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Article
An Elementary Theory of Indefinite Summation using
Integral Transforms

Thomas X. Li

Santa Rosa Junior College, Santa Rosa, CA, USA, tlil@bearcubs.santarosa.edu

Abstract: We develop a generalized framework for a novel approach to indefinite summation through
the use of integral transforms. Central to our development is the continuous binomial transform,
through which we derive key identities that validate the consistency and effectiveness of the method.
The framework further extends to accommodate variable step sizes and addresses the limitations of
general nonlinear transformations of the summation index. Our results demonstrate that integral
transforms are a powerful and flexible tool for the analysis and computation of discrete indefinite
sums.

Keywords:

1. Introduction
1.1. Motivations and Definitions

Indefinite summation, or antidifferences, provides the discrete analogue of antiderivatives in
classical calculus. Given a sequence g(x), any function f(x) satisfying

Af(x) = flx+1) = f(x) = g(x) 1)

is called an antidifference (or indefinite sum) of g. Summing from a to b — 1 then yields the discrete
Fundamental Theorem of Calculus,

b—1
;g(x) = f(b) = f(a) (2)

1.2. Euler—-Maclaurin Formula

A classical tool for constructing antidifferences is the Euler-Maclaurin formula. Let

o gin) o glm)
flx)=Y axn{‘” (x—a)'= f(x+1) =) axn{’“(x—i—l —a)" 3)
n=0 : n=0 .
Setting a = x, we have
00 aa(cn)f| 5
flr+1) =}, — ()" = () (4)
n=0 :
Therefore:
M) = (@~ Df() = 50 = ) = F5 = 3 Do st)
= (BX)—lg( + 2 (zn)|(ax 211 ! (X) +R (5)

where B,, are the Bernoulli numbers, and R is the constant term that becomes the relevant remainder
term.
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1.3. Poisson Summation

The Poisson summation formula connects discrete sums to continuous Fourier transforms. For a

sufficiently nice function (x),

Y h(m) = Y. k(K ©®)

n=—o0 k=—c0

where h(w) = / h(x)e~2™“¥ dx. This arises immediately through a simple derivation

i (k) = i /oo h(x)e™ 2R gy
k=—o00 k=—00” ™
_ /°° i o2k g
szoo
/ i O(x —n)dx = i h(n) (7)

The Poisson summation formula’s use of the Fourier transform provides sufficient intuition. We will
develop/generalize the usage of integral transforms to indefinite summation setting, yielding new
transform-based antidifference formulas.

2. The Method of Integral Transforms

We once again consider the functional equation:
=2_8(x) = f(x) ®)
X
If we assume that g(x) is nicely the integral transform of some function G(t), we must have that:

2(x) = / Y K(x, HG(¢) dt )

This immediately leads to the formal result:

Z/ t)dt = / Zth (t)dt (10)

This becomes a generalization that readily solves the anti-difference of g(x), and can be used easily
in the evaluation of concrete summations. That said, we can also approach this problem in the
immediately definite sense:

/,,1 Y K(x,H)G (11)

a<x<h a<x<b

Here, the interchange of operators is justified rather simply through the Fubini-Tonelli Theorem, since
the sum is finite, the iterated integral /sum must be absolutely convergent for at least one ordering.
We may also take the bounds to the infinite sense:

/ Y K(x,1)G(t) (12)

a<x<oo a<x<oo

However, in this case, the interchange is only justified when

)|dt < o0 (13)

[ Sixwocia < o [7|5
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We will primarily work with the solution provided in Equation (10). While the indefinite sum directly
yields an anti-difference that solves the definite sum in Equation (11), taking its limit does not always
produce a valid solution to the infinite sum in Equation (12) due to the necessary convergence
conditions.

2.1. Using the Laplace Transform

Arguably the most natural choice of kernel K(x, t) is the exponential function e~ **. This leads us
to evaluate the indefinite sum:

Y e (14)

This can be computed directly using the forward difference:

Ae ¥ = et o7 = o7 ¥ (el 1) (15)
Therefore,
AlAe xt 1 Cat efxt
] =A X:>Zex_e_t_1+c (16)

Now, assume that ¢(x) is the Laplace transform of some function G(¢), i.e.,

2(x) = /O TG (1) dt (17)

Then,
%) = Z/w e G (1) dt = /0oo Y e HG(t) dt

—/ (et +C>G()dt (18)

Dropping the constant term (or absorbing it into a final constant), we obtain:

00 —xt
Yet) = [ S—Ghdi+c (19)

et

Where G(t) is the Inverse Laplace Transform of ¢(x). The identities (17) and (19) are already sulfficient
to derive closed-form expressions for various nontrivial summations.

2.2. Using the Fourier Transform

In a similar fashion to the Laplace transform, we can use the Fourier transform to evaluate
indefinite sums. The Fourier transform of a function f(t) is given by:

ey = [ e ar (20)
This arrives at a very similar result to (19):
Y=Y / MG () df = / Y e G (1) dt
x x /T - x

) e*ixt
- /7 76711 G(t) dt (21)

where G(t) = — / et dt. (22)
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2.3. Using the Mellin Transform

The Mellin transform is another useful tool for evaluating sums of the form }, f(x). The Mellin
transform is defined as:

MLF(H) / F(HF1dt (23)
By applying the same theory as in (10), we obtain:
Y g(x) = / 3 PG dt
X

ootxl
= 24
/oot—l (24)

3. Working with Arbitrary Transforms

While the Laplace, Fourier, and Mellin transforms lend themselves nicely to the analytic computa-
tion of anti-differences or indefinite summations, there are ultimately two key considerations when

Z/ t)dt = /Zth

e  Simplicity of Kernel Summation: We would like the indefinite summation over the kernel

working with 10:

Y. K(x, t) to be sufficiently simple.

e  Existence and Behavior of Inverse Transforms: We would like the inverse transform G(t) of g(x)
to exist in a tractable form and to be well-behaved enough to allow analytic integration in the
final expression.

This immediately suggests a slightly unnatural choice of letting

K= (1) = £0)= ()

Taking a = —oo, immediately provides a remarkable identity. Let:
© (x © (x—1 x—1 © (x—1
L, = = =2
g /m (t)dt /m (t—1)+( t )dt /oo< t )dt

Ip=1,1 =2I, 1 = L, =2

We have

[e9)

Thus, as 2* = /

—00

<Jtc> dt, we must have that

;2’f:/°o (t+1>dt—zx (25)

Looking at another remarkable example, utilizing the absorption identity (}) = %(’f:ll)

Ix:/00 t<x> dt‘:/Oo x(x )dt /00 <x_1>dt—x2x_1.
—00 t —00 _1 —00 t

Thus:

;xz"l—/oo <t+1)tdt /jo <’:)(t—1)dt—x2x1—2x

As a result, we will now additionally develop a brief theory of this continuous binomial transform.
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3.1. The Continuous Binomial Transform

Consider the following integral transform:

UK = £ = [ (7) st
)= [ Kl 3(7) ) s

x\ I(x+1)
where, (t) TT(t+D)I(f—x+1)

We proceed in the usual manner:

£(t) = /OOK(x,t) /_i (i)f(r) drdx
f(t) = 7f(r) 7K(x,t) (i) dx dt

And we would like the inner integral / K(x,t) (i) dx = 6(t — 7). Motivated by the discrete binomial
inversion formula given by: )

P = T () FOn), 26)
) = D=0 () Fom). @)

(see Equation (5.48) in [3], [p. 192] ), we proceed with our derivation.
Proof. We will show that the desired kernel K(x, t) is given by

K(x,t) = (—1)fx<;>.

We have

£(t) = /_O:Of(r) /_i K(x,t) (i) dxdr.
t X

- /_o:of(f) /_0:0(—1)*"‘ (x) (T) dx dt
- /_o;f(T) (i) /_Z(-mf*x (ii;) dxdt

Examining the inner integral:

/_Z(—UHC:D dx.
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Setting j = x — T, we have dj = dx.

[

Rewriting the exponent:

It suffices to show that

= /Z(—1)1<t;T) dj = 8(t—1)

This is relatively simple to show. Let m = t — 7. Consider:

1+x)" =Y (’”>xk.
k>0 k
Formally, we utilize the Residue Theorem to obtain:
m\ 1 (1+2z)™

1 7 (1+ef)m

_ :i0
T AT L (29)
_ 1" i0ym ,—ijo

_2n?§_n(1+e yre=ii dg (30)

We also note that this extends to all real values of m and j:

. . m . .
(1+€)" = (2cos(8/2))"e™/2, <’;1> = i—ﬂ " cos(0/2)"elm/21) 4g
—7T

(T) - 2";—1 j[z cos(0/2)" cos((m/2 — j)0) do

which can then be evaluated numerically since the imaginary part is zero due to symmetry. This is
well-defined.
Then

I— /°° (~1)i (m> dj
—oo ]
= [T T ety do
= % fi(l + ey /_0; =01 djde
We recognize the inner integral as a basic Fourier Transform giving 27t 6(r — 6)

17 Oyms(
annf_n(l-l—e )6 (rr — 6) d6

= (14 ™" =6y = 6(t — )
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Therefore,

f(t) =/jof(r) <f(> /Z(—l)f—xC:;) dx dt
= [ (D) [ ( ) i
= [7 (1) v Te - e
= (1)

This completes the proof with K(x, t) = (—1)"=*(!). Thus:
UK = £ = [ (7)o @

s = [ e (Dmigyas @

—00

To demonstrate the method’s consistency, we will fully work out the case where B{f}(x) = 2*

00 o t
_ irt(t—x) B\ x / int(t—x) 1 f{ (1 Z) x
f(t) = /_oo e <x)2 dx = e el A dz2" dx

o i0\t
— L/ oim(t—=x) ]{n wdgzx dx
27T . elﬂx

) 1 [ . 4
_ elnt?{ (1 4 ezG) / e—mxe—zszx dx do
—7T 27T

= eint%n (1 +ei9)t2i/oo e x5 ~(0+7) dx de
. T

—00

nicely.

. 7T . : . lo
_ emt% (1 + 619)t5(logi(2) _0— 7_[) 4o — emt(l + ez(l gl.(z)fn))t
-

=e™(142(-1)) =¥ = 1.

Thus

L= [ () ma-2 )

We will also illustrate the case where B{f}(x) = sin(x)

f(t) = /:: e/ (t=x) <;) sin(x) dx

1 o
= ””7{(1—1—6’9) 27{/ eI~ 19% gin (x) dx dO

. . 1 00 . eix_efix
_ it 0\t —i(rt40)x

e ﬁ(l—i—e )27_[/_006 — dx do

= f (1 ey 411,(2715(714—6— 1) = 275(rt + 6 +1))d8

We choose C as a unit circle: 0 € [—r — 1, 77 — 1]

= 2@ 1) = (7 1)) = Lz~ 7] = 3() = (¢ ~ 1))

2i
= S((e2(? — 7)) = 3((¢/2(20) sin(1/2))")
T+ 1)t)

= (2sin(1/2))" sin((

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Now, evaluating the sum is relatively tricky. We will develop one more identity to help us,
utilizing the same methods before:

”xt_mL]{(HZ)" ¢
/ ()adt—/ 2 B dza' dt

_ 7{ 1 _’_619 /oo —ift+tlog(a) dtdo = fﬂ (1 +ei9)x5(—6+ logl(a))de

=(1+4a)*

And we have, relatively simply:

Zx:sin(x) - /_D;Zx: (f)f(t)dt = /_0:; (t ji 1) (25in(1/2))tsin((7TT+1)t) dt

= i‘s(/_oo (tjil) (AePH!dt), where A = 2sin(1/2) and B il
) ) Bi\x

= (e [ (7)aeryan = Sa(EEEL

B 1 \s((1—|—25m(1/2) T+) )

= 2sin(1/2) ST

7'(+1

Notice that 1+ 2sin(1/2)e =1+ 2isin(1/2)e!/?
=1 —2sin?(1/2) + 2isin(1/2) Cos(1/2) = cos(1) +isin(1) =¢'.
_ 1 N el 1

= Zsin(1/2) > =T )= Zein(1/2)

o»dx74il)

Thus: ) _sin(x)
X

sin(x — Zf1)

~ 2sin(1/2)

This illustrates the consistency of the method. The usage of integral transforms provide a purely
systematic method of analyzing the indefinite summations of various functions.

4. Change of Variables

In indefinite summation, it is often useful to focus solely on either the even or odd terms. However,
adjusting the step size in the discrete setting can be challenging. To make this idea more concrete,
consider the classical sum:

Y. g(®)

asx<b
Substitutions of the form x = u + n are valid in the sense that the step size of the sum does not change:

S= ), glutn)

a—n<u<b—n

On the other hand, substitutions of the form x = ku + n for k # 1 are not so simple, as terms must be
sifted. For instance, consider the substitution x = 2u. Then:

Y. g@)x=1# Y g(u)

< a b
a<x<b 2<u<}

In order for this substitution to be valid, the step size in the original sum must be halved as dx = 2u.
That is:

5= Y su)lu=]

a b
3Su<3
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4.1. The Problem with Scaling
To address this issue, we return to our functional definitions. Consider:
AN (g(ax)) = f(x). & glax) = f(x+1) — f(x) (34)
1 1
§() = Fox+1) = f(-). (35)
We may define: A, !(g(x)) = Y g(x) = f(x) (36)
ax

If we analyze this functional equation formally, we obtain a result akin to the Euler-Maclaurin Formula:

flax) = f(e!B*10B) = o8 Nog f(oloB(X)) = (loB()x f(x)

Flax+1) = e%xelo8(@¥0x £(x) = Px(1H108(0)%) £ (),
We have: g(x) = f(%x—l—l) —f(%x) —

(eax(lJrlog(%)x) _ elog(%)xax)f(x) — g(x)

(e8()%x) (% 1) f(x) = g(x)
elog(a)xox
Thus: f(x) = eaxjg(x).

The laurent series expansion can be easily obtained now for few terms, giving an analogous Euler-
Maclaurin formula. For a = 2, we have:

(3 10BN (§5 B yut) o

|
n=0 n n

gk

)+ (log(2)x)? —zlog(Z)x + %a

Il
<}

= (05" + (log(2)x — «+0(93))g(x) +C

NI~

That said, we wish to extend the methods in 10 by instead using the operators in 36 If we can find
a specific function, whose indefinite sum is known for a generalized step size, we will be able to apply
it to larger classes of functions via our integral transforms.

The immediate choice becomes the standard geometric series (which the kernels in the Laplace,
Fourier, and Mellin transforms all satisfy), where generalizing by step size is trivial:

—xt __ —nxt __ e_HXt 37
Ze - Ze T p—nt (37)
nx X e -1
Eefm‘xt _ Zefnixt — efznxt (38)
nx nx e~int —1
thfl — Ztnxfl — tHX71 (39)

tn—1

nx X

These can all be verified using the functional definitions in 36. Thus, given the choice of the specific
transform K(x, t), we have

Y g(nx) =Y g(x) = /O U Y K(x, )G (H)dt

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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A Concrete Example: Suppose we are looking to evaluate
sin(x).
xeven, 0<x<N

We utilize the inverse laplace transform to obtain:

i —i
X _ pis

. e — 1. O(t+i)—o(t—i
sm(x):T2>£ 1{sm(x)}(if): ( )21, ( )
00 —2xt A s 2xi —2xi
By e (R T P Y
0 e 2t—1 2i 21\ e2 —1 2 —1
—cos(2x — 1)

= eny /W
— COS N — CcOS
Y sin(@)= Y sin(2x)= A3 J;i?(l) 1) + cos(1)

x even, 0<x<N nggth

which can be verified immediately through computational means.

Summing odd terms becomes very easy as well. Frankly, given any scaling factor of n: f(nx), we can
compute sums for all shifts of f(nx 4+ m mod n). Here, for instance:

Y. sin(x) = Y sin(2x+1)
xodd,0<x<N 0<x<|§]-1

We make the shift substitution (which is completely valid as it does

1
not change step size) of x = x — 5

. N 1 1
2 sm(2x)zf([5j+§)—f(§).

Thus, we have a general method of dealing with step size: first make the scaling substitution and
apply (19); then shift the bounds based on the application.

4.2. A General Change of Variables

We now consider a generalized substitution. Indeed, let

AN (g(h(x)) = f(x) (40)
g(h(x)) = fx+1) = f(x) (41)
g(x) = f(h™H(x) +1) = f(h™}(x)) (42)
And let A}:é)g(x) = (Z;)g(x) = f(x). (43)
h(x
Then we may say that
Lghx) = ¥ 8(x) = [ X Kx, )G d (4
X h(x) h(x)

We see that this now becomes a manner of choosing an appropriate K(x, t) such that K(h(x), t) is easy
to sum. Unfortunately, this is extremely limited for nonlinear /(x)

5. Method Examples

1. An Arbitrary Example
Suppose we have

L

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The i laplace transform gives £~ {—“— }(£) = H(t)sin(wt), where H(t) — 4 ' <
e inverse laplace transform gives = sin(wt), where = .
p & x2 + w? 1, t>0
Then
1=y Y / U Y e H() sin(wi)dt = / Y n(wh
~x2+w?  Jo = 0 e f—1
1 [o 0]
Using the series expansion = H;Oe_”t asle”f| <1 Vt>0:
o [}
I=-Y / e~ M sin(wt) dt.
n=0+0

We reuse the Laplace transform of sin(wt) is:

© kb _ v
/0 e sm(a)t) dt = m

Applying this with k = x + n:

d 1 1 & 1 1
I=— —_———s = — — .
wn;o(x—l—n)z—l—w2 Zzz(x—i—n—zw x+n+zw>

n=0

Here, we can work backwards by computing each

00 1 S 0 E_Zt
Z = / Z e e gt = / — dt
oMtz o S 0
Using the polygamma identity:
(m) pyt [© e 3
W) = (0 [ = e = —9E)

Therefore 1
I= — (= — i) + §(x +iw)) = —Im[p(x + i)

2. The Riemann-Zeta Function
Consider :

Computing the inverse Mellin Transform gives

G(t) _ (_ log(t))k_l

<
(0 , for 0 < t <1 and 0 elsewhere

We find that:

1 B 1 (—10g(t))k71 =1
;__/0 T (k) =1

Or similarly:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Now, using the beautiful identity of the polygamma function:

1 tzfl

p(z) = = | 1 (log(t))" dt

1(_ k=1 px—1 _1\k—1
;% /O ( 10;;((8) :_ydt:(rl(;c) w(k—l)(x)_’_c

Where o v
v @) = (), 9 = 1o

~—

3. Polynomials

We will address the problem of polynomials here. Evidently, it is unclear as to what might happen
when we attempt to compute summations of polynomial terms using this method. Consider the classic
example:

2 © et 2
= [ e
X

Recall that
{6 (1)} =2

This can be shown as:

L{W (D)} (x) = /0 ¥ W) () e at.

Integrate by parts once, moving the t-derivative onto e ~**:

= [6kD (1) ]S 45 /0 SV () e at.
Since (") (t) vanishes for ¢ > 0 and boundary terms at t = 0 involve §(") against a smooth function
(hence vanish except at the final step), the boundary contributions drop out each time. Therefore, we
have £{5® (1)} (x) = x £{8% D ()} (x) Repeating k times yields

LEW ()} (x) = & /O T 58 e dt = .

Therefore,

) e—xt ¢ 0 e—xt "
d2 e—xt
- W[e*t - 1]‘t=0

"
Where fz_(!o) is the 2 term in the series expansion. Thus:

et 1 1 t X212 x343

— (- — 1oxt+—— 2
1yt At s T )
———-I-(x——)—I-t(—xz+E—i)+t2(x—3—x—2+£)+0(t3)
- 2 "2 12 6 4 12
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And we see relatively clearly that

- 3,2
) e ¥ ¥ x
Lo =2 g =g gt

More generally:

4. Binomial Coefficients
By the binomial theorem, it is known that

2 n 1x1n7x :271
X

x>0

However, a surprisingly much more difficult problem is evaluating in general ) _ (n> or more
x>a

generally, what the anti-difference E (Z) , evaluates to.
X

While this has no known closed form solution in elementary functions, we can use the methods

of 31. Let .
10 = (1) = s = [ e () (1) ax

Using the integral representation of the contour

T 10\t
A i},{ A+
x 2t Jop  eifx

17 i ([T (L) T(14 i)
:>f(t):m/g (t )(7{_7{_6{99( d@.)(ﬁn—em d4>.)dx

Interchanging the integrals, under Fubini’s theorem, we have:

pint g , . o
f(t) = @0 j{n ﬁn(l +e9) (1 +e"/’)”(/oo e’<"+9+¢>xdx>d9d¢.
The integral over x yields a Dirac delta function:
/j:o e THOHOY gy — 2715(—71 — 6 — ).
Thus:

f(t) = ‘;—: ]{ " (14 ) (1 4 Ty,

—7T

Using the trigonometric identity that
(1+ %) (1—e )" = (e%/22cos(8))' (e~ /?2isin(§))"
= pttnjm by cost(%) sin"(%).
we have :

i A
f(t) = T/ e0=2" cost(0/2)sin"(0/2)d6.
—7T
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This is related to the Beta Integral, which is defined as:

I L A n [T e - _T(x)I(y)
B(x,y)—/o S s)Y 1ds_z/0 sin?~1(9) cos¥ 1(9)d9_r(x—+y)

It is not known f(t) can be expressed in terms of the Beta Function. However, it is true that, by the
formulas 3.634.1, 3.634.2 in [8]:

T

/7 sin"~1(x) cos” 1 (x)e!"+9)* = ¢3" B(u, )
0

However, it is considerably easier to instead evaluate f(t) by taking:

(1+6®) = i (;) ¢ and (1—e )" — i(_l)k (’;) ik

j=0 k=0

Then:

f=5 ") () (k) G110 dg
oy y

/‘\2!
\/
/\\
\_/
L —
g)H
™
5 A
NN
T
=
=)
QU
S
—_

By orthogonality (or by the Dirac-Delta):

L/” #U-40 4
27T -7

I
—
S
~ ~
o
> &

so only the terms with j = k survive:

Using

Here we have the generalized hypergeometric function qu(al, cea lp;by, .., by z) is defined as:

gk
—~
AN
[y
~—
~
—~
IS
=
~—
P
N

pFo(ai, ... ap;b1,... bg;z) =

T
[}
~—~
<
=
-
=
~~
<
-
N
=
~

where (a)y = a(a+1)---(a+k—1) is the Pochhammer symbol (rising factorial). This also has no
known closed solution (except for special values of t and n). But this is sufficient enough to yield:

£ = L0 () () = V'R 631

k=0

And we can now evaluate:

; (D N /—O:o (tjil)f(t) at = /_o; (tjil) (=D2F(—n, =t 1; —1) dt
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We may go a bit further in simplification to:

L) g (e =5 () () ()

We proceed with the contour representations:

()t [ (T ) (7 )

k>0

(1460 1 o 0 o Y
k>o( )( 2 ]{ ?{ el igk /ﬂoelt(n O-ilog(1+e ))dthdq‘)

n T (14e™(1+e)Y iy
Z (k) (71)1(%_7r ein(1+ei¢) e i d¢

k>0

n k]{ﬂ el i(px— (,Dk /n el i(x—n)¢p z¢_1)n
~1  dp= d
L (k>( ) n 1+e14’ 1+e"P ¢

k>0

6. Discussion/Conclusions

The key result of this paper is given by the formulas in 10, where the anti-difference operator may
be taken on a function K(x, t) of our choosing. The method is consistent and robust, with widespread
application in analyzing discrete summations, particularly through the Laplace Transform, where
a large table of inverse transform identities exist. The Continuous Binomial Transform developed
in 31 has also shown consistent results and provides interesting integral representations of certain
anti-differences. This paper ultimately seeks to provide a mechanical method of solving the functional
equation given by the anti-difference operator, providing a full mathematical framework to a new
approach in the theory of summation.

References

1. S.S. Cheng, Advances in Discrete Mathematics and Applications, Volume 3: Partial Difference Equations, 2019.

2. L. Debnath and D. Bhatta, Integral Transforms and Their Applications, 3rd ed., Taylor & Francis, 2015.

3. R.Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed.,
Addison-Wesley, 1994.

4. H. Stenlund, “On methods for transforming and solving finite series,” arXiv preprint arXiv:1602.04080, 2016.
https:/ /arxiv.org/abs/1602.04080

5. E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, 1927.

6.  Wikipedia, “Polygamma function,” Wikipedia, The Free Encyclopedia. [Online]. Available: https://en.
wikipedia.org/wiki/Polygamma_function

7. R. W. Gosper, “Decision procedure for indefinite hypergeometric summation,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 75, no. 1, pp. 40-42, 1978. https:/ /www.pnas.org/doi/
pdf/10.1073/pnas.75.1.40

8. 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Academic Press, 2007.
http:/ /fisica.ciens.ucv.ve/~svincenz/TISPISGIMR.pdf

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://arxiv.org/abs/1602.04080
https://en.wikipedia.org/wiki/Polygamma_function
https://en.wikipedia.org/wiki/Polygamma_function
https://www.pnas.org/doi/pdf/10.1073/pnas.75.1.40
https://www.pnas.org/doi/pdf/10.1073/pnas.75.1.40
http://fisica.ciens.ucv.ve/~svincenz/TISPISGIMR.pdf
https://doi.org/10.20944/preprints202503.1274.v2
http://creativecommons.org/licenses/by/4.0/

