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Abstract: This paper proposes an enhanced TransFormer-based algorithm for key-frame action
recognition in basketball shooting. The research addresses the challenges of accurate temporal
localization and feature extraction in complex basketball environments through architectural
innovations in deep learning models. The proposed approach integrates a multi-scale feature fusion
mechanism with an improved spatio-temporal attention structure, enabling robust recognition of
basketball shooting actions across varying conditions. A novel position encoding scheme is
introduced to better capture temporal relationships in shooting sequences, while the enhanced
attention mechanism facilitates more precise key-frame identification. Experimental evaluations on
basketball shooting datasets demonstrate that the proposed model achieves 92.8% accuracy in action
recognition tasks, outperforming existing approaches by 4.3% in mean average precision. The
architecture maintains computational efficiency while improving recognition accuracy, processing
video sequences in real-time at 30 frames per second. Ablation studies confirm the effectiveness of
individual components, with the spatio-temporal attention mechanism contributing the most
significant performance gains. The system demonstrates robust performance across different
shooting styles and environmental conditions, making it suitable for practical applications in
basketball training and analysis.

Keywords: Key-frame Action Recognition; Enhanced TransFormer Architecture; Spatio-temporal
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1. Introduction

1.1. Research Background and Significance

The rapid development of artificial intelligence and computer vision technology has
significantly advanced the field of intelligent sports recognition and analysis. In basketball games,
automatic shooting action recognition constitutes a critical research direction with broad application
prospects in athlete training, game analysis, and intelligent coaching [1]. Traditional basketball
shooting action recognition methods heavily rely on manual observation and empirical judgment,
limiting their efficiency and accuracy in practical applications.

Basketball shooting action recognition faces multiple technical challenges. The key-frame
extraction of shooting actions demands precise temporal localization to capture critical motion
moments. The complexity of basketball court environments, varying shooting angles, and player
occlusions increase the difficulty of accurate recognition[2]. The dynamic nature of basketball
movements requires robust algorithms capable of handling spatial-temporal variations while
maintaining recognition accuracy.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Recent advances in deep learning, particularly transformer architectures, present new
opportunities for improving basketball action recognition systems. The self-attention mechanism in
transformers demonstrates superior capabilities in capturing long-range dependencies and modeling
complex spatial-temporal relationships. This advantage addresses the limitations of traditional
convolutional neural networks in processing sequential data and capturing motion dynamics.

1.2. Related Work Review

Action recognition research has evolved through multiple stages, from traditional machine
learning approaches to deep learning methods. Early action recognition systems utilized hand-
crafted features and statistical models. The emergence of deep learning has revolutionized this field,
introducing more sophisticated and effective solutions.

Deep neural networks for basketball action recognition have demonstrated significant progress.
The work of Lin et al. proposed a lightweight fine-grained action recognition network focusing on
basketball foul detection, achieving enhanced accuracy while maintaining computational
efficiency[3]. Their approach incorporated multi-stream architectures to process spatial and temporal
information separately, demonstrating the effectiveness of parallel feature processing in sports action
recognition[4].

Motion recognition based on 3D vision technology has gained substantial attention. Research by
Meng et al. explored intelligent recognition systems utilizing skeletal data and posture estimation.
Their work emphasized the importance of accurate joint angle calculation and skeletal structure
reconstruction in basketball movement analysis. The integration of machine vision algorithms with
motion capture technology enhanced the system's ability to analyze complex basketball movements.

Video-based action recognition systems have advanced through various architectural
innovations. The application of distributed video processing and temporal fusion mechanisms, as
demonstrated by Liang et al., improved the system's ability to handle continuous motion
sequences[5]. Their research highlighted the significance of effective feature extraction and temporal
relationship modeling in basketball action recognition.

Recent developments in transformer-based architectures have introduced new paradigms in
action recognition. The self-attention mechanism's ability to capture global dependencies has proven
particularly valuable in understanding complex basketball movements. Transformer models have
demonstrated superior performance in handling varying viewpoints and occlusions, common
challenges in basketball game environments.

1.3. Main Contributions

This research presents several significant contributions to the field of basketball shooting action
recognition. The proposed enhanced transformer-based algorithm introduces innovative
architectural modifications to improve key-frame action recognition performance[6]. A novel
attention mechanism designed specifically for basketball shooting sequences enhances the model's
ability to focus on critical temporal moments.

The research develops an improved positional encoding scheme adapted to basketball shooting
sequences. This enhancement enables better temporal relationship modeling and more accurate key-
frame identification. The integration of multi-scale feature processing mechanisms allows the system
to handle varying shooting distances and angles effectively.

A comprehensive evaluation framework has been established to assess the algorithm's
performance. The experimental results demonstrate superior accuracy in key-frame identification
compared to existing methods. The system achieves improved recognition rates while maintaining
computational efficiency, making it practical for real-time applications.

The research introduces optimization strategies for transformer architecture in sports action
recognition. These modifications address specific challenges in basketball shooting recognition,
including player occlusion, varying movement speeds, and complex background environments. The
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enhanced model demonstrates robust performance across different shooting styles and game
scenarios.

Implementation considerations for practical deployment have been thoroughly addressed. The
system's architecture balances recognition accuracy with computational requirements, making it
suitable for both training environments and game analysis applications[7]. The developed framework
provides a foundation for future research in sports action recognition systems.

This research contributes to the broader field of intelligent sports analysis by advancing the
capabilities of automated recognition systems. The proposed methodologies and architectural
improvements offer insights for developing more sophisticated sports analysis tools. The findings
support the development of intelligent coaching systems and automated performance analysis
platforms in basketball training and competition environments.

2. Fundamentals of Basketball Shooting Key-frame Action Recognition

2.1. Definition and Characteristics of Key-Frames

Basketball shooting key-frames represent critical temporal points within the shooting motion
sequence that capture essential biomechanical features. The identification of these frames plays a
pivotal role in action recognition accuracy. A comprehensive key-frame definition encompasses
multiple spatial-temporal characteristics, including joint angles, body posture configurations, and
motion trajectory patterns.

The shooting motion exhibits distinctive biomechanical patterns through specific phases. The
preparation phase establishes initial body positioning and ball control. The execution phase involves
coordinated movements of multiple joints, particularly the elbow and wrist articulations. The follow-
through phase captures the completion of the shooting motion with characteristic arm extension and
wrist flexion patterns.

Key-frame characteristics incorporate both static and dynamic features. Static features include
joint positions, body segment alignments, and spatial relationships between body parts. Dynamic
features encompass velocity profiles, acceleration patterns, and temporal relationships between
consecutive frames. The integration of these features provides a comprehensive representation of the
shooting motion sequence.

2.2. Construction of Basketball Shooting Dataset

Dataset construction follows systematic protocols to ensure comprehensive coverage of shooting
variations. The dataset incorporates multiple shooting styles, including jump shots, layups, and free
throws, captured from diverse angles and distances[8]. Video recordings maintain consistent frame
rates and resolution specifications to facilitate standardized analysis.

Data collection methodology emphasizes environmental diversity and shooting condition
variations. Professional basketball players perform shooting actions under controlled conditions,
with multiple camera angles capturing synchronized video streams. The recording setup
incorporates calibrated camera positions to ensure optimal coverage of the shooting motion space.

The dataset annotation process implements rigorous labeling standards. Expert annotators mark
key-frames using standardized criteria, establishing frame-level ground truth labels. The annotation
schema includes temporal boundaries, action phase markers, and relevant biomechanical feature
identifiers. Quality control measures ensure annotation consistency and accuracy across multiple
annotators.

2.3. Data Preprocessing and Augmentation Strategies

Data preprocessing incorporates multiple stages of refinement to enhance signal quality and
reduce noise. Frame normalization techniques standardize image dimensions and pixel intensity
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distributions. Background subtraction algorithms isolate player movements from court
environments, improving feature extraction accuracy.

Motion tracking algorithms establish temporal correspondence between consecutive frames.
Skeletal point detection methods identify joint positions and body segment configurations. The
tracking system maintains consistent feature point identification across frame sequences, facilitating
accurate motion trajectory analysis.

Data augmentation strategies enhance model robustness through synthetic variation generation.
Geometric transformations modify spatial perspectives while preserving motion characteristics.
Temporal augmentation techniques introduce controlled variations in motion speed and sequence
length. These augmentation methods improve model generalization capabilities across diverse
shooting scenarios.

2.4. Analysis of Key-frame Extraction Methods

Key-frame extraction methodology combines motion analysis with feature significance
evaluation. The analysis framework incorporates both local and global motion characteristics. Local
features capture frame-level details of joint movements and body postures. Global features represent
temporal patterns and movement phase transitions across the shooting sequence.

Feature extraction algorithms implement multi-scale analysis approaches. Low-level features
capture pixel-wise intensity patterns and edge distributions. Mid-level features represent structural
relationships between body segments. High-level features encode semantic information about
shooting phases and action categories[9].

The extraction process employs adaptive thresholding techniques to identify significant motion
events. Motion intensity analysis identifies periods of characteristic movement patterns. Temporal
segmentation algorithms partition the shooting sequence into distinct phases, facilitating targeted
key-frame identification within each phase[10].

Advanced machine learning techniques enhance key-frame selection accuracy. Deep neural
networks learn discriminative feature representations from training data. The learned models
evaluate frame significance based on multiple feature dimensions, incorporating both spatial and
temporal context information.

Performance optimization strategies address computational efficiency requirements. The
extraction system balances processing speed with accuracy through selective feature computation.
Parallel processing architectures enable real-time key-frame identification in practical applications.
The implementation framework supports both offline analysis and real-time processing scenarios.

Evaluation metrics assess extraction accuracy through multiple criteria. Temporal precision
measures evaluate key-frame localization accuracy. Feature representation metrics quantify the
information content of selected frames. The evaluation framework provides comprehensive
assessment of extraction system performance across diverse shooting scenarios.

3. Enhanced TransFormer Model Architecture

3.1. Basic TransFormer Network Structure

The fundamental TransFormer architecture adapts to basketball shooting recognition through
specialized modifications. The network structure integrates multi-head attention mechanisms with
feed-forward neural networks across multiple encoding layers. Table 1 presents the architectural
specifications of the base TransFormer model components.

Table 1. Basic TransFormer Architecture Specifications.

Layer Component Parameters Dimensions

Input Embedding Token Size: 512 Sequence Length: 64
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Self-Attention Heads: 8 Head Dimension: 64

Hidden Size: 2048
Feed Forward -
Dropout: 0.1

Layer Norm Epsilon: 1e-5 -

The encoder stack processes frame sequences through six identical layers, each containing two
sub-layers. The multi-head attention mechanism computes scaled dot-product attention across frame
features. Table 2 outlines the computational complexity of key network components.

Table 2. Computational Complexity Analysis.

Operation FLOPS Memory Usage (MB)
Self-Attention 5.2x10"6 256
Feed Forward 8.4x10"6 512
Layer Norm 1.3x10%5 64
Total 1.37x10"7 832

.....’....

o Mt o ale Aggregetion

Figure 1. Enhanced TransFormer Architecture for Basketball Action Recognition.

This figure illustrates the complete architecture of the enhanced TransFormer model. The
visualization includes multiple parallel attention streams, feature fusion modules, and position
encoding layers. The diagram uses color-coding to differentiate various computational paths: blue
for spatial attention streams, red for temporal attention pathways, and green for fusion modules.
Connection lines indicate data flow with varying thickness representing feature dimensionality.

The architectural design emphasizes modular components with interconnected processing
streams. Input frame sequences undergo parallel processing through spatial and temporal attention
mechanisms, followed by multi-scale feature aggregation. The diagram demonstrates the hierarchical
nature of feature processing and the integration of position-aware attention mechanisms.

3.2. Spatio-Temporal Attention Mechanism

The spatio-temporal attention mechanism incorporates dual-stream processing for motion
feature extraction. Table 3 details the attention weight distribution across spatial and temporal
dimensions.
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Table 3. Attention Weight Distribution Statistics.

Attention Type Weight Range Mean Activation
Spatial Local [0.15, 0.45] 0.32
Spatial Global [0.25, 0.65] 0.41

Temporal Short [0.20, 0.50] 0.35

Temporal Long [0.30, 0.70] 0.48

The attention computation implements cross-modal feature correlation through matrix
multiplication and softmax normalization. Table 4 presents the performance metrics of different
attention configurations.

Table 4. Attention Configuration Performance.

Configuration Accuracy Latency (ms) Parameters
Single-head 85.3% 12.5 1.2M
Multi-head (4) 89.7% 18.3 2.8M
Multi-head (8) 91.2% 247 4.5M
Hybrid 92.8% 221 3.7M
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Figure 2. Spatio-temporal Attention Visualization.

The figure presents a heat map visualization of attention weights across multiple frames. The x-
axis represents temporal frame indices (1-64), while the y-axis shows spatial attention regions (16x16
grid). The intensity values range from 0 (blue) to 1 (red), indicating attention strength. Overlaid
contour lines highlight regions of high attention correlation.
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This visualization reveals the dynamic nature of attention distribution during shooting motion
sequences. High-intensity regions correspond to critical motion phases, while temporal connections
illustrate the model's ability to capture long-range dependencies.

3.3. Multi-scale Feature Fusion Strategy

The multi-scale feature fusion mechanism integrates information across varying temporal and
spatial resolutions. A pyramidal feature hierarchy enables comprehensive motion pattern analysis.
Table 5 outlines the feature pyramid specifications.

Table 5. Feature Pyramid Specifications.

Level Resolution Channels Receptive Field
P1 56x56 256 4x4
P2 28x28 512 8x8
P3 14x14 1024 16x16
P4 7x7 2048 32x32
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Figure 3. Multi-scale Feature Fusion Network.

This visualization depicts the hierarchical feature fusion process through a directed acyclic
graph. Nodes represent feature maps at different scales, with edges showing fusion operations. The
graph uses a circular layout with concentric rings representing scale levels. Edge thickness indicates
feature channel dimensions, while node colors represent activation strengths.

The diagram illustrates the bidirectional information flow between different scale levels,
emphasizing the adaptive nature of feature fusion. Auxiliary connections show skip pathways that
preserve fine-grained spatial information.

3.4. Improved Positional Encoding Scheme

The enhanced positional encoding scheme incorporates both absolute and relative position
information. The encoding combines sinusoidal functions with learned embeddings to capture
complex temporal relationships. Table 6 presents the encoding parameter configurations.
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Table 6. Position Encoding Parameters.

Parameter Value Description

Dimension 512 Encoding size

Max Length 1024 Sequence capacity
Base 10000 Wavelength base
Scale 0.02 Learning rate

The positional encoding mechanism adapts to varying sequence lengths through dynamic
scaling factors. The implementation supports both fixed and learned position embeddings,
optimizing temporal relationship modelingl’ll. The encoding scheme demonstrates robust
performance across different shooting motion patterns and sequence durations.

4. Experimental Design and Results Analysis

4.1. Experimental Environment and Parameter Settings

The experimental implementation utilizes a high-performance computing platform with
standardized hardware configurations. The system specifications and experimental parameters are
documented in Table 7 to ensure reproducibility of results.

Table 7. System Specifications and Training Parameters.

Component Specification Value
CPU Intel Xeon 3.2GHz, 32 cores
GPU NVIDIA A100 40GB VRAM
RAM DDR4 256GB

Framework PyTorch 1.9.0

Batch Size Training/Testing 32/16
Learning Rate Initial/Min 0.001/1e-6

The optimization process implements a multi-stage training strategy with adaptive learning rate
adjustment. Table 8 presents the detailed training configuration parameters across different stages.

Table 8. Training Configuration Details.

Training Stage Epochs Learning Rate Momentum
Pre-training 50 le-3 0.9
Fine-tuning 30 Se-4 0.95

Final adaptation 20 le-4 0.98
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Figure 4. Training Convergence Analysis.

This visualization presents the model's training dynamics through multiple metrics. The plot
contains four subplots arranged in a 2x2 grid: training loss, validation accuracy, learning rate
adaptation, and gradient norm distribution. Each subplot uses different line styles and colors to

distinguish various components, with confidence intervals shown as shaded regions.
The convergence analysis reveals stable learning behavior with consistent performance

improvements across training stages. The gradient norm distribution demonstrates effective
parameter updates, while the learning rate adaptation shows appropriate scheduling behavior.

4.2. Evaluation Metrics and Baseline Methods
The evaluation framework incorporates comprehensive metrics for performance assessment

Table 9 outlines the primary evaluation metrics and their computation methods.

Table 9. Evaluation Metrics Specification.

Metric Formula Range Importance
mAP Y (PrecisionxARecall) [0,1] High
F1-Score 2x(PxR)/(P+R) [0,1] Medium
IoU Area_overlap/Area_union [0,1] High
[0,1] Medium

Temporal Accuracy Correct_frames/Total_frames

The baseline comparison includes state-of-the-art methods in action recognition. Table 10

presents the performance characteristics of baseline models.

Table 10. Baseline Model Comparison.

Model Parameters FLOPs Accuracy

Two-Stream CNN 25M 32G 88.5%
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3D-ResNet 33M 45G 89.2%
I3D 28M 36G 90.1%
Proposed 31IM 39G 92.8%

4.3. Ablation Study Analysis

The ablation study examines the contribution of individual components through systematic
evaluation. The analysis covers architectural variations and their impact on performance metrics.
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Figure 5. Component Contribution Analysis.

The figure presents a parallel coordinates plot showing the relationship between different
architectural components and performance metrics. The x-axis lists model components (attention
heads, fusion layers, position encoding), while the y-axis shows normalized performance scores.
Colored lines trace different model configurations, with line thickness indicating statistical
significance.

The visualization enables the identification of critical components and their interactions.
Performance patterns across different configurations reveal optimal architectural choices and
potential bottlenecks.

4.4. Comparative Analysis with Existing Methods

The comparative analysis evaluates the proposed model against existing approaches across
multiple dimensions. Figure 6 presents a comprehensive performance comparison.
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Figure 6. Multi-dimensional Performance Comparison.
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This visualization employs a radar chart with six axes representing different performance
metrics: accuracy, speed, memory usage, scalability, robustness, and generalization. Each method is
represented by a colored polygon, with vertex positions indicating performance levels. The chart
includes error bars and confidence regions.

The multi-dimensional comparison demonstrates the balanced performance characteristics of
the proposed approach. Performance advantages in specific metrics are highlighted through area
comparisons and intersection patterns.

Quantitative performance metrics across different action categories reveal consistent
improvements. Table 11 presents detailed performance comparisons for specific basketball shooting

actions.
Table 11. Action-specific Performance Comparison.
Action Type Proposed Two-Stream I3D 3D-ResNet
Jump Shot 94.2% 89.5% 90.3% 88.7%
Layup 93.8% 88.9% 89.7% 87.9%
Free Throw 95.6% 90.2% 91.5% 89.3%
Hook Shot 92.4% 87.6% 88.8% 86.5%

The experimental results validate the effectiveness of the proposed architectural improvements.
The enhanced TransFormer model demonstrates superior performance in both accuracy and
computational efficiency metrics, while maintaining robust behavior across varying shooting styles
and environmental conditions2425126],

5. Conclusions and Future Work

5.1. Research Summary

This research advances the state-of-the-art in basketball shooting action recognition through an
enhanced TransFormer-based architecture. The proposed model demonstrates significant
improvements in recognition accuracy and computational efficiency, achieving a 4.3% improvement
in mean average precision compared to existing approaches[11][12]. The integration of multi-scale
feature fusion mechanisms and spatio-temporal attention components enables robust performance
across diverse shooting scenarios.

The experimental results validate the effectiveness of the architectural innovations. The
enhanced position encoding scheme contributes to more accurate temporal relationship modeling,
particularly in complex shooting sequences[13][14]. The ablation studies confirm the significance of
each architectural component, with the spatio-temporal attention mechanism providing the most
substantial performance gains.

The implementation considerations for practical deployment have been thoroughly addressed,
with the optimized model architecture balancing computational requirements and recognition
accuracy[15]. The system maintains real-time processing capabilities while delivering superior
recognition performance in real-world basketball environments[16][17].

5.2. Limitations Analysis

The current implementation exhibits several limitations that warrant further investigation. The
model's performance shows degradation under extreme lighting conditions and severe
occlusions[18]. These scenarios present challenges for accurate feature extraction and temporal
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relationship modeling[19]. The computational requirements, while improved, still necessitate high-
performance hardware for real-time processing[20].

The dataset coverage, though comprehensive, may not fully represent all possible shooting
variations. Regional playing styles and non-standard shooting techniques may not be adequately
represented in the training data[21]. The current position encoding scheme shows limitations in
handling extremely long sequences, and the system's real-time adaptation capabilities require further
development for optimal performance in varying deployment scenarios[22][23].
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