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Article

An Elementary Theory of Indefinite Summation using
Integral Transforms
Thomas X. Li

Santa Rosa Junior College, Santa Rosa, CA, USA, tli1@bearcubs.santarosa.edu

Abstract: We develop a generalized framework for a novel approach to indefinite summation through
the use of integral transforms. Central to our development is the continuous binomial transform,
through which we derive key identities that validate the consistency and effectiveness of the method.
The framework further extends to accommodate variable step sizes and addresses the limitations of
general nonlinear transformations of the summation index. Our results demonstrate that integral
transforms are a powerful and flexible tool for the analysis and computation of discrete indefinite
sums.

Keywords:

1. Introduction
1.1. Motivations and Definitions

Indefinite summation, or antidifferences, provides the discrete analogue of antiderivatives in
classical calculus. Given a sequence g(x), any function f (x) satisfying

∆ f (x) := f (x + 1)− f (x) = g(x) (1)

is called an antidifference (or indefinite sum) of g. Summing from a to b − 1 then yields the discrete
Fundamental Theorem of Calculus,

b−1

∑
x=a

g(x) = f (b)− f (a) (2)

1.2. Euler–Maclaurin Formula

A classical tool for constructing antidifferences is the Euler–Maclaurin formula. Let

f (x) =
∞

∑
n=0

∂
(n)
x f

∣∣
a

n!
(x − a)n ⇒ f (x + 1) =

∞

∑
n=0

∂
(n)
x f

∣∣
a

n!
(x + 1 − a)n (3)

Setting a = x, we have:

f (x + 1) =
∞

∑
n=0

∂
(n)
x f

∣∣
x

n!
(1)n = e∂x f (x) (4)

Therefore:

∆ f (x) = (e∂x − 1) f (x) = g(x) ⇒ f (x) =
g(x)

e∂x − 1
=

∞

∑
n=0

Bn

n!
(∂x)

n−1g(x)

= (∂x)
−1g(x) +

1
2

g(x) +
∞

∑
n=1

B2n

(2n)!
(∂x)

2n−1g(x) + R (5)

where Bn are the Bernoulli numbers, and R is the constant term that becomes the relevant remainder
term.
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1.3. Poisson Summation

The Poisson summation formula connects discrete sums to continuous Fourier transforms. For a
sufficiently nice function h(x),

∞

∑
n=−∞

h(n) =
∞

∑
k=−∞

ĥ(k) (6)

where ĥ(ω) =
∫ ∞

−∞
h(x)e−2πiωx dx. This arises immediately through a simple derivation

∞

∑
k=−∞

ĥ(k) =
∞

∑
k=−∞

∫ ∞

−∞
h(x)e−2πikx dx

=
∫ ∞

−∞
h(x)

∞

∑
k=−∞

e−2πikx dx

=
∫ ∞

−∞
h(x)

∞

∑
n=−∞

δ(x − n) dx =
∞

∑
n=−∞

h(n) (7)

The Poisson summation formula’s use of the Fourier transform provides sufficient intuition. We will
develop/generalize the usage of integral transforms to indefinite summation setting, yielding new
transform-based antidifference formulas.

2. The Method of Integral Transforms
We once again consider the functional equation:

∆−1g(x) = ∑
x

g(x) = f (x) (8)

If we assume that g(x) is nicely the integral transform of some function G(t), we must have that:

g(x) =
∫ ∞

a
K(x, t)G(t) dt (9)

This immediately leads to the formal result:

∑
x

g(x) = ∑
x

∫ ∞

a
K(x, t)G(t) dt =

∫ ∞

a
∑
x

K(x, t)G(t)dt (10)

This becomes a generalization that readily solves the anti-difference of g(x), and can be used easily
in the evaluation of concrete summations. That said, we can also approach this problem in the
immediately definite sense:

∑
a≤x<b

g(x) =
∫ ∞

a
∑

a≤x<b
K(x, t)G(t) dt (11)

Here, the interchange of operators is justified rather simply through the Fubini-Tonelli Theorem, since
the sum is finite, the iterated integral/sum must be absolutely convergent for at least one ordering.
We may also take the bounds to the infinite sense:

∑
a≤x<∞

g(x) =
∫ ∞

a
∑

a≤x<∞
K(x, t)G(t) dt (12)

However, in this case, the interchange is only justified when

∫ ∞

a

∞

∑
x=a

|K(x, t)G(t)| dt < ∞ or
∫ ∞

a

∣∣∣∣∣ ∞

∑
x=a

K(x, t)G(t)

∣∣∣∣∣dt < ∞ (13)
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We will primarily work with the solution provided in Equation (10). While the indefinite sum directly
yields an anti-difference that solves the definite sum in Equation (11), taking its limit does not always
produce a valid solution to the infinite sum in Equation (12) due to the necessary convergence
conditions.

2.1. Using the Laplace Transform

Arguably the most natural choice of kernel K(x, t) is the exponential function e−xt. This leads us
to evaluate the indefinite sum:

∑
x

e−xt (14)

This can be computed directly using the forward difference:

∆e−xt = e−xte−t − e−xt = e−xt(e−t − 1) (15)

Therefore,
∆−1∆e−xt

e−t − 1
= ∆−1e−xt ⇒ ∑

x
e−xt =

e−xt

e−t − 1
+ C (16)

Now, assume that g(x) is the Laplace transform of some function G(t), i.e.,

g(x) =
∫ ∞

0
e−xtG(t) dt (17)

Then,

∑
x

g(x) = ∑
x

∫ ∞

0
e−xtG(t) dt =

∫ ∞

0
∑
x

e−xtG(t) dt

=
∫ ∞

0

(
e−xt

e−t − 1
+ C∗

)
G(t) dt (18)

Dropping the constant term (or absorbing it into a final constant), we obtain:

∑
x

g(x) =
∫ ∞

0

e−xt

e−t − 1
G(t) dt + C (19)

Where G(t) is the Inverse Laplace Transform of g(x). The identities (17) and (19) are already sufficient
to derive closed-form expressions for various nontrivial summations.

2.2. Using the Fourier Transform

In a similar fashion to the Laplace transform, we can use the Fourier transform to evaluate
indefinite sums. The Fourier transform of a function f (t) is given by:

f̂ (x) =
∫ ∞

−∞
f (t)e−ixt dt (20)

This arrives at a very similar result to (19):

∑
x

g(x) = ∑
x

∫ ∞

−∞
e−ixtG(t) dt =

∫ ∞

−∞
∑
x

e−ixtG(t) dt

=
∫ ∞

−∞

e−ixt

e−it − 1
G(t) dt (21)

where G(t) =
1

2π

∫ ∞

−∞
g(x)eixt dt. (22)
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2.3. Using the Mellin Transform

The Mellin transform is another useful tool for evaluating sums of the form ∑x f (x). The Mellin
transform is defined as:

M{ f (t)}(x) =
∫ ∞

0
f (t)tx−1 dt (23)

By applying the same theory as in (10), we obtain:

∑
x

g(x) =
∫ ∞

−∞
∑
x

tx−1G(t) dt

=
∫ ∞

−∞

tx−1

t − 1
G(t) dt (24)

3. Working with Arbitrary Transforms
While the Laplace, Fourier, and Mellin transforms lend themselves nicely to the analytic computa-

tion of anti-differences or indefinite summations, there are ultimately two key considerations when
working with 10:

∑
x

g(x) = ∑
x

∫ ∞

a
K(x, t)G(t) dt =

∫ ∞

a
∑
x

K(x, t)G(t) dt

• Simplicity of Kernel Summation: We would like the indefinite summation over the kernel
∑x K(x, t) to be sufficiently simple.

• Existence and Behavior of Inverse Transforms: We would like the inverse transform G(t) of g(x)
to exist in a tractable form and to be well-behaved enough to allow analytic integration in the
final expression.

This immediately suggests a slightly unnatural choice of letting

K(x, t) =
(

x
t

)
⇒ ∑

x

(
x
t

)
=

(
x

t + 1

)
Taking a = −∞, immediately provides a remarkable identity. Let:

Ix =
∫ ∞

−∞

(
x
t

)
dt =

∫ ∞

−∞

(
x − 1
t − 1

)
+

(
x − 1

t

)
dt = 2

∫ ∞

−∞

(
x − 1

t

)
dt.

We have
I0 = 1 , Ix = 2Ix−1 ⇒ Ix = 2x

.

Thus, as 2x =
∫ ∞

−∞

(
x
t

)
dt, we must have that

∑
x

2x =
∫ ∞

−∞

(
x

t + 1

)
dt = 2x. (25)

Looking at another remarkable example, utilizing the absorption identity (x
t) =

x
t (

x−1
t−1):

Ix =
∫ ∞

−∞
t
(

x
t

)
dt =

∫ ∞

−∞
x
(

x − 1
t − 1

)
dt = x

∫ ∞

−∞

(
x − 1

t

)
dt = x2x−1.

Thus:

∑
x

x2x−1 =
∫ ∞

−∞

(
x

t + 1

)
t dt =

∫ ∞

−∞

(
x
t

)
(t − 1) dt = x2x−1 − 2x

As a result, we will now additionally develop a brief theory of this continuous binomial transform.
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3.1. The Continuous Binomial Transform

Consider the following integral transform:

B{ f }(x) = F(x) =
∫ ∞

−∞

(
x
t

)
f (t)dt

f (t) =
∞∫

−∞

K(x, t)B{ f }(x) dx

where,
(

x
t

)
=

Γ(x + 1)
Γ(t + 1)Γ(t − x + 1)

We proceed in the usual manner:

f (t) =
∞∫

−∞

K(x, t)
∫ ∞

−∞

(
x
τ

)
f (τ) dτ dx

f (t) =
∞∫

−∞

f (τ)
∞∫

−∞

K(x, t)
(

x
τ

)
dx dτ

And we would like the inner integral
∞∫

−∞

K(x, t)
(

x
τ

)
dx = δ(t − τ). Motivated by the discrete binomial

inversion formula given by:

F(n) = ∑
m

(
n
m

)
f (m), (26)

f (n) = ∑
m
(−1)n−m

(
n
m

)
F(m). (27)

(see Equation (5.48) in [3], [p. 192] ), we proceed with our derivation.
Proof. We will show that the desired kernel K(x, t) is given by

K(x, t) = (−1)t−x
(

t
x

)
.

We have

f (t) =
∫ ∞

−∞
f (τ)

∫ ∞

−∞
K(x, t)

(
x
τ

)
dx dτ.

=
∫ ∞

−∞
f (τ)

∫ ∞

−∞
(−1)t−x

(
t
x

)(
x
τ

)
dx dτ

=
∫ ∞

−∞
f (τ)

(
t
τ

) ∫ ∞

−∞
(−1)t−x

(
t − τ

x − τ

)
dx dτ

Examining the inner integral:

∫ ∞

−∞
(−1)t−x

(
t − τ

x − τ

)
dx.
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Setting j = x − τ, we have dj = dx.

∫ ∞

−∞
(−1)t−(j+τ)

(
t − τ

j

)
dj.

Rewriting the exponent:

(−1)t−τ
∫ ∞

−∞
(−1)j

(
t − τ

j

)
dj.

It suffices to show that

I =
∫ ∞

−∞
(−1)j

(
t − τ

j

)
dj = δ(t − τ)

This is relatively simple to show. Let m = t − τ. Consider:

(1 + x)m = ∑
k≥0

(
m
k

)
xk.

Formally, we utilize the Residue Theorem to obtain:(
m
j

)
=

1
2πi

∮
C

(1 + z)m

zj+1 dz (28)

=
1

2πi

∮ π

−π

(1 + eiθ)m

eiθ(j+1)
ieiθ dθ (29)

=
1

2π

∮ π

−π
(1 + eiθ)me−ijθ dθ (30)

We also note that this extends to all real values of m and j:

(1 + eiθ)m = (2 cos(θ/2))meimθ/2,
(

m
j

)
=

2m

2π

∮ π

−π
cos(θ/2)mei(m/2−j)θ dθ(

m
j

)
=

2m−1

π

∮ π

−π
cos(θ/2)m cos((m/2 − j)θ) dθ

which can then be evaluated numerically since the imaginary part is zero due to symmetry. This is
well-defined.
Then

I =
∫ ∞

−∞
(−1)j

(
m
j

)
dj

=
∫ ∞

−∞
eiπ j 1

2π

∮ π

−π
(1 + eiθ)me−ijθ dθ dj

=
1

2π

∮ π

−π
(1 + eiθ)m

∫ ∞

−∞
ei(π−θ)j dj dθ

We recognize the inner integral as a basic Fourier Transform giving 2π δ(π − θ)

2π
1

2π

∮ π

−π
(1 + eiθ)mδ(π − θ) dθ

= (1 + eiπ)m = δm = δ(t − τ)
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Therefore,

f (t) =
∫ ∞

−∞
f (τ)

(
t
τ

) ∫ ∞

−∞
(−1)t−x

(
t − τ

x − τ

)
dx dτ

=
∫ ∞

−∞
f (τ)

(
t
τ

)
(−1)t−τ

∫ ∞

−∞
(−1)j

(
t − τ

j

)
dj dτ

=
∫ ∞

−∞
f (τ)

(
t
τ

)
(−1)t−τδ(t − τ) dτ

= f (t)

This completes the proof with K(x, t) = (−1)t−x( t
x). Thus:

B{ f }(x) = F(x) =
∫ ∞

−∞

(
x
t

)
f (t)dt (31)

f (t) =
∞∫

−∞

eiπ(t−x)
(

t
x

)
B{ f }(x) dx (32)

To demonstrate the method’s consistency, we will fully work out the case where B{ f }(x) = 2x

nicely.

f (t) =
∫ ∞

−∞
eiπ(t−x)

(
t
x

)
2x dx =

∫ ∞

−∞
eiπ(t−x) 1

2πi

∮
C

(1 + z)t

zx+1 dz 2x dx

=
1

2π

∫ ∞

−∞
eiπ(t−x)

∮ π

−π

(1 + eiθ)t

eiθx dθ 2x dx

= eiπt
∮ π

−π
(1 + eiθ)t 1

2π

∫ ∞

−∞
e−iπxe−iθx2x dx dθ

= eiπt
∮ π

−π
(1 + eiθ)t 1

2π

∫ ∞

−∞
eix( log(2)

i −(θ+π)) dx dθ

= eiπt
∮ π

−π
(1 + eiθ)tδ(

log(2)
i

− θ − π) dθ = eiπt(1 + ei( log(2)
i −π))t

= eiπt(1 + 2(−1))t = e2πit = 1.

Thus

∑
x
B{ f }(x) =

∫ ∞

−∞

(
x

t + 1

)
(1) dt = 2x (33)

We will also illustrate the case where B{ f }(x) = sin(x)

f (t) =
∫ ∞

−∞
eiπ(t−x)

(
t
x

)
sin(x) dx

= eiπt
∮

C
(1 + eiθ)t 1

2π

∫ ∞

−∞
e−iπxe−iθx sin(x) dx dθ

= eiπt
∮

C
(1 + eiθ)t 1

2π

∫ ∞

−∞
e−i(π+θ)x eix − e−ix

2i
dx dθ

= eiπt
∮

C
(1 + eiθ)t 1

4πi
(2πδ(π + θ − 1)− 2πδ(π + θ + 1))dθ

We choose C as a unit circle: θ ∈ [−π − 1, π − 1]

=
1
2i
[(ei − 1)t − (e−i − 1)t] =

1
2i
[z − z] = ℑ(z) = ℑ((ei − 1)t)

= ℑ((ei/2(ei/2 − e−i/2))t) = ℑ((ei/2(2i) sin(1/2))t)

= (2 sin(1/2))t sin((
π + 1

2
)t)
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Now, evaluating the sum is relatively tricky. We will develop one more identity to help us,
utilizing the same methods before:

∫ ∞

−∞

(
x
t

)
atdt =

∫ ∞

−∞

1
2πi

∮
C

(1 + z)x

zt+1 dz at dt

=
∮

C
(1 + eiθ)x 1

2π

∫ ∞

−∞
e−iθt+t log(a) dt dθ =

∮ π

−π
(1 + eiθ)xδ(−θ +

log(a)
i

) dθ

= (1 + a)x

And we have, relatively simply:

∑
x

sin(x) =
∫ ∞

−∞
∑
x

(
x
t

)
f (t) dt =

∫ ∞

−∞

(
x

t + 1

)
(2 sin(1/2))t sin((

π + 1
2

)t) dt

=
∫ ∞

−∞

(
x

t + 1

)
(2 sin(1/2))tℑ(e

π+1
2 ti) dt = ℑ(

∫ ∞

−∞

(
x

t + 1

)
(2 sin(1/2))te

π+1
2 ti dt)

= ℑ(
∫ ∞

−∞

(
x

t + 1

)
(AeBi)t dt), where A = 2 sin(1/2) and B =

π + 1
2

= ℑ((AeBi)−1
∫ ∞

−∞

(
x
t

)
(AeBi)t dt) =

1
A
ℑ( (1 + AeBi)x

eBi )

=
1

2 sin(1/2)
ℑ( (1 + 2 sin(1/2)e

π+1
2 i)x

e
π+1

2 i
)

Notice that 1 + 2 sin(1/2)e
π+1

2 i = 1 + 2i sin(1/2)ei/2

= 1 − 2 sin2(1/2) + 2i sin(1/2) cos(1/2) = cos(1) + i sin(1) = ei.

Thus: ∑
x

sin(x) =
1

2 sin(1/2)
ℑ( eix

e
π+1

2 i
) =

1
2 sin(1/2)

ℑei(x− π+1
2 )

=
sin(x − π+1

2 )

2 sin(1/2)

This illustrates the consistency of the method. The usage of integral transforms provide a purely
systematic method of analyzing the indefinite summations of various functions.

4. Change of Variables
In indefinite summation, it is often useful to focus solely on either the even or odd terms. However,

adjusting the step size in the discrete setting can be challenging. To make this idea more concrete,
consider the classical sum:

S = ∑
a≤x<b

g(x)

Substitutions of the form x = u + n are valid in the sense that the step size of the sum does not change:

S = ∑
a−n≤u<b−n

g(u + n)

On the other hand, substitutions of the form x = ku + n for k ̸= 1 are not so simple, as terms must be
sifted. For instance, consider the substitution x = 2u. Then:

S = ∑
a≤x<b

g(x)[δx = 1] ̸= ∑
a
2≤u< b

2

g(2u)

In order for this substitution to be valid, the step size in the original sum must be halved as δx = 2δu.
That is:

S = ∑
a
2≤u< b

2

g(2u)[δu =
1
2
]
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4.1. The Problem with Scaling

To address this issue, we return to our functional definitions. Consider:

∆−1(g(ax)) = f (x). ⇔ g(ax) = f (x + 1)− f (x) (34)

g(x) = f (
1
a

x + 1)− f (
1
a

x). (35)

We may define: ∆−1
a (g(x)) = ∑

ax
g(x) = f (x) (36)

If we analyze this functional equation formally, we obtain a result akin to the Euler-Maclaurin Formula:

f (ax) = f (elog x+log a) = elog(a)∂log x f (elog(x)) = elog(a)x∂x f (x)

f (ax + 1) = e∂x elog(a)x∂x f (x) = e∂x(1+log(a)x) f (x).

We have: g(x) = f (
1
a

x + 1)− f (
1
a

x) =

(e∂x(1+log( 1
a )x) − elog( 1

a )x∂x ) f (x) = g(x)

(elog( 1
a )x∂x )(e∂x − 1) f (x) = g(x)

Thus: f (x) =
elog(a)x∂x

e∂x − 1
g(x).

The laurent series expansion can be easily obtained now for few terms, giving an analogous Euler-
Maclaurin formula. For a = 2, we have:

(
∞

∑
n=0

(log(2)x∂x)n

n!
)(

∞

∑
n=0

Bn

n!
(∂x)

n−1)g(x)

= (∂−1
x + (log(2)x − 1

2
) +

(log(2)x)2 − log(2)x + 1
6

2
∂x + O(∂2

x))g(x) + C

That said, we wish to extend the methods in 10 by instead using the operators in 36 If we can find
a specific function, whose indefinite sum is known for a generalized step size, we will be able to apply
it to larger classes of functions via our integral transforms.

The immediate choice becomes the standard geometric series (which the kernels in the Laplace,
Fourier, and Mellin transforms all satisfy), where generalizing by step size is trivial:

∑
nx

e−xt = ∑
x

e−nxt =
e−nxt

e−nt − 1
(37)

∑
nx

e−nixt = ∑
nx

e−nixt =
e−inxt

e−int − 1
(38)

∑
nx

tx−1 = ∑
x

tnx−1 =
tnx−1

tn − 1
(39)

These can all be verified using the functional definitions in 36. Thus, given the choice of the specific
transform K(x, t), we have

∑
x

g(nx) =∑
nx

g(x) =
∫ ∞

0
∑
nx

K(x, t)G(t)dt
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A Concrete Example: Suppose we are looking to evaluate

∑
x even, 0≤x≤N

sin(x).

We utilize the inverse laplace transform to obtain:

sin(x) =
eix − e−is

2i
⇒ L−1{sin(x)}(t) = δ(t + i)− δ(t − i)

2i

⇒
∫ ∞

0

e−2xt

e−2t − 1
δ(t + i)− δ(t − i)

2i
dt =

1
2i

(
e2xi

e2i − 1
− e−2xi

e−2i − 1

)
=

− cos(2x − 1)
2 sin(1)

= f (x)

∑
x even, 0≤x≤N

sin(x) = ∑
0≤x≤⌊ N

2 ⌋
sin(2x) =

− cos(2(⌊N
2 ⌋+ 1)− 1) + cos(1)

2 sin(1)

which can be verified immediately through computational means.

Summing odd terms becomes very easy as well. Frankly, given any scaling factor of n: f (nx), we can
compute sums for all shifts of f (nx + m mod n). Here, for instance:

∑
x odd, 0≤x≤N

sin(x) = ∑
0≤x≤⌊ N

2 ⌋−1

sin(2x + 1)

We make the shift substitution (which is completely valid as it does

not change step size) of x = x − 1
2

:

∑
1
2≤x≤⌊ N

2 ⌋− 1
2

sin(2x) = f (⌊N
2
⌋+ 1

2
)− f (

1
2
).

Thus, we have a general method of dealing with step size: first make the scaling substitution and
apply (19); then shift the bounds based on the application.

4.2. A General Change of Variables

We now consider a generalized substitution. Indeed, let

∆−1(g(h(x)) = f (x) (40)

g(h(x)) = f (x + 1)− f (x) (41)

g(x) = f (h−1(x) + 1)− f (h−1(x)) (42)

And let ∆−1
h(x)g(x) = ∑

h(x)
g(x) = f (x). (43)

Then we may say that

∑
x

g(h(x)) = ∑
h(x)

g(x) =
∫ ∞

0
∑
h(x)

K(x, t)G(t) dt (44)

We see that this now becomes a manner of choosing an appropriate K(x, t) such that K(h(x), t) is easy
to sum. Unfortunately, this is extremely limited for nonlinear h(x)

5. Method Examples
1. An Arbitrary Example

Suppose we have

∑
x

ω

x2 + ω2
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The inverse laplace transform gives L−1{ ω

x2 + ω2 }(t) = H(t) sin(ωt), where H(t) =

0, t < 0

1, t ≥ 0
.

Then

I = ∑
x

ω

x2 + ω2 =
∫ ∞

0
∑
x

e−xtH(t) sin(ωt)dt =
∫ ∞

0

e−xt

e−t − 1
sin(ωt)dt

Using the series expansion
1

1 − e−t =
∞

∑
n=0

e−nt as |e−t| ≤ 1 ∀t ≥ 0:

I = −
∞

∑
n=0

∫ ∞

0
e−(x+n)t sin(ωt) dt.

We reuse the Laplace transform of sin(ωt) is:∫ ∞

0
e−kt sin(ωt) dt =

ω

k2 + ω2 .

Applying this with k = x + n:

I = −ω
∞

∑
n=0

1
(x + n)2 + ω2 = − 1

2i

∞

∑
n=0

(
1

x + n − iω
− 1

x + n + iω

)
Here, we can work backwards by computing each

∞

∑
n=0

1
n + z

=
∫ ∞

0
∑
n≥0

e−nte−zt dt =
∫ ∞

0

e−zt

1 − e−t dt

Using the polygamma identity:

ψ(m)(z) = (−1)m+1
∫ ∞

0

tme−zt

1 − e−t dt =⇒
∞

∑
n=0

1
n + z

= −ψ(z)

Therefore
I = − 1

2i
(−ψ(x − iω) + ψ(x + iω)) = −Im[ψ(x + iω)].

2. The Riemann-Zeta Function
Consider :

∑
x

1
xk ⇒ 1

xk =
∫ ∞

0
G(t)tx−1 dt

Computing the inverse Mellin Transform gives

G(t) =
(− log(t))k−1

Γ(k)
, for 0 < t ≤ 1 and 0 elsewhere

We find that:

∑
x

1
xk =

∫ 1

0

(− log(t))k−1

Γ(k)
tx−1

t − 1
, dt

Or similarly:

ζ(k) =
∞

∑
x=1

1
xk =

∫ 1

0

(− log(t))k−1

Γ(k)
1

1 − t
, dt
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Now, using the beautiful identity of the polygamma function:

ψ(n)(z) = −
∫ 1

0

tz−1

1 − t
(log(t))n dt

∑
x

1
xk =

∫ 1

0

(− log(t))k−1

Γ(k)
tx−1

t − 1
, dt =

(−1)k−1

Γ(k)
ψ(k−1)(x) + C

Where

ψ(n)(z) =
dn

dzn ψ(z), ψ(z) =
Γ′(z)
Γ(z)

3. Polynomials
We will address the problem of polynomials here. Evidently, it is unclear as to what might happen
when we attempt to compute summations of polynomial terms using this method. Consider the classic
example:

∑
x

x2 =
∫ ∞

0

e−xt

e−t − 1
L−1{x2} dt

Recall that
L{δ(k)(t)} = xk

This can be shown as:

L{δ(k)(t)}(x) =
∫ ∞

0
δ(k)(t) e−xt dt.

Integrate by parts once, moving the t-derivative onto e−xt:

=
[
δ(k−1)(t) e−xt]∞

0 + s
∫ ∞

0
δ(k−1)(t) e−xt dt.

Since δ(m)(t) vanishes for t > 0 and boundary terms at t = 0 involve δ(m) against a smooth function
(hence vanish except at the final step), the boundary contributions drop out each time. Therefore, we
have L{δ(k)(t)}(x) = x L{δ(k−1)(t)}(x) Repeating k times yields

L{δ(k)(t)}(x) = xk
∫ ∞

0
δ(t) e−xt dt = xk.

Therefore,

∫ ∞

0

e−xt

e−t − 1
L−1{x2} dt =

∫ ∞

0

e−xt

e−t − 1
δ
′′
(t) dt

=
d2

dt2 [
e−xt

e−t − 1
]
∣∣∣
t=0

Where f ′′(0)
2! is the t2 term in the series expansion. Thus:

e−xt

e−t − 1
= (−1

t
− 1

2
− t

12
+ ...) (1 − xt +

x2t2

2
− x3t3

6
+ ...)

= −1
t
+ (x − 1

2
) + t(− x2

2
+

x
2
− 1

12
) + t2(

x3

6
− x2

4
+

x
12

) + O(t3)
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And we see relatively clearly that

∑
x

x2 = 2! [t2]
e−xt

e−t − 1
=

x3

3
− x2

2
+

x
6

More generally:

∑
x

xn = n! [tn]
e−xt

e−t − 1

4. Binomial Coefficients
By the binomial theorem, it is known that

∑
x≥0

(
n
x

)
1x1n−x = 2n

However, a surprisingly much more difficult problem is evaluating in general ∑
x≥a

(
n
x

)
or more

generally, what the anti-difference ∑
x

(
n
x

)
, evaluates to.

While this has no known closed form solution in elementary functions, we can use the methods
of 31. Let

B{ f }(x) =
(

n
x

)
⇒ f (t) =

∞∫
−∞

eiπ(t−x)
(

t
x

)(
n
x

)
dx

Using the integral representation of the contour(
t
x

)
=

1
2π

∮ π

−π

(1 + eiθ)t

e iθx dθ.

=⇒ f (t) =
1

4π2

∞∫
−∞

eiπ(t−x)
(∮ π

−π

(1 + eiθ)t

e iθx dθ.
)(∮ π

−π

(1 + eiϕ)n

e iϕx dϕ.
)

dx

Interchanging the integrals, under Fubini’s theorem, we have:

f (t) =
eiπt

(2π)2

∮ π

−π

∮ π

−π
(1 + eiθ)t(1 + eiϕ)n

(∫ ∞

−∞
e−i(π+θ+ϕ)xdx

)
dθdϕ.

The integral over x yields a Dirac delta function:∫ ∞

−∞
e−i(π+θ+ϕ)xdx = 2πδ(−π − θ − ϕ).

Thus:

f (t) =
eiπt

2π

∮ π

−π
(1 + eiθ)t(1 + e−i(π+θ))ndθ.

Using the trigonometric identity that

(1 + eiθ)t (1 − e−iθ)n =
(
eiθ/22 cos( θ

2 )
)t(e−iθ/22i sin( θ

2 )
)n

= 2 t+nin e iθ t−n
2 cost

(
θ
2

)
sinn

(
θ
2

)
.

we have :

f (t) =
eiπt2n+tin

2π

∫ π

−π
e iθ t−n

2 cost(θ/2) sinn(θ/2)dθ.
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This is related to the Beta Integral, which is defined as:

B(x, y) =
∫ 1

0
sx−1(1 − s)y−1 ds = 2

∫ π
2

0
sin2x−1(θ) cos2y−1(θ) dθ =

Γ(x) Γ(y)
Γ(x + y)

It is not known f (t) can be expressed in terms of the Beta Function. However, it is true that, by the
formulas 3.634.1, 3.634.2 in [8]:

∫ π
2

0
sinu−1(x) cosv−1(x)ei(u+v)x = e

uπ
2 B(u, v)

However, it is considerably easier to instead evaluate f (t) by taking:

(1 + eiθ)t =
∞

∑
j=0

(
t
j

)
eijθ , and (1 − e−iθ)n =

n

∑
k=0

(−1)k
(

n
k

)
e−ikθ .

=⇒ (1 + eiθ)t (1 − e−iθ)n =
∞

∑
j=0

n

∑
k=0

(
t
j

)
(−1)k

(
n
k

)
ei(j−k)θ .

Then:

f (t) =
eiπt

2π

∫ π

−π
∑
j,k

(
t
j

)
(−1)k

(
n
k

)
ei(j−k)θ dθ

= eiπt ∑
j,k

(
t
j

)
(−1)k

(
n
k

)[
1

2π

∫ π

−π
ei(j−k)θdθ

]
.

By orthogonality (or by the Dirac-Delta):

1
2π

∫ π

−π
ei(j−k)θ dθ =

1, j = k,

0, j ̸= k,

so only the terms with j = k survive:

f (t) = eiπt
n

∑
k=0

(−1)k
(

n
k

)(
t
k

)
.

Using
n

∑
k=0

(−1)k
(

n
k

)(
t
k

)
=

n

∑
k=0

(−1)k (−n)k(−t)k
(1)kk!

= 2F1(−n, −t; 1; −1)

Here we have the generalized hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z) is defined as:

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞

∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k
· zk

k!

where (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol (rising factorial). This also has no
known closed solution (except for special values of t and n). But this is sufficient enough to yield:

f (t) =
n

∑
k=0

(−1)t+k
(

n
k

)(
t
k

)
= (−1)t

2F1(−n, −t; 1; −1)

And we can now evaluate:

∑
x

(
n
x

)
=

∫ ∞

−∞

(
x

t + 1

)
f (t) dt =

∫ ∞

−∞

(
x

t + 1

)
(−1)t

2F1(−n, −t; 1; −1) dt
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We may go a bit further in simplification to:

=
∫ ∞

−∞

(
x

t + 1

) n

∑
k=0

(−1)t+k
(

n
k

)(
t
k

)
dt =

n

∑
k=0

(
n
k

) ∫ ∞

−∞
ei(t+k)π

(
x

t + 1

)(
t
k

)
dt

We proceed with the contour representations:

= ∑
k≥0

(
n
k

)
(−1)k

∫ ∞

−∞
eiπt

(∮ π

−π

(1 + eiθ)x

e iθ(t+1)
dθ.

)(∮ π

−π

(1 + eiϕ)t

e iϕk dϕ.
)

dt

=

∑
k≥0

(
n
k

)
(−1)k

∮ π

−π

∮ π

−π

(1 + eiθ)x

e iθ
1

e iϕk

∫ ∞

−∞
eit(π−θ−i log(1+eiϕ))dt dθ dϕ

=

∑
k≥0

(
n
k

)
(−1)k

∮ π

−π

(1 + eiπ(1 + eiϕ))x

eiπ(1 + eiϕ)
e−kϕi dϕ

=

∑
k≥0

(
n
k

)
(−1)k

∮ π

−π

ei(ϕx−ϕk)

1 + eiϕ dϕ =
∫ π

−π

ei(x−n)ϕ(eiϕ − 1)n

1 + eiϕ dϕ

6. Discussion/Conclusions
The key result of this paper is given by the formulas in 10, where the anti-difference operator may

be taken on a function K(x, t) of our choosing. The method is consistent and robust, with widespread
application in analyzing discrete summations, particularly through the Laplace Transform, where
a large table of inverse transform identities exist. The Continuous Binomial Transform developed
in 31 has also shown consistent results and provides interesting integral representations of certain
anti-differences. This paper ultimately seeks to provide a mechanical method of solving the functional
equation given by the anti-difference operator, providing a full mathematical framework to a new
approach in the theory of summation.
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