quality. This challenging task can only be solved by
combining different approaches for data generation to cover all requirements, for example by training
only on virtual data and later fine-tuning using real data [55]. To clearly define the system-under-test
within the operational environment and its current development stage, concepts from the automotive
industry [56] were already transferred to the aviation sector [57]. One potential starting point for
the generation of synthetic data are simulations as they are often cheap to perform in comparison
to real experiments and offer high availability. Simulation-Enabled Engineering is therefore the
basis for creating a data set for the learning process of Safety-by-Design AI-based systems. Although
simulations have great potential, the obtainable data quality is limited. Thus, careful evaluation is
required to identify the correct balance between the quantity of simulation-based data and other more
realistic and therefore higher quality but lower quantity data, like hybrid or real data. To improve
the quality of simulation-based data, generative AI might also be able to enhance the realism of
simulations or increase their variation [58,59]. Altogether, a combination of approaches will provide
the optimal balance between quantity and quality of data, necessary to develop Safety-by-Design
AI-based applications.

4. Extension Potential of the W-Shaped Process
The W-shaped process, designed to run in parallel to the V-model, is required for the development

assurance of AI/ML constituents [6], see Figure 1. As such, it brings some important changes to the
V-model to adapt it to the specific needs of the development of AI-based systems. The W-shaped
process emphasizes the importance of learning assurance as well as having iterative feedback loops
early on in the development process. Both are crucial for the safe and secure development of AI-based
systems allowing for a certification later on.

In Daedalean’s reports on design assurance [30,31] the W-shaped process was investigated. Based
on the use case of visual landing and traffic detection, the general feasibility of the W-shaped process
for level 1 ML applications was largely confirmed. The report found that future improvements
are required, for example strengthening the link between learning assurance and data, required for
improved AI explainability. However, the report was focused on the training phase and did not
consider the implementation and inference phase verification. Therefore, this gap remains to be
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investigated. Especially with increasing algorithm complexity and higher levels of autonomy, the
W-shaped process is potentially not as suitable for the development of AI-based systems as the also
well-established DevOps cycle, which can be, to some extent, thought of as iterating over the W-
shaped process multiple times [57]. However, simply enforcing a purely DevOps-based approach
in aviation is also not feasible, given the strict certification requirements. While it is understandable
that the W-shaped process is based upon the well-established V-model, other, not less safety-critical
domains, such as automotive, are already transitioning to the DevOps cycle. It has been shown that
it better fits the iterative development process with which both traditional software and AI-based
systems are developed [41,60]. As such, the W-shaped process is a good first step towards a more agile
development process for AI-based systems in aviation. It lacks, however, some necessary elements
from the DevOps approach to fully utilize the advantages of an iterative development process. At
least some of those remaining extension potentials will be addressed in this section. The next section,
Section 5, will propose a new framework that further combines the strengths of the W-shaped process
with the DevOps cycle.

Iterations During Implementation

Iterations During Training(Sub)system
Requirements and 

Design

AI/ML Constituent
Requirements
Management

Data Management

Leaning Process
Management

Model Training

(Sub)system
Requirements

Verification

AI/ML Constituent
Requirements

Verification

Data and Learning 
Verification of

Verification

Inference Model 
Verification and 

Integration

Model 
Implementation

Learning Process
Verification

Figure 1. W-shaped process, based on [6]. The arrows within the model from right to left already allow for an
iterative approach during the development of an AI-based system.

A first and important constraint of the W-shaped process is that it is currently only applicable
for supervised learning and not for self-supervised/unsupervised and reinforcement learning [6]. As
the authors of the W-shaped process are already well aware of this limitation, they plan to extend the
guidance document to include these learning techniques in the future [6]. Thus, it will not be part of
the current discussion in this article.

Compared to both the V- and W-shaped process, DevOps is characterized by a strong connection
between development and operations. This effective collaboration enhances the agility of the software
development process. Moreover, DevOps is separated into two phases; the development phase consists
of planning, coding, building, and testing, whereas the operations phase consists of releasing, deploying,
operating, and monitoring, as illustrated in Figure 2.

As both the W-shaped process and DevOps have a similar goal in mind, streamlining a develop-
ment process, a comparison is helpful to understand their differences and similarities, see Figure 2
for a graphical representation of the following paragraph. During the planning step of the DevOps
cycle, stakeholders and developers identify new features and fixes for the system but also quality
criteria for each step [11,61]. Similarly, in the W-shaped process, the planning step involves estab-
lishing system and subsystem requirements and design, leading to the extraction of AI/ML-specific
requirements [6]. These requirements are essential for understanding the necessary data and models
for specific applications, dividing them into AI/ML data and model requirements. In the DevOps
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cycle, after planning, developers proceed to the coding step, writing code for each feature or fix of the
software. In contrast, the W-shaped process involves collecting, preparing, and organizing data based
on the requirements for training, testing, and V&V. This stage also requires some coding activities,
particularly for data generation, preprocessing, labeling, and splitting the dataset. Apart from defining
the ML model’s architecture, including but not limited to the learning algorithms, activation functions,
and hyperparameters, the learning process management includes generating the training pipeline for
the model training. It also involves the verification of the learning process. During the building step of
DevOps, developers use special automated tools to ensure the code builds correctly for the desired
target platform, thus, preparing it for testing. In the W-shaped process, the model is trained based
on the preceding steps, especially the data management and the learning process management, after
which the learning process is verified. Afterward, the learning process is verified, allowing a loop back
to earlier steps in case of failure. Next, in the model implementation step, the trained ML model can be
implemented on the target platform for further V&V, analogous to the build step in DevOps. In the
testing step of DevOps, all software components undergo continuous testing using automated tools.
Here, the W-shaped process is more expressive as it clearly defines multiple levels of testing, one for
every abstraction layer in the scope of the full product, ensuring that all AI assurance objectives are
met at every layer.
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Figure 2. Matching the steps from DevOps to the W-shaped process. Here, the mapping from DevOps to the
W-shaped process is straightforward to see. Moreover, the missing Ops phase is also apparent.

The operations process in DevOps extends beyond the current scope W-shaped process process.
In DevOps, the operations step takes over after the development step to initiate the release of the
software. The deployment process is designed to be continuous, utilizing deployment tools to facilitate
easy software deployment for all stakeholders. This approach increases productivity and accelerates
the delivery of new software builds and versions. The operations phase involves managing software
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in production, including installation, configuration, and resource management. Finally, during the
monitoring phase, the operations continuously monitor the software to ensure proper functionality [6,
11,61].

While the W-shaped process offers several advantages during the system development process,
for example, the more expressive description of required tests, it lacks certain elements crucial for the
continuous development of an AI-based system. Specifically, the W-shaped process ends after the
testing phase of the AI-based system. It does not extend into the operational phase, as depicted in the
DevOps cycle [6,11], see Figure 2. In real-world applications, especially for safety-critical systems, it
is essential to have mechanisms for post-deployment monitoring and continuous evaluation of the
deployed AI-based system to ensure both the safety and security of a system even after the certification
and release. Moreover, ongoing supervision in the form of monitoring also ensures the system’s
reliability and performance throughout its operational lifecycle, detecting failures of the AI-based
system as soon as they occur [62].

5. Improving upon the W-Shaped Process
As seen in the previous chapter, the W-shaped process lacks some features required for a continu-

ous development process often used for AI-based systems in other domains. Most noteworthy is the
missing operations phase, which is crucial for the continuous improvement of AI-based systems. As
such, a new framework is proposed that combines the strengths of the W-shaped process with those
of the DevOps method. Furthermore, the proposed framework also starts earlier than the W-shaped
process in the development process, with the creation of a ConOps document [5,6,12]. The ConOps
document is crucial to capture the requirements, based on the qualitative and quantitative system
characteristics, of all stakeholders and define a common ground from which further work can be
derived [12,63,64]. From this ConOps document, the OD of the AI-based system can be derived [12].
This OD captures the intended working environment of the AI-based system, allowing for an ordered
description effortlessly readable for humans but also machine parsable. Later, the ODD can be derived
from the previous steps, guiding the development of the AI/ML constituent. Similar to the OD, the
ODD is also a well-structured document that helps to create a better understanding of the desired
environment the (sub)system is expected to handle.

The proposed changes are discussed in the following section, starting with the ConOps, OD,
and ODD in Section 5.1 and afterward the addition of the operations phase in Section 5.2. Lastly, the
combined framework is introduced in Section 5.3 and visualized in Figure 3.

5.1. Concept of Operations, Operational Domain, and Operational Design Domain

A Concept of Operations is a concise user-oriented document agreed upon by all stakeholders
outlining the high-level system characteristics for a proposed system. It describes the qualitative and
quantitative characteristics of the system for all stakeholders [12,63,64]. As such, it is the primary
interface between the customer and the developers. However, although ConOps is defined at the
beginning of a project and meant as a fixed baseline for all stakeholders, it is not immutable but subject
to change requests. Utilizing the ConOps, all stakeholders can establish a common understanding of
the system from which the Operational Domain can be derived [12]. Here, it is important to clarify
the distinct definitions of the terms Operational Domain and Operational Design Domain. As already
stated in the introduction, see Section 1, the definition of EASA differs from the commonly accepted
definitions proposed by the SAE and ISO [6,15,16]. The SAE and ISO define the Operational Domain
as “set of operating conditions, including, but not limited to, environmental, geographical, and time-of-
day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics”
and the Operational Design Domain as “the operating conditions under which an ADS is designed to
operate safely” [16]. In comparison, EASA defines the OD as the “operating conditions under which
a given AI-based system is specifically designed to function as intended, in line with the defined
ConOps” and the ODD as the “[o]perating conditions under which a given AI/ML constituent is
specifically designed to function as intended, including but not limited to environmental, geographical,
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and/or time-of-day restrictions” [6]. From these definitions alone, it is apparent that EASA defines the
OD as equivalent to SAE’s definition of the ODD. Both are the operating conditions to be considered
for the safe design of an autonomous system, regardless of whether it is an ADS or AI-based system.
What EASA defines as the ODD, however, is similar to SAE’s definition of the OD only that the scope
is not the full AI-based system but the part of the environment relevant to the AI/ML constituent. This
can be both, a subset and a superset of the OD.

Based on the definitions from EASA, the OD, as derived from the ConOps, describes the exact
operating conditions under which a system is designed to function [6,65,66]. It is already extensively
used for autonomous vehicles in the automotive domain [66,67] and the transfer to aviation is the
subject of current research [13]. In the automotive domain, the correspondence to the OD has been
used for multiple years already, therefore, its content and structure are well-defined. For the aviation
domain, however, although required by EASA for future AI-based systems [5,6], the structure of the
OD is yet to be clarified [13]. Nevertheless, defining the OD first and only afterward the AI/ML
constituent requirements together with the ODD is crucial for the development of AI-based systems
in aviation. As the ODD depends on the OD which in turn depends on the ConOps, any change
request of the ConOps most likely also influences both the OD and ODD, even if only to verify that the
previous OD and ODD are still valid.

Based on the previous discussion, the ConOps and OD are crucial for the development of AI-
based systems and the ODD for their corresponding AI/ML constituent. As such, the definition of the
ConOps and OD are part of the proposed framework, preceding the Requirements Allocated to AI/ML
Constituent step in the W-shaped process [6]. However, as the (sub)system requirements will contain
non-AI-related requirements, they will need to be defined first, before the ODD can be derived and
defined. Accordingly, three new test steps will also be added, for the ODD, OD, and finally the ConOps.
Those steps are required to verify and validate the ODD, OD, and finally the ConOps. All those newly
proposed steps for the ConOps, OD, and ODD are visualized in Figure 3, and the individual parts will
be discussed in their corresponding subsections.

It is worth noting, however, that both the ConOps and the OD are mentioned as the input for the
Requirements Allocated to AI/ML Constituent step in the W-shaped process [6]. Nevertheless, as they are
mutable, the proposed framework explicitly includes these two as they are part of the DevOps cycle.

5.2. Operations Phase

In the DevOps framework, releasing is often as easy as moving changes from the development
environment to the production environment. This is not possible in aviation as the production environ-
ment oftentimes is the aircraft itself. In aviation, releasing an AI-based system almost always requires
a certification process. In general, for aviation, systems are categorized into different Development
Assurance Levels (DALs) based on their safety impact on the aircraft [68,69]. Here, the higher the DAL
of a system, the more stringent the certification process. The highest DAL, DAL A, is reserved for
systems with a catastrophic failure condition, while DAL E is reserved for systems with no safety effect
on the aircraft [69,70]. The different DALs are listed in Table 1, which also lists some more information
for each DAL, including but not limited to the accepted failure rate and the effect on the aircraft and
the passengers. In Table 1, however, the effect on the crew is not explicitly listed, although relevant.
Only for DAL E systems certification is not required as those systems have no impact on the safety of
the aircraft [69,70].

However, DAL was never designed for AI-based systems and is thus not always applicable or
sufficient for AI-based systems. Out of the necessity to have a similar rating for AI-based systems,
EASA distinguishes between three levels for AI [5,9], see Table 2. The three levels are based on
the intended purpose of an AI-based system whether it is used for assistance only (level 1), for
supporting a human in a human-AI teaming situation (level 2), or for advanced automation up to
non-overridable decisions (level 3) [5]. Future AI-based systems will most likely be categorized in
both ratings as an AI-based system always requires traditional software components for interfacing
with other components. Thus, systems with a high DAL rating but low AI level or vice-versa can be
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thought of. For example, an AI-based movie recommendation system for the In-Flight Entertainment
(IFE) system will be a DAL E system as it does not affect the safety and a level 1 application since it
is only assisting the passengers [69,70]. If the same system now includes a chatbot that interactively
chats with the passengers and they together find a fitting next movie or TV show, this system is now a
level 2 application. Still, such a system would most likely have no certification requirements. Other
AI-based systems in aviation already being researched are vision-based landing systems [71,72]. While
of clearly higher DAL ratings due to the inherent safety implications, as long as such a system only
assists the pilots and does not make a decision, it will most likely be a level 1 application. However,
due to the common problem of adversarial attacks, even this supposedly level 1 application will have
stronger safety and security regulations than the aforementioned IFE recommendation system [73,74].
Finally, as a third example, the next generation of collision avoidance, ACAS X, is currently under
development and part of current research [75–77]. For this system, although no official AI level rating
is available, first certification activities are already part of ongoing research [78–83].

Table 1. Relationship between failure probability and severity of failure condition, based on [69,70].

DAL Failure Condition Failure Rate Effect on Aircraft Effect on Passengers

A Catastrophic <10−9 h−1 Normally hull loss Multiple fatalities

B Hazardous <10−7 h−1 Large reduction in capabil-
ities

Some fatalities

C Major <10−5 h−1 Significant reduction in ca-
pabilities

Possibly injuries

D Minor <10−3 h−1 Slight reduction in capabil-
ities

Physical discomfort

E No Safety Effect N/A No effect Inconvenience

Table 2. Classification of AI applications, based on [5].

Level Scope Sublevel Description

1 Assistance to Human A Human Augmentation

B Human Cognitive Assistance in Decision and Action
Selection

2 Human-AI Teaming A Human and AI-based System Cooperation

B Human and AI-based System Collaboration

3 Advanced Automation A The AI-based system makes decisions and performs
actions, safeguarded by the human.

B The AI-based system makes non-supervised decisions
and performs non-supervised actions.

While there are no official guidelines on how to design and certify an AI-based system, special care
has to be taken for current developments. For now, only the DAL rating can be used for the certification
process of new AI-based systems. Nevertheless, the three levels for AI applications will be important
for future regulations. As such, for AI-based systems that can be classified as DAL A to DAL D, more
care has to be taken in the development process to reduce the risk of failing the certification process.
Accordingly, the higher the classification level of an AI-based system is, the more future requirements
such a system will face for certification. Thus, as a compromise, the operations phase can be executed
multiple times before the final deployment, prior to starting with the certification of the AI-based
system. For example, the operations phase could be executed in a flight simulator, where the AI-based
system is tested in a controlled environment. After multiple rounds of testing, the AI-based system
can be deployed in the actual aircraft, where the operations phase is executed again, now in the actual
production environment. This way, the development of AI-based systems can profit from the more
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dynamic and iterative way of developing systems while still achieving the same standards as classical
components ensuring the safety and security of the whole airplane. Exact numbers on the required
amount of iterations cannot be given as this is highly dependent on the system and consequently hard
to estimate beforehand.

Next, the deployment step of the operations phase has to be executed. Again, given the vastly
different AI-based systems for aviation one can imagine, it is not possible to define a general process for
the deployment step. Some systems might be able to be deployed in a secure over-the-air-like process,
where a fleet of aircraft automatically downloads the new software, similar to other domains [84].
This could be possible for systems with a DAL E classification as the aforementioned AI-based IFE
recommendation system [69,70]. Other AI-based systems, however, might also need a hardware
update which would require grounding the aircraft and most likely many man-hours. These updates
could happen during the maintenance checks any aircraft has to undergo.

After deploying the AI-based system, the operating phase starts. For a successful operation, it is
crucial, that the previous steps have been conducted diligently. Furthermore, a general recommenda-
tion is that neural networks should be static, often referred to as frozen, during operations, as learning
dynamically adds significant complexity not only to the system design but also to certification [31,62].
Moreover, as AI-based systems often exhibit a black-box-like behavior, explainability is crucial for
systems to be accepted by human operators [85]. For example, for the aforementioned next-generation
collision avoidance system it might not be enough to issue the correct advisory to the pilots, the
AI-based system should also briefly explain how it came to the advisory. Fortunately, this is a field of
active and ongoing research in which guidelines for explainable AI have already been developed [86].

Once an AI-based system is certified and deployed, monitoring it and its environment is crucial
for future improvement. Although monitoring a system and receiving feedback from it in operation is
often not part of aviation operations, it is decisive for the Safety-by-Design development and operations
of AI-based systems. Thus, it shall be adopted for future AI-based systems in aviation. Monitoring also
does not necessarily mean an invasion of privacy of either the passengers or the operating company.
Here, developers and operators have to work together to ensure the safety and security of the system
while also respecting the privacy of all stakeholders. However, only continuous monitoring can ensure
future improvements as without monitoring, no data from operations is available for the developer to
improve the system. One of the more important aspects to monitor for all AI-based systems are the
OD and ODD. Both the OD and the ODD are essential for ensuring the safe and reliable operation of
an AI-based system [13]. Runtime monitoring confirms that the system stays within its predefined
environmental boundaries. For automated systems, adhering to safety standards and regulations is
essential, and one of the fundamental principles is closely monitoring the OD to guarantee overall
system safety. Thus, continuous monitoring during the operational phase of DevOps plays a vital role
in maintaining safety by ensuring that the AI-based system operates only within its safe operational
parameters and can thus be trusted to provide accurate guidance. Approaches like predictive OD
monitoring, which can utilize tools such as temporal scene analysis, can issue early warnings if the
system is approaching the boundaries of its corresponding OD [87,88].

5.3. Proposition of the Novel Framework

Finally, bringing everything together, the proposed new framework is visualized in Figure 3. The
new framework is based on the W-shaped process by EASA [6] but includes the ConOps and the OD
early on in the development process, followed by the W-shaped process augmented by a dedicated
step for the ODD definition. Corresponding test steps are also added to ensure correct V&V. After the
test phase of the W-shaped process, elements from the operations phase of the DevOps method are
introduced, namely the release, deploy, operate, and monitor steps. As explained earlier in Section 5.2,
the operations phase is crucial for the continuous improvement of AI-based systems, especially in
aviation. Only a continuously developed system can overcome current problems with AI-based
systems, such as their black-box nature and the lack of transparency. However, with an operations
phase, and its corresponding steps, an AI-based system can be continuously improved, leading to a
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more transparent and trustworthy system. In addition, through iterative testing and feedback, the
proposed frameworks’ structure supports investigating the explainability of AI algorithms, crucial for
any safety-related AI-based application. By incorporating continuous testing and validation into the
development workflow through several feedback loops, input from end-users or domain experts can be
used to identify areas of insufficiencies or unexpected decisions. Also, this feedback structure supports
the development of resilient systems in terms of error detection, error correction, monitoring, and
logging. As with all AI-based systems, resilience, “the ability to recover quickly after an upset” [89], is
one of the main goals of the Safety-by-Design development process. The new framework, combining
the W-shaped process with ideas from DevOps, is a promising approach for the development of
AI-based systems in aviation. Its representation is visualized in Figure 3. Here, the development
process starts in the top-left corner with a classical V-model in parallel for non-AI-based systems.
Important to note, and already part of the proposed W-shaped process by EASA [6], is the iterative
approach in the development process allowing for faster feedback and an easier improvement of the
system. These iterative steps allow for a more flexible development process and thus more ways to
react fast to later findings in the development of an AI-based system.
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Figure 3. The proposed new framework, based upon the W-shaped process by [6]. It extends the W-shaped
process by the ConOps Definition, Operational Domain Definition and Operational Design Domain Definition steps and
their corresponding tests, Acceptance Test, Operational Domain Verification and Operational Design Domain Verification.
Moreover, it emphasizes the importance of the Operations Phase from the DevOps cycle for a holistic design
process.

Developing a new AI-based system using the proposed framework would thus first require the
definition of the ConOps. For an exemplary use case of the next-generation in collision avoidance for
aircraft, ACAS X, the ConOps might contain high-level requirements such as the desired behavior,
i.e., avoid near mid-air collisions, but also more specific performance metrics, for example updating
the advisory once per second [82,83,90–93]. Based on the ConOps and the OD, and according to
the W-shaped process, the (sub)system requirements can be derived. Both are important to better
guide the development of an actual AI-based system in a safety-critical environment. The OD will
contain information about the scenery, e.g., airspace information, but also more general environmental
information like weather conditions [83,87]. Of utmost importance, at least in the aforementioned
use case, however, are dynamic elements, i.e., the intruders invading the airspace. As the OD also
contains parameter ranges for every element, later on, automated tests can be directly derived from

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 March 2025 doi:10.20944/preprints202503.1527.v1

https://doi.org/10.20944/preprints202503.1527.v1


15 of 24

the ODD [57,94]. Based on the ConOps, the OD, and the (sub)system requirements of the step before,
an ODD can be derived, finally leading to the actual requirements for the AI/ML constituent. From
here follows the W-shaped process as defined by EASA [6].

As every step on the left-hand side of a V-model-inspired process requires corresponding tests
on the right-hand side, so do the proposed steps for the ODD, OD and ConOps, ConOps Definition
and Acceptance Test, Operational Domain Definition and Operational Domain Verification, and Operational
Design Domain Definition and Operational Design Domain Verification. The Operational Design Domain
Verification step, verifying the ODD, requires that the system is shown to cover all aspects and areas of
the hyper-dimensional parameter space of the ODD. As all elements in the ODD have a corresponding
parameter range, the creation of automated tests is straightforward [94]. However, determining the
actual coverage of the ODD, especially for continuous parameter ranges, like altitude, is a complex
problem. Still, current research is looking into exactly this topic [95,96]. Once the system is shown to
cover the target ODD fully, testing can continue on the (sub)system level. Afterward, the tests for the
ODD have to be repeated, now with the system-level OD in the Operational Domain Verification and
Validation step. The final test, in line with most V-model representations, is the acceptance test. On
the one hand, it marks the final step in the certification of a system, on the other hand, it is the first
interface to the customer since all stakeholders defined the ConOps.

After the W-shaped process is successfully passed, a system can go into certification and then
be deployed. However, in many cases, a single pass through the W-shaped process might not be
enough to develop a system that meets all certification requirements given its designated DAL. The
collision avoidance system, for example, with its DAL B rating has way more certification requirements
than a DAL E system, for example, an AI-based movie recommendation system for the IFE system.
As the IFE is generally categorized as DAL E, compared to Table 1, an AI-based system purely for
the IFE will also be a DAL E system. As such, it has no certification requirements. Such a system
could, in theory, be deployed regularly via an over-the-air update, similar to how most software
updates for smartphones and personal computers are rolled out. The aforementioned ACAS X, with
its higher DAL rating, cannot be rolled out and improved in multiple iterations in the actual aircraft in
operations. As errors in the collision avoidance system can easily lead to tragic catastrophes, every
new version of such an AI-based system has to go through extensive certification efforts to ensure
the safety of all lives on board an aircraft [82,97,98]. Thus, it might be desired, to split the operations
phase into two different cycles. First, a faster cycle can be implemented only on the developer’s side to
more quickly develop improvements. And only once a certain maturity has been reached, the system
can go into certification and be deployed to the customers, in this case to actual aircraft. Still, even
such a system might require later updates to the underlying AI model. For that reason, continuous
improvement is still important, even for DAL B or higher systems. Therefore, in the operations phase
of the proposed framework, steps similar to DevOps have to be undertaken. First, the developed
AI-based system has to be released. In the case of aviation, and for systems of DAL D or higher, this
requires a certification process as described earlier. Once this release process is finished, the developed
system can be deployed to the target platform. Depending on the target platform, this can be more
or less complicated. For some updates, especially those that might also require a new generation of
hardware, grounding of the aircraft will be necessary. Those deployment steps can take weeks to years
as it might be more efficient to deploy the changes when maintenance checks are planned anyway.
Other deployment steps, however, might be, as discussed earlier, a simple over-the-air update, one
that aircraft can automatically search for on a specific schedule, for example once a week. Once the
system is deployed, operations can begin. This step is again strongly dependent on the developed
AI-based system, but in general, this step should be part of the normal operations. The last important
step of the framework, also derived from DevOps and somewhat parallel to the operating step, is
the monitor step. As many AI-based systems lack realistic data or the abundance thereof, constant
monitoring of the real operating conditions is required to continuously improve an AI-based system.
Only with feedback from the real system and real data, a realistic dataset for training can be built. As
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such, this step is one of the most crucial steps in the proposed framework and might take the most
effort to implement. The monitoring step requires the data from the actual system in operations to flow
back to the developers, something not yet seen often in aviation. However, only with an evergrowing
dataset that is moreover also built on real data, a continuous improvement and thus a safe AI-based
system for aviation can be developed. It is the basis for a new iteration of the proposed framework
leading towards safe and secure AI-based systems in aviation.

6. Compatibility to the Machine Learning Development Lifecycle
Besides EASA, other groups also work on similar standards for the development of AI-based

systems in aviation. One of these important standards is being developed by the G34/WG-114
Standardization Working Group, a joint effort between EUROCAE and SAE. Their standard, currently
only published as a draft of chapter 6 of AS6983/ED-XXX, focuses on the development of AI-based
systems in aviation, specifically the Machine Learning Development Lifecycle, currently only designed
for offline applications [10]. As it is still a draft, all the following results are preliminary only. Still, the
goal of the MLDL, as described in the draft, is to establish support for the certification and approval
process of AI-based systems in aviation. To achieve this, the MLDL aims to define and organize the
objectives and outputs of the systems in an easy to comprehend manner, suitable also for non-experts
in the field of AI and ML. These objectives are closely aligned with the DAL as well as the Software
Assurance Level [10]. However, compared to the W-shaped process developed by EASA [6], the
MLDL does not require a specific development process but rather provides a framework to support
the development of AI-based systems in aviation in general. Nevertheless, there are many similarities
but also some differences between the two frameworks worth exploring.

The MLDL is divided into development activities for both AI-based and traditional (sub)systems
and V&V activities for those (sub)systems. The architecture of a system in the MLDL is segmented
into two main parts, the System/subsystem Architecture and the Item Architecture. The MLDL process
starts with the execution of the requirements phase, called System/Subsystem Requirements Process. This
is similar to the proposed framework with the primary difference that in the proposed framework
requirements can be directly derived from the ConOps, creating a continuous chain of trust. This chain
of trust is essential for clearly defining all requirements and their corresponding rationales. Thus,
ensuring that all relevant requirements of the system, its surrounding environment, and operational
conditions are captured. Since the ConOps serves as the primary interface with the customer, all devel-
opments are based upon the requirements defined in it. Thus, it plays a crucial role in the proposed
framework, while not present in the MLDL. Based on the results of this phase, the System/Subsystem
Requirements Process, a set of (sub)system requirements, including the OD and ODD, can be derived.

Following, the results from the System/subsystem Architecture phase are utilized to define the ML
Model Architecture in the MLDL, and correspondingly, in the proposed framework, the Requirements
Allocated to AI/ML Constituent are derived. At this stage, the ML Requirements Process is divided into ML
Data Requirements and ML Model Requirements. The ML Data Requirements guide the ML data management,
while the ML Model Requirements guide the ML Model Design Process. In the W-shaped process, and
thus also proposed framework, these processes are referred to as Data Management and Learning Process
Management, leading to a similar output. This sets the stage for training and verifying the ML model,
the ML Model Design Process, and subsequently implementing the ML model on the designated target
platform, the ML Inference Model Design and Implementation Process and the Item Integration Process. Both
approaches include feedback loops from model training back to learning process management, data
management, and AI/ML requirements, allowing for iterative improvements during training and
the learning assurance of the AI-based system. However, only the proposed framework integrates
continuous improvement of the trained ML model, even after deployment.

Moving from implementation to testing, the AI-based system will be verified and validated
against the different levels of requirements as defined previously. This process takes place on the right-
hand side of the proposed framework and accordingly in the second half of the MLDL. While for the
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proposed framework, and also the W-shaped process it is based upon, this will again lead to a split after
which traditional soft- and hardware items will be tested against the V-model. The MLDL, however,
incorporates both the traditional and the AI-based (sub)system in one holistic process, allowing for
a better overview of the whole development process. Nevertheless, while the MLDL, similar to
the W-shaped process, stops at the System/Subsystem Requirements, the proposed framework follows
through until the Acceptance Test phase, serving as the interface to all stakeholders, especially the
customer, by verifying the ConOps. Moreover, the proposed framework is designed for the continuous
development of the AI-based system by integrating ideas from DevOps. As such, compared to the
MLDL, the development does not end with the release of the AI-based system, but focuses also on the
operations, ensuring continuous improvement by utilizing feedback from the deployed system and
real data.

The comparison between the W-shaped process from EASA [6], see Figure 1, the MLDL process
from the G34/WG-114 Standardization Working Group [10] and the newly introduced framework,
see Figure 3, enhances the understanding of safe AI system development. Comparing this framework
to the MLDL creates a common understanding for the development of safe and secure AI-based
systems. It emphasizes the high-level requirements derived from the ConOps, while the MLDL starts
at a lower level of abstraction and thus later in the development of the full system. Additionally, the
proposed framework integrates the operations cycle to utilize feedback from operations, which is
crucial to evaluating and improving the system’s performance ensuring a safe and secure AI-based
system. Ultimately, it appears to be compatible with the MLDL although the latter is more expressive at
lower levels while the new framework is more oriented towards continuous development of AI-based
systems.

7. Discussion
This work showed that future AI-based systems need a rigorous development process based

on novel AI Engineering methodologies to ensure both the safety and security of such systems. To
combat this problem, the European Union Aviation Safety Agency (EASA) has already provided
the so-called W-shaped process, an advancement of the V-model, meant for AI-based systems. It is
intended to be used in parallel to the V-model-based development of traditional soft- and hardware
items in the development process of a complete system. However, the EASA learning assurance
process has received criticism for its potential limitations as some of its objectives might be inherently
unverifiable. Thus, the W-shaped process still lacks important features to ensure the safety and security
of an AI-based system throughout its operational lifecycle. Moreover, the W-shaped process lacks
continuous verification and validation due to its sequential design. For AI-based systems, this is,
however, crucial to adhere to the dynamic nature of AI-driven requirements. The processes required
to achieve not only continuous updates but also continuous verification and validation have already
been manifested in other development processes, namely the established DevOps process. A naive
implementation of the DevOps cycle is, however, also not suitable as it is not compatible with current
aviation processes and certification standards. As the DevOps process also sees a rise in adoption
in other safety-critical domains, such as automotive, the framework proposed in this work builds
upon the W-shaped process by integrating aspects from DevOps to further improve and extend the
W-shaped process.

The proposed novel process, an extension of the W-shaped process, aims to enforce more feedback
loops through its more holistic approach by starting at the initial definition phase in which the Concept
of Operations document is defined. Furthermore, the proposed process adds dedicated steps for
the creation of both the Operational Domain as well as the Operational Design Domain and their
corresponding verification steps, thus creating a more accountable process. Finally, the novel process
integrates even more ideas and processes from DevOps into the W-shaped process by incorporating
the operations phase firmly into the process. Including the operations phase in the process ensures
that information from the operations of the developed AI-based system can flow back into the update
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of said system. This is the fundamental idea of continuous development and is required for the
continuous verification and validation of any AI-based system, not only in aviation. It is essential for
the Safety-by-Design-process in the field of AI Engineering. Furthermore, this work discusses how
different Development Assurance Levels (DALs) lead to different requirements for the operations phase
of the DevOps. Given the stringent certification requirements of systems with a high DAL, for these
systems, it is recommended to go through multiple rounds of the process before submitting a system
to certification with the subsequent release and deployment of updates to the AI/ML constituent of
the AI-based system.

Nevertheless, even the proposed framework is not yet fully suitable for widespread adoption
in aviation. Similar to the W-shaped process, as it is built upon it, it lacks compatibility with both
unsupervised learning and reinforcement learning methods. Moreover, clear guidance on how the
operations phase should be executed is still under investigation, and how this phase can be integrated
into the current aviation processes, especially the certification process. Furthermore, some questions
on the interaction of traditional soft- and hardware with AI-based systems are still open. For example,
how to handle the integration and deployment of an updated AI-based system if this would require
new hardware to also be deployed. Next, guidelines on the required amount of feedback from the
operations phase to the development phase are missing. As well as guidelines on how exactly this data
can be safely and securely transferred from the aircraft to the developers. Nevertheless, the proposed
framework was shown to be compatible with the Machine Learning Development Lifecycle (MLDL)
developed by the G34/WG-114 Standardization Working Group, a joint effort between EUROCAE and
SAE. It is the overall goal of this work to enhance the field of AI Engineering for aviation leading to a
safe and secure application of AI-based systems, whether they were developed with the here proposed
framework or any other framework, as long as the focus shifts towards continuous development and
integration to continuously improve any AI-based system deployed.

8. Conclusions
In this paper, a more accountable and holistic development process for the Safety-by-Design

development of AI-based systems in safety-critical environments has been proposed. It extends
the W-shaped process introduced by EASA, incorporating ideas from the DevOps approach. This
novel process intends to ensure that the development follows a Safety-by-Design approach from the
high-level system down to the AI/ML constituent. By following proven ideas from the field of AI
Engineering, the proposed process allows for a continuous improvement of the AI-based system and,
thus, a continuous verification and validation leading to a potentially certifiable AI-based system.

Future research will focus on the enhancement of the Safety- and Security-by-Design methodology
for safety-critical AI-based systems considering measurable quality criteria, such as explainability,
traceability, and robustness. Automating the methodology will ensure the systematic and strategic
development and improvement of the AI-based system throughout the entire MLDL. Moreover,
investigations on how the methodology can be further enhanced through AI-driven feature engineering
will be conducted. Ultimately, the methodology will be applicable across different domains, such as
space, transportation, and robotics.
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Abbreviations
The following abbreviations are used in this manuscript:

ACAS Airborne Collision Avoidance System
ADS Automated Driving System
AI Artificial Intelligence
CI/CD Continuous Integration and Continuous Deployment
ConOps Concept of Operations
DAL Development Assurance Level
DevOps Development Operations
DevSecOps Development Security Operations
EASA European Union Aviation Safety Agency
EUROCAE European Organization for Civil Aviation Equipment
HTL Human-in-the-Loop
IFE In-Flight Entertainment
ISO International Organization for Standardization
ML Machine Learning
MLDL Machine Learning Development Lifecycle
MLOps Machine Learning Operations
OD Operational Domain
ODD Operational Design Domain
SAE Society of Automobile Engineers
SafeOps Safety Operations
V&V Verification and Validation
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