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Abstract: Accurate estimating green canopy cover in rubber plantations is crucial for monitoring 

vegetation health and assessing stress impacts. This study validates satellite-derived canopy cover 

estimates by integrating UAV-based measurements, ground observations, remote sensing, and 

machine learning approaches. Sentinel-2 and Landsat imagery were utilized to derive spectral 

vegetation indices (SVIs) under varying stress conditions, while UAV-based canopy cover 

assessments provided high-resolution reference data for validation. The findings revealed that while 

certain SVIs exhibited strong correlations with canopy density under stable conditions, their 

predictive accuracy declined significantly during extreme stress events, such as Pestalotiopsis 

outbreaks and seasonal leaf fall periods. To improve estimation accuracy, machine learning models 

were developed, with Random Forest (RF) outperforming Support Vector Machines (SVM), 

Classification and Regression Trees (CART), and Linear Regression (LR). RF achieved the highest 

predictive accuracy (R² = 0.82, RMSE = 6.48, MAE = 4.97), demonstrating its reliability in capturing 

non-linear interactions between canopy heterogeneity and environmental stressors. These results 

highlight the limitations of traditional vegetation indices and emphasize the importance of multi-

sensor integration and advanced modeling techniques for more precise canopy monitoring. This 

study contributes to developing robust remote sensing frameworks for early stress detection and 

sustainable plantation management in tropical rubber ecosystems. 

Keywords: rubber plantations; remote sensing; pestalotiopsis; canopy dynamics; machine learning 

 

1. Introduction 

Rubber (Hevea brasiliensis) plantations play a vital role in the global rubber industry, 

particularly in tropical regions such as Indonesia, one of the leading producers. However, rubber 

production is increasingly threatened by environmental stressors, including Pestalotiopsis leaf fall 
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disease, which has significantly impacted latex yields since 2016 [1] This fungal disease accelerates 

defoliation, weakens tree vigor, and disrupts the global rubber supply chain. The ability to monitor 

canopy health is essential for early disease detection and effective plantation management. Canopy 

cover serves as a key indicator of tree health, as defoliation reduces photosynthetic activity and 

increases vulnerability to secondary infections [2]. Severe outbreaks can result in tree mortality, 

necessitating costly replanting and negatively affecting both large-scale plantations and smallholder 

farmers [3]. Given rubber’s economic significance in tire manufacturing, industrial products, and 

medical supplies, accurate canopy monitoring is crucial for mitigating economic losses and 

strengthening disease control strategies. 

Remote sensing has become a critical tool for mapping and monitoring tree canopy cover, 

offering valuable insights for environmental research, forest management, and land-use planning [4–

6] By leveraging satellite and aerial imagery, such as Landsat, MODIS, WorldView, and LiDAR, 

remote sensing enables large-scale estimation of canopy attributes, including density, structure, and 

biomass [6–8]. Advanced image processing and machine learning techniques have further improved 

the accuracy of canopy mapping. Phenology-based approaches utilizing vegetation indices such as 

NDVI, EVI, and LSWI have demonstrated effectiveness in distinguishing rubber plantations from 

other vegetation types [9–11]. Additionally, object-based classification, combined with phenological 

data, has enhanced the accuracy of rubber plantation mapping, reducing errors associated with 

fragmented landscapes [12–14]. 

Machine learning models, including Random Forest (RF) and Support Vector Machines (SVM), 

have significantly improved the precision of canopy mapping and disease detection in rubber 

plantations. RF models trained with multi-temporal and multi-source remote sensing data have been 

successfully applied to estimate canopy cover and aboveground biomass, demonstrating their utility 

for monitoring forest and plantation ecosystems [4,13]. Empirical and neural network (NN) models 

have also been developed for assessing rubber canopies, demonstrating high accuracy in predicting 

leaf area index (LAI) [15]. While deep learning architectures such as Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory networks (LSTMs) have been explored for extracting spatial 

and temporal features from remote sensing datasets, their application in rubber plantation 

monitoring remains limited due to extensive data requirements and computational constraints [16]. 

Mapping rubber canopy during disease outbreaks or natural leaf fall season presents significant 

challenges due to changes in spectral and temporal characteristics. Remote sensing techniques, 

including Sentinel-2 and PlanetScope imagery, have been instrumental in detecting phenological 

variations in rubber plantations affected by Pestalotiopsis-induced leaf fall [17,18]. However, 

previous studies evaluating canopy dynamics under Pestalotiopsis outbreaks, such as those by [17] 

and [19] primarily relied on single vegetation indices (VIs), which are highly susceptible to 

background contamination. To overcome these limitations, this study employs Sentinel-2 and 

Landsat series imagery, integrating multiple VIs with time-series analysis to enhance accuracy. Time-

series analysis and machine learning models, such as RF regressors, have been utilized to assess 

canopy conditions by linking disease severity stages with defoliation cycles and climatic variables 

[18]. UAV-based multispectral imaging has also emerged as an effective tool for high-resolution 

disease monitoring, enabling the identification of infected trees through spectral and textural analysis 

[20,21]. Additionally, spectral vegetation indices derived from UAV-based monitoring have been 

employed to classify rubber clones and assess their resistance to environmental stressors [22]. 

However, challenges such as cloud contamination, seasonal spectral variations, disease-induced leaf 

fall, and natural defoliation cycles persist. Integrating multi-source remote sensing data with 

advanced classification techniques, such as SVM and feature selection algorithms, improves disease 

detection accuracy and provides valuable insights for mitigating production losses in rubber 

plantations [23–26] 

To address these challenges, this study integrates remote sensing, UAV-based canopy 

validation, and machine learning techniques to analyze the dynamics of rubber tree canopies under 

Pestalotiopsis outbreaks and climatic stressors. By leveraging multi-scale data and advanced 
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computational methods, the study aims to enhance monitoring accuracy, enable early stress 

detection, and improve predictive modelling for plantation resilience. A key novelty of this study is 

the use of time-series ground observations to validate and model canopy dynamics under varying 

stress conditions, offering deeper insights into seasonal variations, disease progression, and 

environmental stress responses. Unlike single-time-point assessments, time-series observations 

capture long-term trends and canopy recovery patterns, improving the reliability and applicability 

of remote sensing-based models for plantation management. Green canopy cover estimates derived 

from satellite imagery are cross validated against high-resolution UAV data and ground 

measurements, ensuring a comprehensive and robust evaluation of canopy conditions. 

In addition to RF and SVM, this study applies Classification and Regression Trees (CART) and 

Linear Regression models to enhance the robustness of canopy cover prediction. While RF and SVM 

have been widely employed in remote sensing for canopy classification and disease detection, 

incorporating CART and Linear Regression offers a more holistic assessment of model performance 

[27,28]. Moreover, the study acknowledges the potential of deep learning architectures, such as CNNs 

and LSTMs, although their application remains limited due to the need for extensive labeled datasets 

and high computational power [16]. Additionally, the study acknowledges the increasing importance 

of remote sensing in enhancing rubber plantation monitoring through improved mapping, change 

detection, and carbon and biomass assessment [6]. Therefore, this study primarily focuses on 

traditional machine learning approaches, with future research considering the integration of deep 

learning techniques for improved canopy monitoring. 

By combining remote sensing, machine learning, and UAV-based validation, this research 

contributes to the advancement of precision agriculture strategies for rubber plantations. The 

findings will support plantation managers and policymakers in implementing proactive disease 

control measures, optimizing rubber production, and ensuring sustainable plantation management 

in the face of climate variability and emerging threats. 

Given the complexity of this research, the findings are structured into two complementary 

studies. This paper focuses on modeling canopy density through remote sensing, UAV-based 

validation, and machine learning. A second study extends this work by analyzing time-series 

variations in green canopy cover in relation to climate conditions, disease outbreaks, and tree 

characteristics, including clone type and age. Together, these studies provide a comprehensive 

understanding of canopy dynamics in rubber plantations under both environmental and disease-

related stressors. 

2. Study Area 

The study was conducted at the Sembawa Rubber Research Center plantation, located in 

Banyuasin Regency, South Sumatra Province, Indonesia (Figure 1a–c). The research center, managed 

under the Indonesian Rubber Research Institute, spans a total area of 3,379 hectares and serves as a 

key site for rubber cultivation research, breeding programs, and agronomic studies. The plantation 

is strategically divided into five distinct districts, each designated for specific research and cultivation 

purposes. This study specifically focused on Block 2010G2 and Block 2011G, both dedicated to rubber 

cultivation. These blocks were selected due to their differing planting years and clone compositions, 

allowing for an in-depth comparative analysis of canopy dynamics under varying environmental 

conditions. Block 2011G, established in 2011, consists of a mixed clone composition of IRR 112, and 

BPM 24, which are known for their resilience and latex production potential. Meanwhile, Block 

2010G2, planted in 2010, features IRR 118, 105, 100, BPM 109, 107, 24, IRR 112, 05, RRIC 100, PR 303, 

GT 1, PB 260, 330, and 340 clones, each possessing distinct physiological characteristics that influence 

their growth response to environmental stressors such as seasonal leaf fall and disease outbreaks. 
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Figure 1. Map of Study Area (a) Indonesia, (b) South Sumatra Province, (c) The Sembawa Rubber Research 

Center plantation blocks, (d-e) Block 2010G2 and 2011G with grid and point samples, (f-g) field data collection, 

(h-j) canopy photo from high to low density. 

3. Materials and Methods 

This section outlines the methodologies employed in this study, as illustrated in Figure 2, to 

examine the intricate dynamics influencing rubber green canopy cover. By integrating satellite 

imagery, Unmanned Aerial Vehicle (UAV) imagery, and field measurements. This study utilizes 

canopy cover data from two plantation blocks, 2010G2 and 2011G, to assess the impact of 

Pestalotiopsis outbreaks and natural leaf fall events. Outbreak periods were defined as occurring 

between November and February (from 2018 onward), while seasonal leaf fall was observed between 

June and August [29]. These defined periods enable a systematic evaluation of canopy dynamics and 

their correlation with environmental and biological stressors. 
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Figure 2. Workflow. 

3.1. Data Collection 

Integrating datasets from various sources, including ground-level observations, UAV imagery, 

and medium-resolution satellite images, facilitates a nuanced understanding of the vegetative 

dynamics within rubber plantations. This approach enables a detailed examination of the spatial and 

temporal variations that impact rubber plant health and productivity. Table 1 summarizes the 

research data and variables, underlining the study’s methodological rigor and the depth of data 

integration. 

Table 1. Research Data and Variables. 

Variable Data Source Time Frame Spatial & Temporal Resolution 

Tree Properties (Height, 

Diameter, Canopy 

Density, Photo) 

Field Survey 

25-28 March 2022 

8-12 June 2022 

7-13 February 2023 

1-5 July 2024 

– 

 UAV Imagery 

25-28 March 2022 

8-12 June 2022 

7-13 February 2023 

1-5 July 2024 

6-11 November 2024 

10cm 

Vegetation Index  

 

 

 

Sentinel-2A (ESA) 2022–2024 10m, 5 Day 

Sentinel-2B (ESA)   

Landsat-7 (USGS)  30m, 16 Day 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 March 2025 doi:10.20944/preprints202503.1518.v1

https://doi.org/10.20944/preprints202503.1518.v1


 6 of 21 

 

 

 
Landsat-8 (USGS)   

Landsat-9 (USGS) 2022–2024  

3.1.1. Field Survey Collection 

This study is grounded in comprehensive field observations within rubber plantations, focusing 

on two primary aspects: the spatial distribution of green canopy cover and tree characteristics. 

Detailed mappings of these observations were facilitated using GPS Geodetic Hi Target V30. 

Additionally, the canopy conditions were documented using a GoPro 360 camera for visual analysis. 

Insights into the prevalence and impact of leaf fall outbreak, seasonal leaf fall, and Pestalotiopsis 

outbreak were further enriched through interviews with plantation managers. 

To ensure a representative and comprehensive dataset, a stratified grid sampling method was 

utilized, covering 218 grids distributed over two sample blocks (2010G and 2011G) during five 

consecutive survey periods: March 2022 (normal season), June 2022 (natural leaf fall season), 

February 2023 (Pestalotiopsis outbreak), July 2024 (natural leaf fall season), and November 2024 

(normal season). Each block was mapped using a grid-based approach with a resolution of 30 by 30 

meters. Within each grid, 3 to 5 observation points were collected, allowing for detailed and 

systematic data collection across varying levels of canopy density (Figure 1e,f). 

3.1.2. Remote Sensing Data 

High-resolution multispectral imagery was obtained using the DJI Phantom 4 Multi-spectral 

UAV, equipped with sensors capturing the following wavelengths: Blue (B): 450 nm ± 16 nm, Green 

(G): 560 nm ± 16 nm, Red (R): 650 nm ± 16 nm, Red Edge (RE): 730 nm ± 16 nm, and Near-Infrared 

(NIR): 840 nm ± 26 nm. The UAV flights were conducted at an altitude of 150 meters, with a front 

overlap of 80% and a side overlap of 70%. Real-time kinematic (RTK) positioning was used to ensure 

precise geolocation of each image captured. This high-resolution data was crucial for detailed Green 

Canopy Cover Fracture measurements. 

Sentinel-2 (S2) is a part of the Copernicus program, consisting of two satellites, Sentinel-2A and 

Sentinel-2B, which provide high-resolution optical imagery. The sensor captures data in 13 spectral 

bands: Visible (Blue, Green, Red), Red Edge (four narrow bands between red and infrared), Near-

Infrared (two bands), and Short-Wave Infrared (two bands). The spatial resolution ranges from 10 

meters for RGB and NIR, 20 meters for red edge and short-wave infrared, to 60 meters for 

atmospheric correction bands. Sentinel-2 imagery has been utilized to calculate NDVI at a 10-meter 

resolution, aiding in precise vegetation density and health analysis over the plantation areas. 

The Landsat program’s satellites, including Landsat 7 (L7), Landsat 8 (L8), and Landsat 9 (L9), 

have been pivotal in acquiring the multispectral data necessary for these calculations. Landsat 7 

carries the Enhanced Thematic Mapper Plus (ETM+), while Landsat 8 and 9 are equipped with the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI captures imagery 

across multiple spectral bands: Blue, Green, Red, Near-Infrared (NIR), and Short-Wave Infrared 

(SWIR). It also includes a Coastal Aerosol band designed for coastal studies and a Cirrus band for 

cloud detection. Landsat data offer a 30-meter spatial resolution for most spectral bands, making 

them highly suitable for broad-scale trend analysis and long-term environmental monitoring. Over 

eight years, this data has been instrumental in tracking phenological changes and assessing the 

sustained health of vegetation within plantation landscapes. 

3.2. Data Processing 

3.2.1. Satellite Data Preprocessing 

The data processing framework for this study was meticulously designed to integrate and 

harmonize multispectral imagery from three distinct satellite sources, each offering unique spatial 

resolutions crucial for our analysis. The imagery was sourced from Landsat-7 (L7), Landsat-8 (L8), 
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and Landsat-9 (L9), all with a 30-meter resolution, as well as Sentinel-2A (S2A) and Sentinel-2B (S2B), 

also with a 30-meter resolution. Our harmonization process adopted the methodologies and code 

outlined by [30], utilizing Google Earth Engine (GEE) for efficient processing. This study followed 

the procedure established by [30], which included the use of relative spectral response (RSR) 

adjustments. Additionally, leveraging the harmonization framework by [30], the vegetation index 

(VI) algorithm was applied uniformly across the datasets to ensure consistency in the analyses. 

Data cleaning and harmonization with remote sensing datasets involved several key steps to 

ensure data consistency and accuracy. Initially, raw satellite data underwent atmospheric correction 

to mitigate distortions caused by atmospheric particles. Cloud and cloud shadow masking were 

applied to remove noise from the imagery. The datasets were adjusted for view and illumination 

angles to maintain uniformity across acquisition times. Co-registration ensured spatial alignment 

between images from different sensors, while reprojection and resampling standardized the data to 

an ordinary pixel resolution and map projection. Finally, band adjustments were made to harmonize 

the spectral differences between the Landsat and Sentinel datasets, resulting in a seamless, near-daily 

harmonized surface reflectance. 

Weekly composite images were generated to enhance temporal consistency further and facilitate 

comparison with ground survey data. These composites were created by aggregating the best-

available, cloud-free observations from Landsat series and Sentinel-2 datasets within a seven-day 

rolling window centered on each field survey date. This approach ensured that the remote sensing 

data was closely aligned with the field measurement period, minimizing temporal discrepancies and 

improving the reliability of canopy condition assessments. The compositing process effectively 

reduced noise from transient atmospheric conditions and provided a more stable representation of 

canopy reflectance, making it suitable for analyzing vegetation health dynamics over time. 

3.2.2. UAV Data Preprocessing 

The integration processing of high-resolution Multispectral Unmanned Aerial Vehicle (UAV) 

imagery was a key stage, providing unprecedented information about plantation health and the 

progression of rubber leaf fall disease. The stage began with collecting UAV imagery, which was 

painstakingly processed to generate high-resolution spatial information. High-resolution UAV 

imagery played a crucial role in revealing in-depth variations in density and health within the 

plantation, offering a level of detail inaccessible through medium-resolution satellite imagery. 

The UAV photos underwent a meticulous mosaicking exercise, during which a series of photos 

taken with a drone were blended seamlessly together to produce high resolution, geographical 

accuracy, and orthomosaic. The orthomosaic captured a two-dimensional representation of the study 

area, with significant information such as X and Y coordinates and values for each pixel’s reflectance. 

All the work in processing UAV images was conducted using Agisoft Metashape, which produced 

high accuracy in orthomosaics and a digital surface model. High-detail texture mapping, dense point 

cloud creation, and precise image alignment were conducted using Agisoft Metashape, ensuring 

fidelity and spatial accuracy in the output datasets. 

3.2.3. Ground Truth Data Preparation 

A comprehensive data cleaning and harmonization process was conducted to ensure 

consistency and accuracy across datasets. Field-collected data, including tree characteristics (clone 

type, tree height, tree age, tree diameter, and canopy condition), were first checked for completeness 

and accuracy. When possible, missing values were addressed using interpolation methods or cross-

referencing with field notes. Outliers and anomalies were identified through statistical analysis, such 

as boxplots and Z-score assessments, and were either corrected or removed based on their context 

and relevance. Once cleaned, the field data were harmonized with remote sensing datasets. This 

involved georeferencing field observation points to align with the spatial resolution of the satellite 

imagery (30x30 meters for Landsat and Sentinel-2). Coordinate adjustments were made to ensure a 

precise overlay, accounting for any GPS discrepancies that occurred during field collection. Temporal 
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harmonization was also performed to match the field data collection dates with the corresponding 

satellite imagery acquisition dates, ensuring that both datasets represented the same phenological 

stages. Finally, spectral vegetation indices derived from satellite imagery were linked to the 

corresponding field data points. This integration allowed for a robust comparison between remote 

sensing-derived metrics and ground-truth observations, facilitating subsequent modeling and 

analysis. 

3.2.4. Green Canopy Cover 

This process enabled accurate quantification of the extent of vegetation within the study area. 

Green Canopy Cover (GCC) was calculated using NDVI-derived classification, combined with 

manual selection, to ensure accurate differentiation between tree canopy and non-canopy areas. Since 

high NDVI values can also originate from background vegetation, such as grass, a two-step approach 

was implemented: 

1. NDVI thresholding was applied to identify potential green canopy pixels. 

2. Manual selection was performed to refine the classification, ensuring that only tree canopy 

pixels were included while excluding non-canopy vegetation such as grass and shrubs. 

The final Green Canopy Cover (GCC) value was determined using the following formula [31]: 

𝐺𝑟𝑒𝑒𝑛 𝐶𝑎𝑛𝑜𝑝𝑦 𝐶𝑜𝑣𝑒𝑟 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑒𝑒𝑛 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑎 𝑠𝑢𝑏𝑝𝑙𝑜𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑎 𝑠𝑢𝑏𝑝𝑙𝑜𝑡
 (1) 

This approach enhanced the accuracy and reliability of canopy cover estimation by integrating 

automated spectral classification with manual refinement, minimizing misclassification errors caused 

by background vegetation. 

3.3. Vegetation Index Calculation 

Spectral Vegetation Indices (SVIs) are mathematical combinations of spectral bands designed to 

enhance signals related to vegetation characteristics such as biomass, chlorophyll content, and 

canopy structure. They are essential tools for assessing vegetation health, canopy cover, and stress 

conditions in both agricultural and natural ecosystems. The selection of SVIs in this study was guided 

by their proven effectiveness in monitoring canopy dynamics, sensitivity to specific vegetation traits, 

and applicability in previous research on rubber plantations and disease stress assessments. Selection 

Criteria for SVIs: 

1. Structural Attributes 

• Normalized Difference Vegetation Index (NDVI): Widely used to quantify vegetation density 

and vigor, NDVI is sensitive to chlorophyll presence and effectively assesses canopy extent. 

Tucker’s research demonstrated the effectiveness of NDVI in monitoring photosynthetically 

active biomass in plant canopies [32]. 

• Enhanced Vegetation Index (EVI): This index offers improved sensitivity in high-biomass 

regions, reducing atmospheric and canopy background noise, making it suitable for 

monitoring dense vegetation. A. Huete et al. (2002) highlighted EVI’s ability to enhance the 

vegetation signal with improved sensitivity in high biomass regions and improved 

vegetation monitoring through de-coupling the canopy background signal and reducing 

atmosphere influences [33]. 

• Modified Triangular Vegetation Index 2 (MTVI2): Enhances sensitivity to chlorophyll content 

and is less affected by soil background, aiding in accurate biomass estimation. While specific 

studies on MTVI2 in rubber plantations are limited, its general effectiveness in vegetation 

monitoring suggests potential applicability. 

1. Physiological Health 

• Green NDVI (GNDVI): Utilizes green and near-infrared bands to assess chlorophyll 

concentration, providing insights into photosynthetic activity. While GNDVI has effectively 
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monitored crop health, its application in rubber plantations has not been extensively 

documented. 

2. Environmental Stress Factors 

• Optimized Soil-Adjusted Vegetation Index (OSAVI): Adjusts for soil brightness, improving 

vegetation monitoring in areas with sparse canopy cover [34]. OSAVI’s effectiveness in 

rubber plantations has not been specifically documented, suggesting an area for future 

research. 

• Atmospherically Resistant Vegetation Index (ARVI): Reduces atmospheric effects, enhancing 

the accuracy of vegetation monitoring under varying atmospheric conditions. ARVI has been 

utilized to minimize atmospheric influences in vegetation monitoring, though specific 

applications in rubber plantations are limited. 

3. Soil-Canopy Interactions 

• Modified Soil-Adjusted Vegetation Index (MSAVI): Reduces soil background influence, 

enhancing canopy detection accuracy, especially in areas with sparse vegetation [35]. A. R. 

Huete (1988) Introduced the Soil-Adjusted Vegetation Index (SAVI) to address soil brightness 

influences, and MSAVI builds upon this to further minimize soil effects [36]. 

This targeted selection ensures the study captures multiple canopy attributes while minimizing 

errors due to background reflectance or environmental noise. By incorporating SVIs that are sensitive 

to structural, physiological, and environmental factors, the study aims to comprehensively assess the 

health and stress conditions of rubber plantations. 

Table 2. Vegetation Index. 

Vegetation 

Index 
Formula Description Reference 

ARVI 
(NIR - (2 × RED) + BLUE) / (NIR + 

(2 × RED) + BLUE) 

Enhances vegetation signal 

while reducing atmospheric 

effects. 

[37] 

EVI 
2.5 × (NIR - RED) / (NIR + 6 × RED 

- 7.5 × BLUE + 1) 

Optimizes vegetation signal by 

reducing soil and atmospheric 

influences. 

[33] 

GNDVI (NIR - GREEN) / (NIR + GREEN) 
Sensitive to chlorophyll 

concentration and plant health. 
[38] 

MSAVI 
(2NIR + 1 - sqrt((2NIR + 1)^2 - 

8(NIR - RED))) / 2 

Minimizes soil brightness 

influence on vegetation 

measurements. 

[35] 

MTVI2 

1.5 × [1.2(NIR - GREEN) - 2.5(RED 

- GREEN)] / sqrt((2NIR + 1)^2 - 

(6NIR - 5sqrt(RED)) - 0.5) 

Enhances detection of 

chlorophyll content and canopy 

structure. 

[39] 

NDVI (NIR - RED) / (NIR + RED) 
Standard index for measuring 

vegetation vigor and biomass. 
[40] 

OSAVI (NIR - RED) / (NIR + RED + 0.16) 

Reduces soil influence for 

sparse vegetation cover 

analysis. 

[34] 

3.4. Machine Learning Modeling 

3.4.1. Model Selection 

Selecting the appropriate machine learning models is crucial for accurately predicting green 

canopy cover and understanding the phenological patterns of rubber plantations. This study 

employed Random Forest (RF), Support Vector Machines (SVM), Classification and Regression Trees 

(CART), and Linear Regression (LR) based on their proven performance in previous vegetation and 

canopy mapping studies, their ability to handle spectral vegetation indices (SVIs), and their varying 
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complexity in capturing nonlinear relationships. RF, an ensemble learning method, constructs 

multiple decision trees and merges their results to enhance accuracy while controlling overfitting. RF 

is particularly effective for vegetation classification due to its robustness in handling high-

dimensional data, ability to process large datasets, and resistance to noise and outliers, making it an 

optimal choice for predicting canopy variation [41]. SVM, a supervised learning model, is well-suited 

for high-dimensional feature spaces and has been widely applied in vegetation classification and land 

cover mapping. Its kernel trick enables nonlinear classification, allowing it to differentiate between 

subtle spectral variations in canopy stress conditions [42]. CART, a decision-tree-based model, is 

known for its simplicity and interpretability, making it useful for identifying key spectral features 

associated with canopy health. While prone to overfitting in complex datasets, CART provides 

insights into hierarchical decision-making processes in vegetation modeling [43]. LR, despite its 

limitations in handling nonlinear relationships, serves as a baseline model for benchmarking the 

performance of more advanced algorithms. It is widely used in spectral vegetation index analysis, 

offering a simple yet interpretable approach to understanding canopy variation trends [44]. While 

deep learning approaches, such as Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks, have shown promise in remote sensing applications, their reliance on 

large labeled datasets and computationally intensive training processes makes them less practical for 

this study. By focusing on traditional machine learning models with varying levels of complexity, 

this study ensures a comprehensive evaluation of predictive modeling techniques for green canopy 

estimation. 

3.4.2. Feature Engineering 

Spectral vegetation indices (SVIs) are mathematical combinations of spectral bands designed to 

highlight specific characteristics of vegetation, such as chlorophyll content, water stress, or biomass. 

This study employed SVIs as key features to predict green canopy cover, leveraging their sensitivity 

to various vegetation properties. A diverse set of spectral vegetation indices was initially considered, 

encompassing indices sensitive to chlorophyll content, vegetation vigor, and structural attributes of 

the canopy. 

3.4.3. Model Training, Validation, and Evaluation 

The process of model training, model testing, and model evaluation was designed with care to 

validate and evaluate model accuracy and prediction robustness. K-fold cross-validation was 

conducted for model testing, in which a k-way partitioning of the dataset into folds of similar size, 

training, and testing with k-1 folds and testing with one-fold, and then iterated for k=5 times, with 

one fold being utilized in one run, and then averaging for an unbiased model performance estimate 

[45]. 

Model performance was measured through a range of key performance statistics. Root Mean 

Square Error (RMSE) gauged average prediction error size, estimating model accuracy. Variability in 

the target variable predictable in terms of proportion with explanatory variable(s) was gauged using 

the Coefficient of Determination (R²) and mean of average absolute prediction and observation value 

discrepancies through the use of the Mean Absolute Error (MAE). Adjusted R² also incorporated 

consideration for model complexity through an allowance for a range of model predictors, providing 

a more accurate model fit [46]. 

Model performance hyperparameters for improvement utilized a grid search algorithm using 

cross-validation, in which a range of values for a range of hyperparameters were examined 

sequentially for a specific hyperparameter value for a maximized model performance. Tuned 

important hyperparameters included the learning rate, controlling model optimization step size; 

trees, controlling model iterations, such as trees, in an ensemble model; and the maximum tree, 

controlling tree complexity; and regularization coefficients, controlling model over-fitting through 

penalty for high coefficients [47]. 
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4. Results 

4.1. Validation of Satellite-Derived Vegetation Indices with Field Observations 

Figure 3 presents the Pearson correlation coefficients between green canopy coverage and 

various spectral vegetation indices across five distinct periods: March 2022 (normal season after a 

Pestalotiopsis outbreak), June 2022 (natural leaf fall season), February 2023 (during a Pestalotiopsis 

outbreak), July 2024 (natural leaf fall season), and November 2024 (normal season). The spectral 

vegetation indices analyzed include NDVI, EVI, MTVI2, GNDVI, ARVI, OSAVI, and MSAVI, each 

representing different vegetation biophysical and biochemical properties. 

 

Figure 3. Graph of Correlation matrix between Green Tree Canopy and Vegetation Index. The correlation values 

range from 0 to 1, with a color gradient indicating the strength of the relationship—blue representing lower 

correlations and orange to red indicating stronger correlations. 

The highest correlation values are observed in November 2024, particularly for GNDVI (0.57), 

ARVI (0.55), MSAVI (0.53), and NDVI (0.55), suggesting a strong linear relationship between these 

indices and green canopy coverage during this normal growth period. The strong correlation of 

GNDVI, which is particularly sensitive to chlorophyll content, highlights the importance of this index 

in capturing photosynthetic activity under healthy vegetation conditions. Similarly, MSAVI and 

NDVI, which are designed to minimize soil background influence, exhibit robust correlations, 

confirming their effectiveness in assessing vegetation density and productivity during stable 

environmental conditions. 

In contrast, February 2023, which coincides with a Pestalotiopsis outbreak, shows the weakest 

correlations across all indices, with EVI displaying the lowest value (0.03). This decline suggests that 

disease-related chlorophyll degradation and structural damage to the canopy significantly reduce the 

effectiveness of spectral indices in capturing vegetation characteristics. EVI, optimized for 

minimizing atmospheric and soil background noise, relies heavily on healthy canopy reflectance in 

the near-infrared (NIR) spectrum. During the disease outbreak, reduced chlorophyll concentration 

and increased leaf senescence likely diminished the spectral contrast necessary for EVI to maintain 

strong correlations with green canopy cover. Similarly, GNDVI (0.21) and NDVI (0.26) exhibit weak 

associations, indicating that leaf senescence and defoliation alter the spectral response in the visible 

and NIR bands, reducing the predictive power of these indices. 

March 2022, which follows a previous Pestalotiopsis outbreak, exhibits moderate correlations, 

particularly for MSAVI (0.49), MTVI2 (0.50), and NDVI (0.50). These values suggest partial recovery 

of the canopy, as some vegetation indices regain their ability to detect healthy green biomass. MSAVI, 

which is particularly effective in correcting for soil background interference, demonstrates its utility 
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in monitoring regrowth in environments where canopy cover is recovering from disease-induced 

stress. The moderate correlation of NDVI and MTVI2 also suggests that vegetation productivity is 

improving, but lingering effects from the outbreak may still influence spectral reflectance. 

Periods associated with seasonal leaf fall, namely June 2022 and July 2024, display lower but 

relatively stable correlations, ranging between 0.24 and 0.35 across different indices. This pattern 

aligns with expected canopy thinning and reduced leaf area index (LAI) during natural defoliation, 

which affects the spectral signals captured by vegetation indices. NDVI and GNDVI remain relatively 

stable in these periods, indicating their robustness in detecting green canopy even in partially 

defoliated conditions. In contrast, indices that rely more on the contrast between vegetation and soil 

reflectance, such as EVI and MTVI2, show weaker correlations, likely due to increased exposure of 

the underlying surface. 

Overall, the observed correlation trends highlight the impact of environmental stressors, 

including disease outbreaks and seasonal defoliation, on the spectral response of green canopy cover. 

The results emphasize that while NDVI, GNDVI, and MSAVI consistently exhibit strong correlations, 

their effectiveness varies depending on canopy health conditions. In normal growth periods, indices 

like GNDVI and NDVI are highly effective, whereas EVI becomes less reliable under stress conditions 

such as disease outbreaks. These findings suggest that selecting appropriate vegetation indices 

should consider not only the phenological stage of vegetation but also the presence of external stress 

factors, ensuring accurate monitoring of canopy dynamics under diverse environmental conditions. 

The UAV imagery shown in Figure 4 provides a Visual comparison of canopy conditions across 

five key periods: March 2022 (normal season after a Pestalotiopsis outbreak), June 2022 (natural leaf 

fall season), February 2023 (during a Pestalotiopsis outbreak), July 2024 (natural leaf fall season), and 

November 2024 (normal season). The imagery highlights canopy health and density differences over 

time, correlating with observed changes in spectral vegetation indices. In March 2022, the canopy 

showed signs of recovery following the Pestalotiopsis outbreak, with moderate greenness and sparse 

healthy patches. June 2022, during the natural leaf fall season, displays a mix of healthy green and 

fallen leaves, indicating a natural reduction in canopy density. February 2023, marked by an active 

Pestalotiopsis outbreak, exhibits the most significant canopy degradation, with widespread 

discoloration and reduced green cover, aligning with the low vegetation index correlations observed 

during this period. In July 2024, despite being another natural leaf fall season, the imagery reveals a 

unique issue: the background grass appears significantly taller and denser, contributing to 

misleadingly high greenness levels in satellite-recorded spectral vegetation indices. This discrepancy 

suggests that the index may have captured the greenness of the grass rather than the actual canopy, 

potentially inflating the correlation values for this period. Finally, November 2024 shows a fully 

recovered, dense green canopy typical of a normal season, corresponding with the highest vegetation 

index correlations observed in the earlier heatmap analysis. These UAV observations underscore how 

ground conditions, such as grass growth, can influence vegetation index readings from satellite 

imagery, emphasizing the importance of accounting for such factors when interpreting remote 

sensing data. 
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Figure 4. UAV imagery showing rubber tree canopy changes across normal seasons, natural leaf fall, and 

Pestalotiopsis outbreaks from 2022 to 2024: (upper) natural composite, (lower) false composite. 

4.2. Green Canopy Cover Model Performance 

Table 3 elucidates the predictive efficacy of four distinct models: Random Forest (RF), Support 

Vector Machine (SVM), Classification and Regression Trees (CART), and Linear Regression, 

employed to estimate green canopy coverage using various spectral vegetation indices (SIVs). The 

evaluative metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-squared 

(R²), and Adjusted R-squared (Adj. R²), assessed for both training and testing datasets. The Random 

Forest (RF) model exhibits superior predictive performance compared to the other models, attaining 

the lowest RMSE (3.01) and MAE (2.24) during training and maintaining strong performance in 

testing with RMSE (6.46) and MAE (4.97). Its R² and Adj. R² values of 0.96 in training and 0.82/0.81 in 

testing underscore its robustness, accounting for a substantial proportion of variance in green canopy 

cover. This confirms the model’s high reliability for predictive applications. The SVM model ranks 

second in efficacy, achieving RMSE (6.67) and MAE (5.04) in training, with similar results in testing 

(RMSE: 6.62, MAE: 5.12). While slightly less accurate than RF, its R² and Adj. R² values (0.81/0.80 in 

both training and testing) suggest a strong correlation between spectral vegetation indices and green 

canopy cover. The CART model demonstrates slightly lower performance compared to SVM, with 

an RMSE of 7.06 and MAE of 5.30 in training, and a higher RMSE of 7.78 and MAE of 5.66 in testing. 

The corresponding R² and Adj. R² values (0.78/0.78 in training and 0.74/0.72 in testing) indicate 

moderate predictive power but reduced model stability. The Linear Regression model performs the 

least favorably, yielding the highest RMSE (9.13) and MAE (6.99) in training, with testing results 

(RMSE: 9.04, MAE: 7.17) confirming its substantial prediction inaccuracies. Its R² and Adj. R² values 

(0.64/0.63 in training and 0.64/0.62 in testing) indicate limited explanatory power, capturing only 64% 

of the variance in green canopy coverage. 

In conclusion, the RF model emerges as the most precise and reliable for forecasting green 

canopy coverage using spectral vegetation indices, followed by SVM, CART, and Linear Regression. 

The significant performance disparity between RF and Linear Regression underscores the advantages 

of utilizing advanced machine-learning techniques for complex environmental modeling. Given its 

exceptional accuracy and stability, the RF model is selected for subsequent time-series forecasting of 

green canopy coverage. 
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Table 3. Model prediction performance. 

Model 
Training Testing 

RMSE MAE R2 Adj. R2 RMSE MAE R2 Adj. R2 

RF 3.01 2.24 0.96 0.96 6.46 4.97 0.82 0.81 

SVM 6.67 5.04 0.81 0.8 6.62 5.12 0.81 0.8 

CART 7.06 5.3 0.78 0.78 7.78 5.66 0.74 0.72 

Linear Regression 9.13 6.99 0.64 0.63 9.04 7.17 0.64 0.62 

Figure 5 illustrates the correlation between measured and predicted green canopy cover 

percentages using the RF Model across five distinct temporal intervals, each influenced by specific 

environmental conditions. The data from June 2022, collected during the natural leaf abscission 

season, exhibits the highest RMSE of 4.518 and an R² of 0.651, indicating increased variability due to 

seasonal leaf shedding. The March 2022 dataset, recorded following the Pestalotiopsis outbreak, 

shows an RMSE of 4.179 and an R² of 0.64, suggesting residual effects of the outbreak on canopy 

recovery. The February 2023 dataset, collected during an active Pestalotiopsis outbreak, demonstrates 

improved predictive accuracy with an RMSE of 3.365 and an R² of 0.715, likely due to the model 

effectively capturing canopy degradation patterns. The July 2024 dataset, obtained during another 

natural leaf fall period, presents an RMSE of 4.888 and an R² of 0.655, where the presence of taller 

background grasses during this season may have influenced vegetation index assessments, leading 

to slight discrepancies in predictions. Finally, the November 2024 dataset, collected during the 

standard season, yields the best model performance, with the lowest RMSE of 2.831 and the highest 

R² of 0.738, reflecting complete canopy recovery and stable environmental conditions. Overall, while 

the model maintains consistent predictive performance, variations in accuracy are influenced by 

environmental factors such as disease outbreaks and seasonal leaf abscission, which introduce 

fluctuations across different timeframes 

 

Figure 5. Scatterplot of measured versus predicted green canopy density (%) across five different periods: March 

2022 (normal season after Pestalotiopsis outbreak), June 2022 (natural leaf fall season), February 2023 

(Pestalotiopsis outbreak), July 2024 (natural leaf fall season), and November 2024 (normal season). Each color 

represents a different survey period, with performance metrics (RMSE and R²) indicating the model’s prediction 

accuracy. The orange line represents the ideal 1:1 relationship between measured and predicted values. 
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Figure 6 presents the Canopy Density Map at the 2011G2 Block, illustrating the spatiotemporal 

variations in green canopy cover across five different time intervals, each influenced by distinct 

environmental conditions. In March 2022, following the Pestalotiopsis outbreak, the canopy showed 

moderate recovery, with patches of yellow and green indicating spatial heterogeneity in regrowth, 

suggesting lingering effects of the outbreak on tree health. By June 2022, during the natural leaf fall 

season, the canopy cover appears more variable, with an increased presence of yellow shades 

indicating lower density, aligning with the expected seasonal reduction in canopy greenness. In 

February 2023, during an active Pestalotiopsis outbreak, the canopy density map revealed 

widespread yellow regions, signifying significant degradation and reduced vegetation health. In July 

2024, another natural leaf fall period, the canopy density exhibits a similar decline, with yellow areas 

reflecting seasonal leaf shedding, potentially compounded by background vegetation such as taller 

grasses. By November 2024, in the normal season, the canopy demonstrates full recovery, with a 

predominance of green shades reflecting higher canopy density, suggesting stable environmental 

conditions and healthy tree growth. The high-resolution imagery in the lower row further validates 

these observations, reinforcing the spatial patterns in canopy cover dynamics and highlighting the 

impact of seasonal changes and disease outbreaks over time. 

 

Figure 6. Canopy Density Map at 2011G2 Block. The upper row presents pixel-based canopy density maps, while 

the lower row displays corresponding UAV imagery used for validation within the sample grid of Block 2011G2. 

The color scale at the bottom, ranging from 50 (yellow, indicating lower canopy density) to 100 (green, 

representing higher canopy density), visually depicts the spatial variations in canopy coverage across the study 

area. 

5. Discussion 

The findings from this study highlight the varying effectiveness of spectral vegetation indices 

(VIs) in monitoring green canopy coverage under different environmental stress conditions, 

including normal growth periods, disease outbreaks, and seasonal leaf fall. These results align with 

past studies that have explored the relationships between VIs and vegetation health under various 

stressors, including fungal infections, nematode infestations, and physiological changes resulting 

from environmental factors. The observed decrease in correlation values during the Pestalotiopsis 

outbreak (February 2023) supports findings from [48], who reported that rubber tree infection with 

powdery mildew significantly reduces chlorophyll content, leading to decreased reflectance in the 

red and near-infrared (NIR) wavelengths. The present study’s lowest correlation for EVI (0.03) during 

the outbreak aligns with previous findings, which indicate that EVI is negatively correlated with 

chlorophyll reduction due to infection (- 0.265). This suggests that EVI is highly sensitive to 
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chlorophyll degradation and structural damage, making it unreliable for assessing canopy health 

under severe stress conditions. Similarly, research on South American Leaf Blight (SALB) has found 

that disease symptoms significantly alter spectral reflectance, particularly in the visible (400–700 nm) 

and NIR (NIR, 750–1300 nm) regions [49]. The significant decrease in spectral contrast due to disease-

induced mesophyll cell damage parallels the weak correlation of NDVI (0.26) and GNDVI (0.21) 

during the Pestalotiopsis outbreak in the present study. These findings highlight the significance of 

leaf structure and pigment concentration in determining the efficacy of spectral indices for disease 

detection. 

Further studies emphasize that spectral variations in rubber trees are influenced by both canopy 

and leaf-level characteristics, with notable differences observed in the shortwave infrared (SWIR) 

region [50]. This aligns with the present study’s findings, where GNDVI, an index highly sensitive to 

chlorophyll content, exhibited strong correlations under normal conditions but declined during 

periods of stress. The distinction in spectral responses between canopy and leaf levels, particularly 

in the SWIR spectrum, suggests that morphological differences, sun exposure, and water content play 

significant roles in shaping spectral reflectance patterns. The moderate correlations observed in 

March 2022, during the post-outbreak recovery phase, and the relatively stable yet lower correlations 

during seasonal leaf fall periods (June 2022 and July 2024) further indicate how environmental 

stressors affect canopy spectral properties. Research has demonstrated that damaged trees experience 

spectral shifts in the green-to-red band region (550–640 nm), similar to the patterns observed in this 

study, where NDVI and GNDVI remained relatively stable during seasonal leaf thinning, while 

indices like EVI and MTVI2 exhibited weaker correlations [49,51]. This highlights the importance of 

selecting appropriate vegetation indices based on phenological stages and canopy conditions. 

Additionally, different vegetation indices respond uniquely to variations in vegetation health. 

Karlson et al. (2015) demonstrated that NDVI and ARVI effectively detect moderate to high canopy 

cover, which aligns with the findings of this study, where NDVI and MSAVI exhibited strong 

correlations under normal growth conditions. Conversely, studies by [15] indicate that MSAVI and 

SAVI outperform NDVI in mixed vegetation environments by minimizing soil background effects, 

supporting the present study’s observations that soil-adjusted indices are particularly effective in 

stable canopy conditions. [9] further highlighted that index relying on phenological trends, such as 

EVI and MTVI2, may be less reliable during stress conditions, which corresponds with their weaker 

performance in this study during seasonal leaf fall and post-disease recovery phases. 

These findings reinforce the importance of considering phenological stage, canopy health, and 

external stressors when selecting the most suitable vegetation index. While NDVI and MSAVI 

perform well under normal conditions, indices such as SAVI may be more effective in detecting 

vegetation stress in sparse or heterogeneous canopies. Given these variations, integrating multi-

source remote sensing data and advanced machine learning techniques can enhance the accuracy and 

reliability of vegetation monitoring, particularly for applications in rubber plantation health 

assessment and precision forestry. 

Moreover, nematode infestations in rubber tree orchards have been associated with weak R² 

values (<0.31) when correlating nematode density with spectral indices (Lemes et al., 2020). This 

aligns with the weak correlation values observed during disease outbreaks in the present study, 

reinforcing the idea that severe biotic stressors reduce the predictive power of VIs. The comparative 

model analysis revealed that Random Forest (RF) performed best in predicting green canopy cover, 

with a considerable margin over Support Vector Machines (SVM), Classification and Regression 

Trees (CART), and Linear Regression (LR). RF achieved the lowest RMSE (6.46) and the highest R² 

(0.82), making it the most dependable model for estimating rubber tree canopy variation. These 

results indicate that RF outperformed other predictive models in estimating green canopy coverage 

using spectral vegetation indices. This finding aligns with previous studies demonstrating the 

robustness of machine-learning techniques in vegetation analysis [52,53]. The superior performance 

of RF is likely due to its ability to handle complex, nonlinear relationships between vegetation indices 

and canopy cover while mitigating overfitting through ensemble learning [23]. In contrast, SVM 
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struggled with high-dimensional spectral data, which often exhibit nonlinear interactions requiring 

careful kernel selection and hyperparameter tuning, leading to suboptimal performance in this study. 

Similarly, CART demonstrated lower accuracy due to its tendency to overfit training data, especially 

when dealing with noisy or overlapping spectral information, resulting in poor generalization to new 

canopy conditions. 

These findings align with previous studies that have demonstrated the effectiveness of 

ensemble-based learning models in vegetation analysis [54,55]. The temporal analysis of green 

canopy coverage across five different periods demonstrates promising results, though accuracy 

varies depending on environmental conditions. The lowest accuracy was observed during the natural 

leaf fall period and the Pestalotiopsis outbreak, where the presence of a strong green background 

from grass interfered with spectral vegetation indices’ ability to accurately detect canopy loss [50]. 

This issue arises because traditional vegetation indices rely on spectral differences to assess canopy 

health, but the green background from understory vegetation can mask actual canopy decline, 

leading to overestimated vegetation index values. This limitation is further evidenced by the low 

correlation between vegetation indices and actual canopy cover during the Pestalotiopsis outbreak 

and the seasonal leaf fall period. While machine learning approaches enhance canopy cover 

predictions by incorporating additional spectral and spatial information, they are still limited by 

background interference, which reduces accuracy. As demonstrated in previous studies, RF 

outperforms methods that rely solely on vegetation indices despite these challenges. These findings 

highlight the importance of integrating advanced classification methods or multi-source data to 

enhance accuracy. 

The difficulty in assessing canopy loss using vegetation indices is further reinforced by the weak 

correlation between vegetation indices and canopy cover during the Pestalotiopsis outbreak and the 

seasonal leaf fall period. This suggests that the primary challenge lies in accurately modeling canopy 

dynamics under varying environmental conditions rather than simply evaluating vegetation index 

performance. Moreover, the observed relationship between increasing Pestalotiopsis severity and 

decreasing leaf area index (LAI) aligns with previous research, which has reported a strong negative 

correlation between Pestalotiopsis outbreaks and reductions in LAI [55]. Other studies have also 

confirmed a significant decline in LAI during abnormal leaf fall (ALF) disease outbreaks, with 

variations depending on the region and period [3]. The findings underscore the efficacy of RF in 

predicting green canopy coverage using spectral vegetation indices. The model’s robustness across 

various environmental conditions underscores its potential for real-time forest health monitoring, 

particularly in relation to disease outbreaks and seasonal leaf dynamics. Integrating additional 

spectral, texture, and color features alongside higher-resolution imagery could further refine model 

accuracy. Future research should incorporate advanced remote sensing techniques and multi-source 

data fusion to improve predictive capabilities and support sustainable rubber plantation 

management efforts. 

6. Conclusions 

In conclusion, this study underscores the varying effectiveness of spectral vegetation indices in 

monitoring green canopy coverage under different environmental stress conditions, including 

normal growth periods, disease outbreaks, and seasonal leaf fall. The findings reveal that indices 

such as NDVI, GNDVI, and MSAVI perform well under stable conditions, while EVI demonstrates 

significant limitations in detecting canopy health during disease outbreaks due to its sensitivity to 

chlorophyll degradation and structural damage. The weak correlations observed during the 

Pestalotiopsis outbreak align with previous research highlighting the impact of fungal infections and 

mesophyll cell damage on spectral reflectance. Additionally, seasonal variations influence spectral 

responses, with moderate correlations in post-outbreak recovery phases and lower but stable 

correlations during natural leaf fall, reinforcing the importance of phenological considerations when 

selecting vegetation indices. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 March 2025 doi:10.20944/preprints202503.1518.v1

https://doi.org/10.20944/preprints202503.1518.v1


 18 of 21 

 

Machine learning models, particularly Random Forest (RF), significantly enhance the accuracy 

of canopy cover estimation compared to traditional regression-based methods. The superior 

performance of RF, characterized by its ability to handle nonlinear relationships and mitigate 

overfitting, makes it a robust tool for predicting green canopy dynamics. In contrast, Support Vector 

Machines (SVM) and Classification and Regression Trees (CART) exhibited lower predictive accuracy 

due to their inherent limitations in handling complex spectral interactions. The study also highlights 

challenges in assessing canopy loss when background vegetation, such as taller grasses, affects 

spectral reflectance, leading to overestimated vegetation index values. This emphasizes the need for 

integrating additional data sources, such as LiDAR, SAR, and high-resolution UAV imagery, to 

improve model accuracy and minimize misclassification errors. 

Overall, this study contributes to the growing body of research on remote sensing applications 

for vegetation monitoring, demonstrating the necessity of multi-index approaches, machine learning 

techniques, and high-resolution data integration for accurate canopy assessment. Future research 

should focus on incorporating multi-source remote sensing data, refining phenology-based 

classification models, and enhancing climate-informed predictive modeling to improve vegetation 

health monitoring in dynamic ecosystems. By leveraging these advancements, more effective 

strategies can be developed for sustainable rubber plantation management, forest conservation, and 

precision agriculture applications. 

Building on this work, this paper specifically focuses on modeling rubber canopy density during 

disease outbreaks, providing crucial insights into canopy loss’s spatial and temporal dynamics. 

However, understanding the underlying mechanisms driving disease progression remains a key 

challenge. To further investigate this aspect, a forthcoming manuscript will explore disease 

progression mechanisms within rubber plantation ecosystems. Before formal journal submission, this 

follow-up study will be available as a preprint. Together, these complementary studies contribute to 

a comprehensive framework for rubber plantation health monitoring, offering valuable insights into 

the interactions between disease outbreaks, environmental stressors, and canopy dynamics. 
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