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Abstract: Accurate estimating green canopy cover in rubber plantations is crucial for monitoring
vegetation health and assessing stress impacts. This study validates satellite-derived canopy cover
estimates by integrating UAV-based measurements, ground observations, remote sensing, and
machine learning approaches. Sentinel-2 and Landsat imagery were utilized to derive spectral
vegetation indices (SVIs) under varying stress conditions, while UAV-based canopy cover
assessments provided high-resolution reference data for validation. The findings revealed that while
certain SVIs exhibited strong correlations with canopy density under stable conditions, their
predictive accuracy declined significantly during extreme stress events, such as Pestalotiopsis
outbreaks and seasonal leaf fall periods. To improve estimation accuracy, machine learning models
were developed, with Random Forest (RF) outperforming Support Vector Machines (SVM),
Classification and Regression Trees (CART), and Linear Regression (LR). RF achieved the highest
predictive accuracy (R? = 0.82, RMSE = 6.48, MAE = 4.97), demonstrating its reliability in capturing
non-linear interactions between canopy heterogeneity and environmental stressors. These results
highlight the limitations of traditional vegetation indices and emphasize the importance of multi-
sensor integration and advanced modeling techniques for more precise canopy monitoring. This
study contributes to developing robust remote sensing frameworks for early stress detection and
sustainable plantation management in tropical rubber ecosystems.

Keywords: rubber plantations; remote sensing; pestalotiopsis; canopy dynamics; machine learning

1. Introduction

Rubber (Hevea brasiliensis) plantations play a vital role in the global rubber industry,
particularly in tropical regions such as Indonesia, one of the leading producers. However, rubber
production is increasingly threatened by environmental stressors, including Pestalotiopsis leaf fall

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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disease, which has significantly impacted latex yields since 2016 [1] This fungal disease accelerates
defoliation, weakens tree vigor, and disrupts the global rubber supply chain. The ability to monitor
canopy health is essential for early disease detection and effective plantation management. Canopy
cover serves as a key indicator of tree health, as defoliation reduces photosynthetic activity and
increases vulnerability to secondary infections [2]. Severe outbreaks can result in tree mortality,
necessitating costly replanting and negatively affecting both large-scale plantations and smallholder
farmers [3]. Given rubber’s economic significance in tire manufacturing, industrial products, and
medical supplies, accurate canopy monitoring is crucial for mitigating economic losses and
strengthening disease control strategies.

Remote sensing has become a critical tool for mapping and monitoring tree canopy cover,
offering valuable insights for environmental research, forest management, and land-use planning [4—
6] By leveraging satellite and aerial imagery, such as Landsat, MODIS, WorldView, and LiDAR,
remote sensing enables large-scale estimation of canopy attributes, including density, structure, and
biomass [6-8]. Advanced image processing and machine learning techniques have further improved
the accuracy of canopy mapping. Phenology-based approaches utilizing vegetation indices such as
NDVI, EVI], and LSWI have demonstrated effectiveness in distinguishing rubber plantations from
other vegetation types [9-11]. Additionally, object-based classification, combined with phenological
data, has enhanced the accuracy of rubber plantation mapping, reducing errors associated with
fragmented landscapes [12-14].

Machine learning models, including Random Forest (RF) and Support Vector Machines (SVM),
have significantly improved the precision of canopy mapping and disease detection in rubber
plantations. RF models trained with multi-temporal and multi-source remote sensing data have been
successfully applied to estimate canopy cover and aboveground biomass, demonstrating their utility
for monitoring forest and plantation ecosystems [4,13]. Empirical and neural network (NN) models
have also been developed for assessing rubber canopies, demonstrating high accuracy in predicting
leaf area index (LAI) [15]. While deep learning architectures such as Convolutional Neural Networks
(CNNs) and Long Short-Term Memory networks (LSTMs) have been explored for extracting spatial
and temporal features from remote sensing datasets, their application in rubber plantation
monitoring remains limited due to extensive data requirements and computational constraints [16].

Mapping rubber canopy during disease outbreaks or natural leaf fall season presents significant
challenges due to changes in spectral and temporal characteristics. Remote sensing techniques,
including Sentinel-2 and PlanetScope imagery, have been instrumental in detecting phenological
variations in rubber plantations affected by Pestalotiopsis-induced leaf fall [17,18]. However,
previous studies evaluating canopy dynamics under Pestalotiopsis outbreaks, such as those by [17]
and [19] primarily relied on single vegetation indices (VIs), which are highly susceptible to
background contamination. To overcome these limitations, this study employs Sentinel-2 and
Landsat series imagery, integrating multiple VIs with time-series analysis to enhance accuracy. Time-
series analysis and machine learning models, such as RF regressors, have been utilized to assess
canopy conditions by linking disease severity stages with defoliation cycles and climatic variables
[18]. UAV-based multispectral imaging has also emerged as an effective tool for high-resolution
disease monitoring, enabling the identification of infected trees through spectral and textural analysis
[20,21]. Additionally, spectral vegetation indices derived from UAV-based monitoring have been
employed to classify rubber clones and assess their resistance to environmental stressors [22].
However, challenges such as cloud contamination, seasonal spectral variations, disease-induced leaf
fall, and natural defoliation cycles persist. Integrating multi-source remote sensing data with
advanced classification techniques, such as SVM and feature selection algorithms, improves disease
detection accuracy and provides valuable insights for mitigating production losses in rubber
plantations [23-26]

To address these challenges, this study integrates remote sensing, UAV-based canopy
validation, and machine learning techniques to analyze the dynamics of rubber tree canopies under
Pestalotiopsis outbreaks and climatic stressors. By leveraging multi-scale data and advanced
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computational methods, the study aims to enhance monitoring accuracy, enable early stress
detection, and improve predictive modelling for plantation resilience. A key novelty of this study is
the use of time-series ground observations to validate and model canopy dynamics under varying
stress conditions, offering deeper insights into seasonal variations, disease progression, and
environmental stress responses. Unlike single-time-point assessments, time-series observations
capture long-term trends and canopy recovery patterns, improving the reliability and applicability
of remote sensing-based models for plantation management. Green canopy cover estimates derived
from satellite imagery are cross validated against high-resolution UAV data and ground
measurements, ensuring a comprehensive and robust evaluation of canopy conditions.

In addition to RF and SV, this study applies Classification and Regression Trees (CART) and
Linear Regression models to enhance the robustness of canopy cover prediction. While RF and SVM
have been widely employed in remote sensing for canopy classification and disease detection,
incorporating CART and Linear Regression offers a more holistic assessment of model performance
[27,28]. Moreover, the study acknowledges the potential of deep learning architectures, such as CNNs
and LSTMs, although their application remains limited due to the need for extensive labeled datasets
and high computational power [16]. Additionally, the study acknowledges the increasing importance
of remote sensing in enhancing rubber plantation monitoring through improved mapping, change
detection, and carbon and biomass assessment [6]. Therefore, this study primarily focuses on
traditional machine learning approaches, with future research considering the integration of deep
learning techniques for improved canopy monitoring.

By combining remote sensing, machine learning, and UAV-based validation, this research
contributes to the advancement of precision agriculture strategies for rubber plantations. The
findings will support plantation managers and policymakers in implementing proactive disease
control measures, optimizing rubber production, and ensuring sustainable plantation management
in the face of climate variability and emerging threats.

Given the complexity of this research, the findings are structured into two complementary
studies. This paper focuses on modeling canopy density through remote sensing, UAV-based
validation, and machine learning. A second study extends this work by analyzing time-series
variations in green canopy cover in relation to climate conditions, disease outbreaks, and tree
characteristics, including clone type and age. Together, these studies provide a comprehensive
understanding of canopy dynamics in rubber plantations under both environmental and disease-
related stressors.

2. Study Area

The study was conducted at the Sembawa Rubber Research Center plantation, located in
Banyuasin Regency, South Sumatra Province, Indonesia (Figure 1a—c). The research center, managed
under the Indonesian Rubber Research Institute, spans a total area of 3,379 hectares and serves as a
key site for rubber cultivation research, breeding programs, and agronomic studies. The plantation
is strategically divided into five distinct districts, each designated for specific research and cultivation
purposes. This study specifically focused on Block 2010G2 and Block 2011G, both dedicated to rubber
cultivation. These blocks were selected due to their differing planting years and clone compositions,
allowing for an in-depth comparative analysis of canopy dynamics under varying environmental
conditions. Block 2011G, established in 2011, consists of a mixed clone composition of IRR 112, and
BPM 24, which are known for their resilience and latex production potential. Meanwhile, Block
2010G2, planted in 2010, features IRR 118, 105, 100, BPM 109, 107, 24, IRR 112, 05, RRIC 100, PR 303,
GT 1, PB 260, 330, and 340 clones, each possessing distinct physiological characteristics that influence
their growth response to environmental stressors such as seasonal leaf fall and disease outbreaks.
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Figure 1. Map of Study Area (a) Indonesia, (b) South Sumatra Province, (c) The Sembawa Rubber Research
Center plantation blocks, (d-e) Block 2010G2 and 2011G with grid and point samples, (f-g) field data collection,
(h-j) canopy photo from high to low density.

3. Materials and Methods

This section outlines the methodologies employed in this study, as illustrated in Figure 2, to
examine the intricate dynamics influencing rubber green canopy cover. By integrating satellite
imagery, Unmanned Aerial Vehicle (UAV) imagery, and field measurements. This study utilizes
canopy cover data from two plantation blocks, 2010G2 and 2011G, to assess the impact of
Pestalotiopsis outbreaks and natural leaf fall events. Outbreak periods were defined as occurring
between November and February (from 2018 onward), while seasonal leaf fall was observed between
June and August [29]. These defined periods enable a systematic evaluation of canopy dynamics and
their correlation with environmental and biological stressors.
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Figure 2. Workflow.

3.1. Data Collection

Integrating datasets from various sources, including ground-level observations, UAV imagery,
and medium-resolution satellite images, facilitates a nuanced understanding of the vegetative
dynamics within rubber plantations. This approach enables a detailed examination of the spatial and
temporal variations that impact rubber plant health and productivity. Table 1 summarizes the

research data and variables, underlining the study’s methodological rigor and the depth of data
integration.

Table 1. Research Data and Variables.

Variable Data Source Time Frame Spatial & Temporal Resolution
25-28 March 2022
8-12 June 2022
7-13 February 2023
1-5 July 2024
25-28 March 2022
8-12 June 2022
UAV Imagery 7-13 February 2023 10cm
1-5 July 2024
6-11 November 2024

Tree Properties (Height,

Diameter, Canopy Field Survey
Density, Photo)

Vegetation Index Sentinel-2A (ESA) 2022-2024 10m, 5 Day
Sentinel-2B (ESA)

Landsat-7 (USGS) 30m, 16 Day
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3.1.1. Field Survey Collection

This study is grounded in comprehensive field observations within rubber plantations, focusing
on two primary aspects: the spatial distribution of green canopy cover and tree characteristics.
Detailed mappings of these observations were facilitated using GPS Geodetic Hi Target V30.
Additionally, the canopy conditions were documented using a GoPro 360 camera for visual analysis.
Insights into the prevalence and impact of leaf fall outbreak, seasonal leaf fall, and Pestalotiopsis
outbreak were further enriched through interviews with plantation managers.

To ensure a representative and comprehensive dataset, a stratified grid sampling method was
utilized, covering 218 grids distributed over two sample blocks (2010G and 2011G) during five
consecutive survey periods: March 2022 (normal season), June 2022 (natural leaf fall season),
February 2023 (Pestalotiopsis outbreak), July 2024 (natural leaf fall season), and November 2024
(normal season). Each block was mapped using a grid-based approach with a resolution of 30 by 30
meters. Within each grid, 3 to 5 observation points were collected, allowing for detailed and
systematic data collection across varying levels of canopy density (Figure le,f).

3.1.2. Remote Sensing Data

High-resolution multispectral imagery was obtained using the DJI Phantom 4 Multi-spectral
UAYV, equipped with sensors capturing the following wavelengths: Blue (B): 450 nm + 16 nm, Green
(G): 560 nm + 16 nm, Red (R): 650 nm + 16 nm, Red Edge (RE): 730 nm + 16 nm, and Near-Infrared
(NIR): 840 nm + 26 nm. The UAV flights were conducted at an altitude of 150 meters, with a front
overlap of 80% and a side overlap of 70%. Real-time kinematic (RTK) positioning was used to ensure
precise geolocation of each image captured. This high-resolution data was crucial for detailed Green
Canopy Cover Fracture measurements.

Sentinel-2 (S2) is a part of the Copernicus program, consisting of two satellites, Sentinel-2A and
Sentinel-2B, which provide high-resolution optical imagery. The sensor captures data in 13 spectral
bands: Visible (Blue, Green, Red), Red Edge (four narrow bands between red and infrared), Near-
Infrared (two bands), and Short-Wave Infrared (two bands). The spatial resolution ranges from 10
meters for RGB and NIR, 20 meters for red edge and short-wave infrared, to 60 meters for
atmospheric correction bands. Sentinel-2 imagery has been utilized to calculate NDVI at a 10-meter
resolution, aiding in precise vegetation density and health analysis over the plantation areas.

The Landsat program’s satellites, including Landsat 7 (L7), Landsat 8 (L8), and Landsat 9 (L9),
have been pivotal in acquiring the multispectral data necessary for these calculations. Landsat 7
carries the Enhanced Thematic Mapper Plus (ETM+), while Landsat 8 and 9 are equipped with the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI captures imagery
across multiple spectral bands: Blue, Green, Red, Near-Infrared (NIR), and Short-Wave Infrared
(SWIR). It also includes a Coastal Aerosol band designed for coastal studies and a Cirrus band for
cloud detection. Landsat data offer a 30-meter spatial resolution for most spectral bands, making
them highly suitable for broad-scale trend analysis and long-term environmental monitoring. Over
eight years, this data has been instrumental in tracking phenological changes and assessing the
sustained health of vegetation within plantation landscapes.

3.2. Data Processing
3.2.1. Satellite Data Preprocessing
The data processing framework for this study was meticulously designed to integrate and

harmonize multispectral imagery from three distinct satellite sources, each offering unique spatial
resolutions crucial for our analysis. The imagery was sourced from Landsat-7 (L7), Landsat-8 (L8),
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and Landsat-9 (L9), all with a 30-meter resolution, as well as Sentinel-2A (S2A) and Sentinel-2B (S2B),
also with a 30-meter resolution. Our harmonization process adopted the methodologies and code
outlined by [30], utilizing Google Earth Engine (GEE) for efficient processing. This study followed
the procedure established by [30], which included the use of relative spectral response (RSR)
adjustments. Additionally, leveraging the harmonization framework by [30], the vegetation index
(VI) algorithm was applied uniformly across the datasets to ensure consistency in the analyses.

Data cleaning and harmonization with remote sensing datasets involved several key steps to
ensure data consistency and accuracy. Initially, raw satellite data underwent atmospheric correction
to mitigate distortions caused by atmospheric particles. Cloud and cloud shadow masking were
applied to remove noise from the imagery. The datasets were adjusted for view and illumination
angles to maintain uniformity across acquisition times. Co-registration ensured spatial alignment
between images from different sensors, while reprojection and resampling standardized the data to
an ordinary pixel resolution and map projection. Finally, band adjustments were made to harmonize
the spectral differences between the Landsat and Sentinel datasets, resulting in a seamless, near-daily
harmonized surface reflectance.

Weekly composite images were generated to enhance temporal consistency further and facilitate
comparison with ground survey data. These composites were created by aggregating the best-
available, cloud-free observations from Landsat series and Sentinel-2 datasets within a seven-day
rolling window centered on each field survey date. This approach ensured that the remote sensing
data was closely aligned with the field measurement period, minimizing temporal discrepancies and
improving the reliability of canopy condition assessments. The compositing process effectively
reduced noise from transient atmospheric conditions and provided a more stable representation of
canopy reflectance, making it suitable for analyzing vegetation health dynamics over time.

3.2.2. UAV Data Preprocessing

The integration processing of high-resolution Multispectral Unmanned Aerial Vehicle (UAV)
imagery was a key stage, providing unprecedented information about plantation health and the
progression of rubber leaf fall disease. The stage began with collecting UAV imagery, which was
painstakingly processed to generate high-resolution spatial information. High-resolution UAV
imagery played a crucial role in revealing in-depth variations in density and health within the
plantation, offering a level of detail inaccessible through medium-resolution satellite imagery.

The UAV photos underwent a meticulous mosaicking exercise, during which a series of photos
taken with a drone were blended seamlessly together to produce high resolution, geographical
accuracy, and orthomosaic. The orthomosaic captured a two-dimensional representation of the study
area, with significant information such as X and Y coordinates and values for each pixel’s reflectance.
All the work in processing UAV images was conducted using Agisoft Metashape, which produced
high accuracy in orthomosaics and a digital surface model. High-detail texture mapping, dense point
cloud creation, and precise image alignment were conducted using Agisoft Metashape, ensuring
fidelity and spatial accuracy in the output datasets.

3.2.3. Ground Truth Data Preparation

A comprehensive data cleaning and harmonization process was conducted to ensure
consistency and accuracy across datasets. Field-collected data, including tree characteristics (clone
type, tree height, tree age, tree diameter, and canopy condition), were first checked for completeness
and accuracy. When possible, missing values were addressed using interpolation methods or cross-
referencing with field notes. Outliers and anomalies were identified through statistical analysis, such
as boxplots and Z-score assessments, and were either corrected or removed based on their context
and relevance. Once cleaned, the field data were harmonized with remote sensing datasets. This
involved georeferencing field observation points to align with the spatial resolution of the satellite
imagery (30x30 meters for Landsat and Sentinel-2). Coordinate adjustments were made to ensure a
precise overlay, accounting for any GPS discrepancies that occurred during field collection. Temporal
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harmonization was also performed to match the field data collection dates with the corresponding
satellite imagery acquisition dates, ensuring that both datasets represented the same phenological
stages. Finally, spectral vegetation indices derived from satellite imagery were linked to the
corresponding field data points. This integration allowed for a robust comparison between remote
sensing-derived metrics and ground-truth observations, facilitating subsequent modeling and
analysis.

3.2.4. Green Canopy Cover

This process enabled accurate quantification of the extent of vegetation within the study area.
Green Canopy Cover (GCC) was calculated using NDVI-derived classification, combined with
manual selection, to ensure accurate differentiation between tree canopy and non-canopy areas. Since
high NDVI values can also originate from background vegetation, such as grass, a two-step approach
was implemented:

1. NDVI thresholding was applied to identify potential green canopy pixels.
2. Manual selection was performed to refine the classification, ensuring that only tree canopy
pixels were included while excluding non-canopy vegetation such as grass and shrubs.

The final Green Canopy Cover (GCC) value was determined using the following formula [31]:

number of green pixel in a subplot
total number of pixel in a subplot

Green Canopy Cover = (1)

This approach enhanced the accuracy and reliability of canopy cover estimation by integrating
automated spectral classification with manual refinement, minimizing misclassification errors caused
by background vegetation.

3.3. Vegetation Index Calculation

Spectral Vegetation Indices (SVIs) are mathematical combinations of spectral bands designed to
enhance signals related to vegetation characteristics such as biomass, chlorophyll content, and
canopy structure. They are essential tools for assessing vegetation health, canopy cover, and stress
conditions in both agricultural and natural ecosystems. The selection of SVIs in this study was guided
by their proven effectiveness in monitoring canopy dynamics, sensitivity to specific vegetation traits,
and applicability in previous research on rubber plantations and disease stress assessments. Selection
Criteria for SVlIs:

1. Structural Attributes

e  Normalized Difference Vegetation Index (NDVI): Widely used to quantify vegetation density
and vigor, NDVI is sensitive to chlorophyll presence and effectively assesses canopy extent.
Tucker’s research demonstrated the effectiveness of NDVI in monitoring photosynthetically
active biomass in plant canopies [32].

¢  Enhanced Vegetation Index (EVI): This index offers improved sensitivity in high-biomass
regions, reducing atmospheric and canopy background noise, making it suitable for
monitoring dense vegetation. A. Huete et al. (2002) highlighted EVI’s ability to enhance the
vegetation signal with improved sensitivity in high biomass regions and improved
vegetation monitoring through de-coupling the canopy background signal and reducing
atmosphere influences [33].

e  Modified Triangular Vegetation Index 2 (MTVI2): Enhances sensitivity to chlorophyll content
and is less affected by soil background, aiding in accurate biomass estimation. While specific
studies on MTVI2 in rubber plantations are limited, its general effectiveness in vegetation
monitoring suggests potential applicability.

1.  Physiological Health

e Green NDVI (GNDVI): Utilizes green and near-infrared bands to assess chlorophyll

concentration, providing insights into photosynthetic activity. While GNDVI has effectively
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monitored crop health, its application in rubber plantations has not been extensively
documented.
2. Environmental Stress Factors

e  Optimized Soil-Adjusted Vegetation Index (OSAVI): Adjusts for soil brightness, improving
vegetation monitoring in areas with sparse canopy cover [34]. OSAVI’s effectiveness in
rubber plantations has not been specifically documented, suggesting an area for future
research.

e Atmospherically Resistant Vegetation Index (ARVI): Reduces atmospheric effects, enhancing
the accuracy of vegetation monitoring under varying atmospheric conditions. ARVI has been
utilized to minimize atmospheric influences in vegetation monitoring, though specific
applications in rubber plantations are limited.

3. Soil-Canopy Interactions

e  Modified Soil-Adjusted Vegetation Index (MSAVI): Reduces soil background influence,
enhancing canopy detection accuracy, especially in areas with sparse vegetation [35]. A. R.
Huete (1988) Introduced the Soil-Adjusted Vegetation Index (SAVI) to address soil brightness
influences, and MSAVI builds upon this to further minimize soil effects [36].

This targeted selection ensures the study captures multiple canopy attributes while minimizing
errors due to background reflectance or environmental noise. By incorporating SVIs that are sensitive
to structural, physiological, and environmental factors, the study aims to comprehensively assess the
health and stress conditions of rubber plantations.

Table 2. Vegetation Index.

Vegetation

Formula Description Reference
Index
(NIR - (2 x RED) + BLUE) / (NIR + Enhances vegetation signal
ARVI (2 x RED) + BLUE) while reducing atmospheric [37]
effects.
VI 2.5 x (NIR - RED) / (NIR + 6 x RED Oztm.uzes Vigetjlortl Slg“;l by -
-75x BLUE + 1) reducing soil and atmospheric
influences.
GNDVI (NIR - GREEN) / (NIR + GREEN) ~ Scnsitive — to - chlorophyll =0,
concentration and plant health.
Minimizes soil  brightness
(2NIR + 1 - sqrt(2NIR + 1)*2 - | .
MSAVI 8(NIR - RED))) / 2 influence on vegetation [35]
measurements.
1.5 x [1.2(NIR - GREEN) - 2.5(RED Enhances detection of
MTVI2 - GREEN)] / sqrt((2NIR + 1)*2 - chlorophyll content and canopy [39]
(6NIR - 5sqrt(RED)) - 0.5) structure.
NDVI (NIR - RED) / (NIR + RED) Standar.d mfiex for measuring [40]
vegetation vigor and biomass.
Reduces soil influence for
OSAVI (NIR - RED) / (NIR + RED + 0.16) sparse vegetation cover [34]

analysis.

3.4. Machine Learning Modeling
3.4.1. Model Selection

Selecting the appropriate machine learning models is crucial for accurately predicting green
canopy cover and understanding the phenological patterns of rubber plantations. This study
employed Random Forest (RF), Support Vector Machines (SVM), Classification and Regression Trees
(CART), and Linear Regression (LR) based on their proven performance in previous vegetation and
canopy mapping studies, their ability to handle spectral vegetation indices (SVIs), and their varying
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complexity in capturing nonlinear relationships. RF, an ensemble learning method, constructs
multiple decision trees and merges their results to enhance accuracy while controlling overfitting. RF
is particularly effective for vegetation classification due to its robustness in handling high-
dimensional data, ability to process large datasets, and resistance to noise and outliers, making it an
optimal choice for predicting canopy variation [41]. SVM, a supervised learning model, is well-suited
for high-dimensional feature spaces and has been widely applied in vegetation classification and land
cover mapping. Its kernel trick enables nonlinear classification, allowing it to differentiate between
subtle spectral variations in canopy stress conditions [42]. CART, a decision-tree-based model, is
known for its simplicity and interpretability, making it useful for identifying key spectral features
associated with canopy health. While prone to overfitting in complex datasets, CART provides
insights into hierarchical decision-making processes in vegetation modeling [43]. LR, despite its
limitations in handling nonlinear relationships, serves as a baseline model for benchmarking the
performance of more advanced algorithms. It is widely used in spectral vegetation index analysis,
offering a simple yet interpretable approach to understanding canopy variation trends [44]. While
deep learning approaches, such as Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks, have shown promise in remote sensing applications, their reliance on
large labeled datasets and computationally intensive training processes makes them less practical for
this study. By focusing on traditional machine learning models with varying levels of complexity,
this study ensures a comprehensive evaluation of predictive modeling techniques for green canopy
estimation.

3.4.2. Feature Engineering

Spectral vegetation indices (SVIs) are mathematical combinations of spectral bands designed to
highlight specific characteristics of vegetation, such as chlorophyll content, water stress, or biomass.
This study employed SVIs as key features to predict green canopy cover, leveraging their sensitivity
to various vegetation properties. A diverse set of spectral vegetation indices was initially considered,
encompassing indices sensitive to chlorophyll content, vegetation vigor, and structural attributes of
the canopy.

3.4.3. Model Training, Validation, and Evaluation

The process of model training, model testing, and model evaluation was designed with care to
validate and evaluate model accuracy and prediction robustness. K-fold cross-validation was
conducted for model testing, in which a k-way partitioning of the dataset into folds of similar size,
training, and testing with k-1 folds and testing with one-fold, and then iterated for k=5 times, with
one fold being utilized in one run, and then averaging for an unbiased model performance estimate
[45].

Model performance was measured through a range of key performance statistics. Root Mean
Square Error (RMSE) gauged average prediction error size, estimating model accuracy. Variability in
the target variable predictable in terms of proportion with explanatory variable(s) was gauged using
the Coefficient of Determination (R?) and mean of average absolute prediction and observation value
discrepancies through the use of the Mean Absolute Error (MAE). Adjusted R? also incorporated
consideration for model complexity through an allowance for a range of model predictors, providing
a more accurate model fit [46].

Model performance hyperparameters for improvement utilized a grid search algorithm using
cross-validation, in which a range of values for a range of hyperparameters were examined
sequentially for a specific hyperparameter value for a maximized model performance. Tuned
important hyperparameters included the learning rate, controlling model optimization step size;
trees, controlling model iterations, such as trees, in an ensemble model; and the maximum tree,
controlling tree complexity; and regularization coefficients, controlling model over-fitting through
penalty for high coefficients [47].
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4. Results
4.1. Validation of Satellite-Derived Vegetation Indices with Field Observations

Figure 3 presents the Pearson correlation coefficients between green canopy coverage and
various spectral vegetation indices across five distinct periods: March 2022 (normal season after a
Pestalotiopsis outbreak), June 2022 (natural leaf fall season), February 2023 (during a Pestalotiopsis
outbreak), July 2024 (natural leaf fall season), and November 2024 (normal season). The spectral
vegetation indices analyzed include NDVI, EVI, MTVI2, GNDVI, ARVI], OSAVI, and MSAV], each
representing different vegetation biophysical and biochemical properties.

Correlation Matrix of Green Canopy Cover with Vegetation Index
Pearson Correlation Values

2024-Nov

2024-Jul
2023 Feb
2022-Jun

2022-Mar

Pearson Correlation
N B ]
0.00 0.25 0.50 0.75 1.00

Figure 3. Graph of Correlation matrix between Green Tree Canopy and Vegetation Index. The correlation values
range from 0 to 1, with a color gradient indicating the strength of the relationship—blue representing lower

correlations and orange to red indicating stronger correlations.

The highest correlation values are observed in November 2024, particularly for GNDVI (0.57),
ARVI (0.55), MSAVI (0.53), and NDVI (0.55), suggesting a strong linear relationship between these
indices and green canopy coverage during this normal growth period. The strong correlation of
GNDVI, which is particularly sensitive to chlorophyll content, highlights the importance of this index
in capturing photosynthetic activity under healthy vegetation conditions. Similarly, MSAVI and
NDVI, which are designed to minimize soil background influence, exhibit robust correlations,
confirming their effectiveness in assessing vegetation density and productivity during stable
environmental conditions.

In contrast, February 2023, which coincides with a Pestalotiopsis outbreak, shows the weakest
correlations across all indices, with EVI displaying the lowest value (0.03). This decline suggests that
disease-related chlorophyll degradation and structural damage to the canopy significantly reduce the
effectiveness of spectral indices in capturing vegetation characteristics. EVI, optimized for
minimizing atmospheric and soil background noise, relies heavily on healthy canopy reflectance in
the near-infrared (NIR) spectrum. During the disease outbreak, reduced chlorophyll concentration
and increased leaf senescence likely diminished the spectral contrast necessary for EVI to maintain
strong correlations with green canopy cover. Similarly, GNDVI (0.21) and NDVI (0.26) exhibit weak
associations, indicating that leaf senescence and defoliation alter the spectral response in the visible
and NIR bands, reducing the predictive power of these indices.

March 2022, which follows a previous Pestalotiopsis outbreak, exhibits moderate correlations,
particularly for MSAVI (0.49), MTVI2 (0.50), and NDVI (0.50). These values suggest partial recovery
of the canopy, as some vegetation indices regain their ability to detect healthy green biomass. MSAVI,
which is particularly effective in correcting for soil background interference, demonstrates its utility
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in monitoring regrowth in environments where canopy cover is recovering from disease-induced
stress. The moderate correlation of NDVI and MTVI2 also suggests that vegetation productivity is
improving, but lingering effects from the outbreak may still influence spectral reflectance.

Periods associated with seasonal leaf fall, namely June 2022 and July 2024, display lower but
relatively stable correlations, ranging between 0.24 and 0.35 across different indices. This pattern
aligns with expected canopy thinning and reduced leaf area index (LAI) during natural defoliation,
which affects the spectral signals captured by vegetation indices. NDVI and GNDVI remain relatively
stable in these periods, indicating their robustness in detecting green canopy even in partially
defoliated conditions. In contrast, indices that rely more on the contrast between vegetation and soil
reflectance, such as EVI and MTVI2, show weaker correlations, likely due to increased exposure of
the underlying surface.

Overall, the observed correlation trends highlight the impact of environmental stressors,
including disease outbreaks and seasonal defoliation, on the spectral response of green canopy cover.
The results emphasize that while NDVI, GNDVI, and MSAVI consistently exhibit strong correlations,
their effectiveness varies depending on canopy health conditions. In normal growth periods, indices
like GNDVI and NDVI are highly effective, whereas EVI becomes less reliable under stress conditions
such as disease outbreaks. These findings suggest that selecting appropriate vegetation indices
should consider not only the phenological stage of vegetation but also the presence of external stress
factors, ensuring accurate monitoring of canopy dynamics under diverse environmental conditions.

The UAV imagery shown in Figure 4 provides a Visual comparison of canopy conditions across
five key periods: March 2022 (normal season after a Pestalotiopsis outbreak), June 2022 (natural leaf
fall season), February 2023 (during a Pestalotiopsis outbreak), July 2024 (natural leaf fall season), and
November 2024 (normal season). The imagery highlights canopy health and density differences over
time, correlating with observed changes in spectral vegetation indices. In March 2022, the canopy
showed signs of recovery following the Pestalotiopsis outbreak, with moderate greenness and sparse
healthy patches. June 2022, during the natural leaf fall season, displays a mix of healthy green and
fallen leaves, indicating a natural reduction in canopy density. February 2023, marked by an active
Pestalotiopsis outbreak, exhibits the most significant canopy degradation, with widespread
discoloration and reduced green cover, aligning with the low vegetation index correlations observed
during this period. In July 2024, despite being another natural leaf fall season, the imagery reveals a
unique issue: the background grass appears significantly taller and denser, contributing to
misleadingly high greenness levels in satellite-recorded spectral vegetation indices. This discrepancy
suggests that the index may have captured the greenness of the grass rather than the actual canopy,
potentially inflating the correlation values for this period. Finally, November 2024 shows a fully
recovered, dense green canopy typical of a normal season, corresponding with the highest vegetation
index correlations observed in the earlier heatmap analysis. These UAV observations underscore how
ground conditions, such as grass growth, can influence vegetation index readings from satellite
imagery, emphasizing the importance of accounting for such factors when interpreting remote
sensing data.
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Figure 4. UAV imagery showing rubber tree canopy changes across normal seasons, natural leaf fall, and
Pestalotiopsis outbreaks from 2022 to 2024: (upper) natural composite, (lower) false composite.

4.2. Green Canopy Cover Model Performance

Table 3 elucidates the predictive efficacy of four distinct models: Random Forest (RF), Support
Vector Machine (SVM), Classification and Regression Trees (CART), and Linear Regression,
employed to estimate green canopy coverage using various spectral vegetation indices (SIVs). The
evaluative metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-squared
(R?), and Adjusted R-squared (Adj. R?), assessed for both training and testing datasets. The Random
Forest (RF) model exhibits superior predictive performance compared to the other models, attaining
the lowest RMSE (3.01) and MAE (2.24) during training and maintaining strong performance in
testing with RMSE (6.46) and MAE (4.97). Its R? and Adj. R? values of 0.96 in training and 0.82/0.81 in
testing underscore its robustness, accounting for a substantial proportion of variance in green canopy
cover. This confirms the model’s high reliability for predictive applications. The SVM model ranks
second in efficacy, achieving RMSE (6.67) and MAE (5.04) in training, with similar results in testing
(RMSE: 6.62, MAE: 5.12). While slightly less accurate than RF, its R? and Adj. R? values (0.81/0.80 in
both training and testing) suggest a strong correlation between spectral vegetation indices and green
canopy cover. The CART model demonstrates slightly lower performance compared to SVM, with
an RMSE of 7.06 and MAE of 5.30 in training, and a higher RMSE of 7.78 and MAE of 5.66 in testing.
The corresponding R? and Adj. R? values (0.78/0.78 in training and 0.74/0.72 in testing) indicate
moderate predictive power but reduced model stability. The Linear Regression model performs the
least favorably, yielding the highest RMSE (9.13) and MAE (6.99) in training, with testing results
(RMSE: 9.04, MAE: 7.17) confirming its substantial prediction inaccuracies. Its R? and Adj. R? values
(0.64/0.63 in training and 0.64/0.62 in testing) indicate limited explanatory power, capturing only 64%
of the variance in green canopy coverage.

In conclusion, the RF model emerges as the most precise and reliable for forecasting green
canopy coverage using spectral vegetation indices, followed by SVM, CART, and Linear Regression.
The significant performance disparity between RF and Linear Regression underscores the advantages
of utilizing advanced machine-learning techniques for complex environmental modeling. Given its
exceptional accuracy and stability, the RF model is selected for subsequent time-series forecasting of
green canopy coverage.
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Table 3. Model prediction performance.

Training Testing
Model
RMSE MAE R?* Adj.R2 RMSE MAE R* Adj.R?
RF 3.01 224 096 0.96 6.46 497  0.82 0.81
SVM 6.67 504  0.81 0.8 6.62 512 0.81 0.8
CART 7.06 5.3 0.78 0.78 7.78 566 074 0.72
Linear Regression 9.13 699 0.64 0.63 9.04 717  0.64 0.62

Figure 5 illustrates the correlation between measured and predicted green canopy cover
percentages using the RF Model across five distinct temporal intervals, each influenced by specific
environmental conditions. The data from June 2022, collected during the natural leaf abscission
season, exhibits the highest RMSE of 4.518 and an R? of 0.651, indicating increased variability due to
seasonal leaf shedding. The March 2022 dataset, recorded following the Pestalotiopsis outbreak,
shows an RMSE of 4.179 and an R? of 0.64, suggesting residual effects of the outbreak on canopy
recovery. The February 2023 dataset, collected during an active Pestalotiopsis outbreak, demonstrates
improved predictive accuracy with an RMSE of 3.365 and an R? of 0.715, likely due to the model
effectively capturing canopy degradation patterns. The July 2024 dataset, obtained during another
natural leaf fall period, presents an RMSE of 4.888 and an R? of 0.655, where the presence of taller
background grasses during this season may have influenced vegetation index assessments, leading
to slight discrepancies in predictions. Finally, the November 2024 dataset, collected during the
standard season, yields the best model performance, with the lowest RMSE of 2.831 and the highest
R? of 0.738, reflecting complete canopy recovery and stable environmental conditions. Overall, while
the model maintains consistent predictive performance, variations in accuracy are influenced by
environmental factors such as disease outbreaks and seasonal leaf abscission, which introduce
fluctuations across different timeframes

Scatterplot of Green Canopy Cover (%)

80

label
2022-Jun: RMSE 4.518, R?0.651
2022-Mar- RMSE 4 179, R2 0 64
2023-Feb: RMSE 3365, R20.715
2024-Jul: RMSE 4.888, R2 0.655
2024-Mov: RMSE 2.831, R20.738
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Measured Green Canopy Cover (%)

Figure 5. Scatterplot of measured versus predicted green canopy density (%) across five different periods: March
2022 (normal season after Pestalotiopsis outbreak), June 2022 (natural leaf fall season), February 2023
(Pestalotiopsis outbreak), July 2024 (natural leaf fall season), and November 2024 (normal season). Each color
represents a different survey period, with performance metrics (RMSE and R?) indicating the model’s prediction

accuracy. The orange line represents the ideal 1:1 relationship between measured and predicted values.
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Figure 6 presents the Canopy Density Map at the 2011G2 Block, illustrating the spatiotemporal
variations in green canopy cover across five different time intervals, each influenced by distinct
environmental conditions. In March 2022, following the Pestalotiopsis outbreak, the canopy showed
moderate recovery, with patches of yellow and green indicating spatial heterogeneity in regrowth,
suggesting lingering effects of the outbreak on tree health. By June 2022, during the natural leaf fall
season, the canopy cover appears more variable, with an increased presence of yellow shades
indicating lower density, aligning with the expected seasonal reduction in canopy greenness. In
February 2023, during an active Pestalotiopsis outbreak, the canopy density map revealed
widespread yellow regions, signifying significant degradation and reduced vegetation health. In July
2024, another natural leaf fall period, the canopy density exhibits a similar decline, with yellow areas
reflecting seasonal leaf shedding, potentially compounded by background vegetation such as taller
grasses. By November 2024, in the normal season, the canopy demonstrates full recovery, with a
predominance of green shades reflecting higher canopy density, suggesting stable environmental
conditions and healthy tree growth. The high-resolution imagery in the lower row further validates
these observations, reinforcing the spatial patterns in canopy cover dynamics and highlighting the
impact of seasonal changes and disease outbreaks over time.

After Pestalotiopsis

outbreak Natural Leaf Natural Leaf
Normal Season Fall Season Pestalotiopsis outbreak Fall Season Normal Season
March 2022 June 2022 February 2023 July 2024 November 2024

"

[y CREEA ALY
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Figure 6. Canopy Density Map at 2011G2 Block. The upper row presents pixel-based canopy density maps, while
the lower row displays corresponding UAV imagery used for validation within the sample grid of Block 2011G2.
The color scale at the bottom, ranging from 50 (yellow, indicating lower canopy density) to 100 (green,
representing higher canopy density), visually depicts the spatial variations in canopy coverage across the study

area.

5. Discussion

The findings from this study highlight the varying effectiveness of spectral vegetation indices
(VIs) in monitoring green canopy coverage under different environmental stress conditions,
including normal growth periods, disease outbreaks, and seasonal leaf fall. These results align with
past studies that have explored the relationships between VIs and vegetation health under various
stressors, including fungal infections, nematode infestations, and physiological changes resulting
from environmental factors. The observed decrease in correlation values during the Pestalotiopsis
outbreak (February 2023) supports findings from [48], who reported that rubber tree infection with
powdery mildew significantly reduces chlorophyll content, leading to decreased reflectance in the
red and near-infrared (NIR) wavelengths. The present study’s lowest correlation for EVI (0.03) during
the outbreak aligns with previous findings, which indicate that EVI is negatively correlated with
chlorophyll reduction due to infection (- 0.265). This suggests that EVI is highly sensitive to
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chlorophyll degradation and structural damage, making it unreliable for assessing canopy health
under severe stress conditions. Similarly, research on South American Leaf Blight (SALB) has found
that disease symptoms significantly alter spectral reflectance, particularly in the visible (400-700 nm)
and NIR (NIR, 750-1300 nm) regions [49]. The significant decrease in spectral contrast due to disease-
induced mesophyll cell damage parallels the weak correlation of NDVI (0.26) and GNDVI (0.21)
during the Pestalotiopsis outbreak in the present study. These findings highlight the significance of
leaf structure and pigment concentration in determining the efficacy of spectral indices for disease
detection.

Further studies emphasize that spectral variations in rubber trees are influenced by both canopy
and leaf-level characteristics, with notable differences observed in the shortwave infrared (SWIR)
region [50]. This aligns with the present study’s findings, where GNDV], an index highly sensitive to
chlorophyll content, exhibited strong correlations under normal conditions but declined during
periods of stress. The distinction in spectral responses between canopy and leaf levels, particularly
in the SWIR spectrum, suggests that morphological differences, sun exposure, and water content play
significant roles in shaping spectral reflectance patterns. The moderate correlations observed in
March 2022, during the post-outbreak recovery phase, and the relatively stable yet lower correlations
during seasonal leaf fall periods (June 2022 and July 2024) further indicate how environmental
stressors affect canopy spectral properties. Research has demonstrated that damaged trees experience
spectral shifts in the green-to-red band region (550-640 nm), similar to the patterns observed in this
study, where NDVI and GNDVI remained relatively stable during seasonal leaf thinning, while
indices like EVI and MTVI2 exhibited weaker correlations [49,51]. This highlights the importance of
selecting appropriate vegetation indices based on phenological stages and canopy conditions.

Additionally, different vegetation indices respond uniquely to variations in vegetation health.
Karlson et al. (2015) demonstrated that NDVI and ARVI effectively detect moderate to high canopy
cover, which aligns with the findings of this study, where NDVI and MSAVI exhibited strong
correlations under normal growth conditions. Conversely, studies by [15] indicate that MSAVI and
SAVI outperform NDVI in mixed vegetation environments by minimizing soil background effects,
supporting the present study’s observations that soil-adjusted indices are particularly effective in
stable canopy conditions. [9] further highlighted that index relying on phenological trends, such as
EVI and MTVI2, may be less reliable during stress conditions, which corresponds with their weaker
performance in this study during seasonal leaf fall and post-disease recovery phases.

These findings reinforce the importance of considering phenological stage, canopy health, and
external stressors when selecting the most suitable vegetation index. While NDVI and MSAVI
perform well under normal conditions, indices such as SAVI may be more effective in detecting
vegetation stress in sparse or heterogeneous canopies. Given these variations, integrating multi-
source remote sensing data and advanced machine learning techniques can enhance the accuracy and
reliability of vegetation monitoring, particularly for applications in rubber plantation health
assessment and precision forestry.

Moreover, nematode infestations in rubber tree orchards have been associated with weak R2
values (<0.31) when correlating nematode density with spectral indices (Lemes et al., 2020). This
aligns with the weak correlation values observed during disease outbreaks in the present study,
reinforcing the idea that severe biotic stressors reduce the predictive power of VIs. The comparative
model analysis revealed that Random Forest (RF) performed best in predicting green canopy cover,
with a considerable margin over Support Vector Machines (SVM), Classification and Regression
Trees (CART), and Linear Regression (LR). RF achieved the lowest RMSE (6.46) and the highest R?
(0.82), making it the most dependable model for estimating rubber tree canopy variation. These
results indicate that RF outperformed other predictive models in estimating green canopy coverage
using spectral vegetation indices. This finding aligns with previous studies demonstrating the
robustness of machine-learning techniques in vegetation analysis [52,53]. The superior performance
of RF is likely due to its ability to handle complex, nonlinear relationships between vegetation indices
and canopy cover while mitigating overfitting through ensemble learning [23]. In contrast, SVM
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struggled with high-dimensional spectral data, which often exhibit nonlinear interactions requiring
careful kernel selection and hyperparameter tuning, leading to suboptimal performance in this study.
Similarly, CART demonstrated lower accuracy due to its tendency to overfit training data, especially
when dealing with noisy or overlapping spectral information, resulting in poor generalization to new
canopy conditions.

These findings align with previous studies that have demonstrated the effectiveness of
ensemble-based learning models in vegetation analysis [54,55]. The temporal analysis of green
canopy coverage across five different periods demonstrates promising results, though accuracy
varies depending on environmental conditions. The lowest accuracy was observed during the natural
leaf fall period and the Pestalotiopsis outbreak, where the presence of a strong green background
from grass interfered with spectral vegetation indices’ ability to accurately detect canopy loss [50].
This issue arises because traditional vegetation indices rely on spectral differences to assess canopy
health, but the green background from understory vegetation can mask actual canopy decline,
leading to overestimated vegetation index values. This limitation is further evidenced by the low
correlation between vegetation indices and actual canopy cover during the Pestalotiopsis outbreak
and the seasonal leaf fall period. While machine learning approaches enhance canopy cover
predictions by incorporating additional spectral and spatial information, they are still limited by
background interference, which reduces accuracy. As demonstrated in previous studies, RF
outperforms methods that rely solely on vegetation indices despite these challenges. These findings
highlight the importance of integrating advanced classification methods or multi-source data to
enhance accuracy.

The difficulty in assessing canopy loss using vegetation indices is further reinforced by the weak
correlation between vegetation indices and canopy cover during the Pestalotiopsis outbreak and the
seasonal leaf fall period. This suggests that the primary challenge lies in accurately modeling canopy
dynamics under varying environmental conditions rather than simply evaluating vegetation index
performance. Moreover, the observed relationship between increasing Pestalotiopsis severity and
decreasing leaf area index (LAI) aligns with previous research, which has reported a strong negative
correlation between Pestalotiopsis outbreaks and reductions in LAI [55]. Other studies have also
confirmed a significant decline in LAI during abnormal leaf fall (ALF) disease outbreaks, with
variations depending on the region and period [3]. The findings underscore the efficacy of RF in
predicting green canopy coverage using spectral vegetation indices. The model’s robustness across
various environmental conditions underscores its potential for real-time forest health monitoring,
particularly in relation to disease outbreaks and seasonal leaf dynamics. Integrating additional
spectral, texture, and color features alongside higher-resolution imagery could further refine model
accuracy. Future research should incorporate advanced remote sensing techniques and multi-source
data fusion to improve predictive capabilities and support sustainable rubber plantation
management efforts.

6. Conclusions

In conclusion, this study underscores the varying effectiveness of spectral vegetation indices in
monitoring green canopy coverage under different environmental stress conditions, including
normal growth periods, disease outbreaks, and seasonal leaf fall. The findings reveal that indices
such as NDVI, GNDVI, and MSAVI perform well under stable conditions, while EVI demonstrates
significant limitations in detecting canopy health during disease outbreaks due to its sensitivity to
chlorophyll degradation and structural damage. The weak correlations observed during the
Pestalotiopsis outbreak align with previous research highlighting the impact of fungal infections and
mesophyll cell damage on spectral reflectance. Additionally, seasonal variations influence spectral
responses, with moderate correlations in post-outbreak recovery phases and lower but stable
correlations during natural leaf fall, reinforcing the importance of phenological considerations when
selecting vegetation indices.
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Machine learning models, particularly Random Forest (RF), significantly enhance the accuracy
of canopy cover estimation compared to traditional regression-based methods. The superior
performance of RF, characterized by its ability to handle nonlinear relationships and mitigate
overfitting, makes it a robust tool for predicting green canopy dynamics. In contrast, Support Vector
Machines (SVM) and Classification and Regression Trees (CART) exhibited lower predictive accuracy
due to their inherent limitations in handling complex spectral interactions. The study also highlights
challenges in assessing canopy loss when background vegetation, such as taller grasses, affects
spectral reflectance, leading to overestimated vegetation index values. This emphasizes the need for
integrating additional data sources, such as LiDAR, SAR, and high-resolution UAV imagery, to
improve model accuracy and minimize misclassification errors.

Overall, this study contributes to the growing body of research on remote sensing applications
for vegetation monitoring, demonstrating the necessity of multi-index approaches, machine learning
techniques, and high-resolution data integration for accurate canopy assessment. Future research
should focus on incorporating multi-source remote sensing data, refining phenology-based
classification models, and enhancing climate-informed predictive modeling to improve vegetation
health monitoring in dynamic ecosystems. By leveraging these advancements, more effective
strategies can be developed for sustainable rubber plantation management, forest conservation, and
precision agriculture applications.

Building on this work, this paper specifically focuses on modeling rubber canopy density during
disease outbreaks, providing crucial insights into canopy loss’s spatial and temporal dynamics.
However, understanding the underlying mechanisms driving disease progression remains a key
challenge. To further investigate this aspect, a forthcoming manuscript will explore disease
progression mechanisms within rubber plantation ecosystems. Before formal journal submission, this
follow-up study will be available as a preprint. Together, these complementary studies contribute to
a comprehensive framework for rubber plantation health monitoring, offering valuable insights into
the interactions between disease outbreaks, environmental stressors, and canopy dynamics.
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