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* Correspondence: xwm@163.com; Tel.: +86-159-4086-6326 

Abstract: Mesoscale eddies play a critical role in ocean circulation and biogeochemical processes, yet 

predicting their dynamic characteristics remains challenging due to nonlinear interactions and 

background errors in traditional methods. This study proposes a physics based Long Short-Term 

Memory (LSTM) network to predict key eddy features, amplitude, radius, and maximum circularly 

averaged speed (MCAs), by integrating multi-source observational data and hydrodynamic 

principles. Utilizing 28 years (1993-2020) of daily eddy trajectories from the global META3.1exp atlas 

and high-resolution reanalysis data (JCOPE2M) in the Northwest Pacific (15°-35°N, 115°-135°E), we 

systematically evaluate the effects of temporal sequence length and physical variables on prediction 

performance. The model demonstrates superior accuracy compared to conventional LSTM 

approaches, with mean absolute errors (MAE) for 1-7 day predictions increasing from 0.72 cm to 1.37 

cm (amplitude), 8.85 km to 18.02 km (radius), and 0.80 cm/s to 2.46 cm/s (MCA). Key innovations 

include: 1) Dynamic reconstruction of spatiotemporal label-feature relationships to mitigate error 

accumulation, 2) Incorporation of sea surface temperature (SST) and height (SSH), which improve 

prediction accuracy by 5.33-5.92% and 3.65-5.47%, respectively, outperforming eddy kinetic energy 

inputs. Seasonal analysis reveals lower model accuracy in summer versus winter, particularly for 

amplitude (MAE: 1.29 cm vs 1.03 cm) and radius (15.3 km vs 13.2 km). Interannual error patterns 

correlate with El Niño events, highlighting climate-ocean coupling effects. This work advances eddy 

prediction through physics-guided machine learning, providing a framework for operational ocean 

forecasting. Future extensions could incorporate three-dimensional eddy structures and additional 

environmental drivers to enhance predictive capability. 
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1. Introduction 

Mesoscale phenomena are ubiquitous and highly energetic features of ocean circulation [1].They 

carry enormous amounts of energy and have a significant impact on the transfer of mass, momentum 

and heat in the oceans, as well as on the distribution of organisms [2,3].Accurate prediction of the 

characteristics of mesoscale eddies can help us better understand the formation and evolution of 

ocean circulation and provide a scientific basis for the rational development of marine resources. 

The study of mesoscale eddies has always been a hot area in marine science. With the continuous 

progress of observation technology, our understanding of mesoscale eddies has gradually deepened. 

From the early satellite remote sensing observation to the current multi-source data fusion, the 

research methods are constantly innovated. However, the prediction of mesoscale eddy 

characteristics still faces many challenges, such as the complex ocean environment, variable 

meteorological conditions and nonlinear dynamical processes. Generally, there are three main types 

of feature prediction methods for mesoscale eddies, namely, statistical prediction methods, numerical 

prediction methods, and machine learning prediction methods.  

(1) Statistical prediction methods build prediction models by analyzing historical data, Liu et al [4] 

developed a global eddy forecasting system, LICOM Forecast System, based on an ocean 

circulation model, was proposed to forecast the physical state of the ocean for 1-8 days. Robinson 
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et al [5] originally used a mesoscale eddy observation network for predicting eddy evolution in 

two weeks, in which, the model is an anisotropic statistical model used for mixed spatio-

temporal target analysis.  

(2) The numerical prediction method is based on the hydrodynamic equations, which are solved 

numerically to simulate the motion of the ocean and thus to predict mesoscale eddy features, Li 

et al [6] developed a multivariate linear regression model to predict eddy propagation 

trajectories at 1 - 4 weeks. This simple empirical model combines ocean parameters that mainly 

represent the beta effect and the mean flow advection with the position of eddy propagation. Xu 

et al [7] revealed the global distribution pattern of eddy variability by analyzing the overall 

pattern of spatial variations of the spectral slope of the wave number. With the development of 

computer technology, numerical forecasting has been applied to study ocean eddies. However, 

statistical prediction methods and numerical modeling methods have difficulties in predicting 

mesoscale eddy currents in terms of handling nonlinear features as well as background errors 

[8–10]. Machine learning (ML) methods appear to be effective in dealing with this aspect. 

(3) ML prediction methods have played an important role and achieved remarkable results in many 

fields of oceanography [11,12]. With the breakthroughs in satellite remote sensing technology, 

large-area and long-time series of ocean sample data can be obtained more easily, and the study 

of mesoscale eddy current has made many breakthroughs, especially in prediction method. 

Automatic identification and extraction of eddy current based on remote sensing data has 

become an effective means of predicting eddy current [13].Wang et al [14] constructed a 

prediction model for mesoscale eddy features and trajectories using a long and short-term 

memory network (LSTM) and extreme random trees. The root-mean-square errors (RMSE) 

between the predicted and actual longitudes (latitudes) of the trajectories range from 28.8 km to 

47.2 km (23.8 km to 37.2 km). Ashkezari [15] used ML to predict the lifetime of vortices in steady 

evolution, constructed and extended a multivariate dataset of mesoscale eddy trajectories, and 

achieved a minimum centroid error of 8.507 km on 7-day prediction. Zhu et al [16] proposed a 

deep learning approach based on a video prediction model using a neural network to fuse 

remotely sensed meta-data with input data, which improved the accuracy with a prediction 

error of 5.6 km for 3-day prediction and 13.6 km for 7-day prediction of vorticity center position. 

Although ML algorithms are effective in predicting mesoscale eddy features, the forecasts are 

strongly affected by sea level anomalies noise in each grid, ignoring the internal physical 

relationships of eddy formation as well as the correspondence between before and after times. 

This is still a major challenge in predicting target eddies in current fields with complex physical 

fields remains. 

To solve the above problems, this paper constructs a prediction model containing numerical 

vectors of the most relevant physical features of eddies based on mesoscale eddy properties and 

physical oceanographic theorems. The model uses an LSTM network to learn the spatio-temporal 

variation features to make comprehensive and accurate predictions of the target eddy currents at 

different prediction times. The important procedure are as follows: (1) Data preparation: Obtain 

mesoscale eddy data from the global atlas and sea surface data from JCOPE2M, and calculate related 

physical quantities for model input, (2) Model training: Utilize the LSTM network with its unique 

gate mechanism to train on the processed data to form an integrated learning system for predicting 

eddy features, and (3) Result evaluation: Employ MAE and RMSE to assess the model's performance 

on 63630 eddy samples over 1-7 days, and analyze the impacts of different factors on prediction errors. 

The experimental results show that the performance of the proposed method is superior to that 

of previously studied methods. The prediction of eddy current properties relies more on historical 
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time series data than on propagation trajectories. Finally, the variability characteristics and 

predictability of eddy current properties and propagation trajectories are discussed. The eddy 

properties have different effects on the model performance in propagation prediction. 

This paper is organized as follows. Section 2 describes the data sources, the implementation 

process of the methodology and the model structure. Section 3 focuses on the analysis Section 4 

provides an extended discussion. Finally, Section 5 gives some conclusions and future research 

outlook. 

2. Data and Methodology 

In this paper, we predicted the eddy characteristics and analyzed the propagation characteristics 

based on 28 years (1993-2020) of daily mesoscale eddy signature data, using 15°-35°N latitude and 

115°-135°E longitude as the test area. The overall process framework is shown in Section 2.2. The 

characterization factors can be divided into two categories. One category describes the relevant 

characteristics of the eddy itself, including amplitude (Amp), radius (Rad) and maximum circularly 

averaged (MCA) speed. These characteristics reflect the real state of eddies on the two-dimensional 

sea surface. The other involves the spatio-temporal information and physical factors related to the 

changes of the above eddy features, eddy latitude (Lon) and longitude (Lat), eddy kinetic 

energy(EKE), sea surface temperature (SST), sea surface height (SSH), and so on. During the evolution 

of eddies, the properties and propagation trajectories are dynamically changing and interrelated. The 

two-dimensional properties of eddies are related to the motion and reflect the current state and 

changes of the eddies. 

2.1.1. Mesoscale Eddy Data 

This paper uses the global mesoscale eddy track atlas (META3.1exp DT) published by Cori 

Pegliasco et al [17], which is available in the Archiving, Validation and Interpretation of Satellite 

Oceanographic Data (AVISO) (https://www.aviso.altimetry.fr/en/data/data-access). The track atlas 

consists of trajectories generated from eddy identification and altimetry maps, and the resolved 

detection method used is derived from the py-eddy-tracker (PET) algorithm developed by Mason et 

al. [18], which is an improvement on the earlier META2.0, providing complementary eddy 

information such as eddy shapes, eddy fringes, maximum speed contours, and average eddy speed 

from centre to edge profiles. The multi-physical information helps the mechanical learning algorithm 

to improve its accuracy [19], therefore, it is selected in this paper as a source of mesoscale eddy 

features. 

2.1.2. Sea Surface Physical Information Data  

The high-resolution reanalysis dataset used for the physical information is derived from the 

Japan Coastal Ocean Predictability Experiment (JCOPE2M) dataset released by the Japan Agency for 

Marine-Earth Science and Technology (JAMSTEC), which can be accessed at 

http://www.jamstec.go.jp/jcope/ [20]. JCOPE2M covers the western North Pacific Ocean with a 

temporal resolution of 1 day and a horizontal resolution of 1/12°. It is widely used to study mesoscale 

phenomena and flow fields by assimilating high-resolution satellite sea surface temperature (SST) 

data, sea surface altitude (SST) level data, and in-situ data into the model using a multiscale three-

dimensional variational method [21]. 

2.2. LSTM Network for Eddy Current Feature Prediction 

LSTM is a special type of recurrent neural network, proposed by Hochreiter and Schmidhuber 

in 1997 [22]. It is designed to solve the problems of gradient vanishing and gradient explosion 

encountered by traditional recurrent neural network(RNN) when dealing with long sequence data, 

and to maintain the persistence of information in the loaded sequence data [23,24]. In this paper, an 

attempt is made to use LSTM neural network to train the prediction of mesoscale eddy feature 
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sequences under different labeled sequences. The ability of LSTM network to deal with the long and 

short-term dependencies can be effectively improved with the existence of mesoscale eddy sequences 

under the META3.1 dataset with time series spanning from tens to thousands. The key of the LSTM 

is its special network structure, by which, we can predict eddy feature sequences under different 

labeled sequences through the introduction of the structure which controls the inflow, storage and 

outflow of information by introducing a gating mechanism [25]. As shown in Figure 1, the LSTM 

network is a cell form, which is consisted of three gates. And the strcuture of these gates are descrebed 

as followed. 

 

Figure 1. Structure of LSTM network based on physical features. 

(1) Forgeting Gate (FG): FG determines to forget or retain information from the cell. And, FG 

consists of a sigmoid layer that determines which historical information should be discarded 

from the cell. The processed data will produce the state of the neural unit at a specific point in 

time, and this state is continuously transmitted over the time series. When the neural unit 

receives a new input, it is updated by combining the current input value with the output value 

from the previous point in time. The input information passes through the FG,and the forgetting 

functions is 
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The next sigmoid layer together with the tanh layer decides the new value of the cell, which is  
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(3) Outputing Gate(OG): OG determines what information is output from the cell state. It also 

consists of two sigmoid layers. The first sigmoid layer decides which information will be output 

from the cell state to the next hidden state, and the second sigmoid layer together with the tanh 

layer decides the next hidden state of the cell state. 

The output arithmetic process of the neural cell at the current moment is 
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corresponding to the current computation, respectively. 
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b  is a bias matrix. 

In this paper, LSTM networks are used to predict eddy properties. Mesoscale eddy motion 

(including speed, shape, radius, displacement, etc.) is a process with temporal and spatial variations 

[26]. During the motion process, the positions and properties of vortices at different moments are 

characterized, and these properties are related to the previous motion state. Therefore, the future 

state of mesoscale eddies can be predicted from the parameters characterizing multiple moments in 

the previous sequence. vortices at time t are considered as the inputing values of the LSTM model.The 

time series forecasting model can be represented as follows 
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Under the time-series model, we consider a machine learning model based on the corresponding 

relationships ((X,t),(Y,t+n)) in the eigenvectors (x,t) and the predicted values (Y,t+n) at different 

prediction time steps n, and we constructed a machine learning model to explore the implicit 

relationship between these eigen factors and the eddy current prediction labels. The prediction 

algorithm consists of the following steps. 

Step 1: Process all mesoscale eddy data within the experimental sea area, and rearrange the 

individual eddy feature data Xn containing the complete time series into a new sequence according 

to eddy labels and before and after time after clearing the missing values and outliers. 

Step 2: The eddy feature X at time t is combined with the predicted value Y under the same eddy 

label at time t+1 to form a correspondence ((X,t), (Y,t+n)), which is preprocessed and inputted into 

the model to obtain the three prediction models for eddy amplitude, radius and MCAs. 

Step 3: According to the longitude and latitude and the time difference before and after in the 
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
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Where ρ  is the fluid density, which is looked on as a constant value in the surface of the 

experimental sea area. 

Step 4: Input the data Xm such as EKE, sea surface temperature, sea surface height, etc. into the 

model also according to the step 1 and step 2 to get the eddy feature input based on physical 

information. 

Step 5: Repeat the above steps according to the prediction time interval of n. Then independent 

model matrices for different prediction objectives are obtained and the training models are 

parallelized to form an integrated learning system for eddy current feature prediction. 

The overall process framework is shown in Figure 2. 

 

Figure 2. Framework for predictive analysis of eddy current properties. 

3. Experiment and Results 

3.1. Evaluation Criteria 

In our model, training starts with initializing the weights of the interlayer nodes and updating 

the parameters by gradient descent. According to the iterative processing of the training set, the loss 

function is minimized to obtain the optimal solution [27,28], while the model predictions are 

assimilated using the true values at regular intervals to further improve the accuracy of the model 

predictions. 

In order to evaluate the performance of the model in predicting mesoscale eddy currents, the 

mean absolute error (MAE) and RMSE are used as the criteria to judge the performance of the 

prediction model [29]. The formulae for each evaluation error index are shown in (10) and (11), 

repectively. 
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Where 
i

ŷ  is the predicted values obtained after model training, 
i

y  is observed true values and n 

is the number of samples. The smaller the values of MAE and RMSE obtained, the superior the 

performance of the model. 

3.2. Prediction of Mesoscale Eddy 

Mesoscale oceanic eddies reserve a huge amount of energy and play an important role in 

material and energy transport and air-sea interaction [30–33]. In this study, we obtain a large number 

of valid samples based on eddy position and property information recorded in the eddy track dataset, 

and used machine learning to investigate the eddy evolution trend. Figure 3 shows the histogram of 

the property information, including amplitude, radius and MCA information, for the study sea area 

from 1993 to 2020; the mean values of the three properties about amplitude, radius, and average 

speed are 3.83 cm, 59.57 km, and 20.74 cm/s, respectively. 

 

Figure 3. Histogram of eddy current characteristics from 1993 to 2020. 

The development of mesoscale eddies is often accompanied by oblique pressure instability, 

which makes mesoscale forecasts particularly sensitive to initial conditions [34,35]. At the same time 

daily variations in eddy current characteristics are usually stable and small. However, as the 

prediction time increases, the stability of this variation decreases. The model can learn complex trends 

by using feature information and variations from previous time steps, and the gate structure of the 

LSTM network can be used to transmit and update important features in the historical information 

time series, as well as to selectively forget invalid information. Historical time series, which are too 

long, are wasteful of resources and require long run times, therefore, such series are not suitable for 

sample testing or processing of missing data. In the prediction of eddy current properties, we use 

historical datasets with different time series lengths to train and test the performance of the LSTM 

model. In eddy radius prediction, the model gets the best performance when the prediction time is 

short and the time series length is 5 days. When the prediction time is relatively long, a time series 

length of 7 days leads to the lowest prediction error. For eddy amplitude and MCA prediction, the 

prediction results are similar for different time series lengths, which indicates that the time series 

length has little effect on the model performance. It is worth nothing that the prediction error of the 

model is so small that small changes in the time series length are not reflected in the overall index. 

We calculated the prediction results for 63630 eddy current samples using the optimal 

parameters of the LSTM model. Figure 4, Figure 5, and Figure 6 show the temporal distribution of 

the errors in eddy current properties over the 1-7 day prediction time. As the prediction time 

increases, the number of eddies with large absolute errors increases and the number of eddies with 

small errors decreases, resulting in an increase in the average absolute error for all tested eddies. The 

distribution of errors of eddy properties is also related to their absolute values, with eddies 

characterized by smaller properties producing relatively small errors. Table 1 lists the MAEs of eddy 

properties for different prediction times and compares recent studies on eddy prediction. Ma et al [8] 
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found that the polarity of eddy currents has little effect on the prediction of eddy characteristics, so 

instead of distinguishing between eddy polarity, we use the average of the prediction errors of 

cyclonic and anticyclonic eddies obtained by Ma et al. as the measurement standard for the model in 

this paper. 

 

Figure 4. (a) Scatterplot of the spatial distribution of eddy amplitudes (cm) in the test set. And Figure 4 (b-h) 

Forecast errors (cm) of eddy amplitudes from day 1 to day 7. 

 

Figure 5. (a) Scatterplot of the spatial distribution of the eddy radius (km) in the test set. And Figure 5 (b-h) 

Forecast errors (km) of eddy radii from day 1 to day 7. 
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Figure 6. (a) Scatterplot of the spatial distribution of eddy MCA (cm/s) in the test set. And Figure 6 (b-h) Forecast 

errors (cm/s) of eddy MCAs from day 1 to day 7. 

Table 1. Prediction errors of eddy current characteristics in our work. 

Forecasting Days 1st 2nd 3rd 4th 5th 6th 7th 

Amplitude(cm) 0.72 0.75 0.88 1.03 1.16 1.27 1.37 

Radius(km) 8.85 9.82 1.14 1.32 1.47 1.61 1.80 

MCA Speed(cm/s) 0.80 0.89 1.13 1.42 1.73 2.05 2.46 

 

Figure 7. Comparison of MAE between the proposed model and Wang et al. (2020) for amplitude, radius, and 

MCAs predictions. 
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The results show that the prediction accuracy of the model decreases with the increase of the 

number of prediction days, and the MAE increases continuously, and the MAE of the mesoscale eddy 

amplitude prediction in the study sea area gradually increases from 0.72 cm on the first day of the 

forecast to 1.37 cm on the seventh day, the MAE of the radius prediction increases from 8.85 km to 

18.02 km on the first day, and the MAE of the MCAs prediction increases from 0.80 cm/s to 2.46 km/s. 

The results indicate the superiority of the proposed model in this paper, which is much better than 

the LSTM network model proposed by wang et al. in terms of prediction accuracy, and the results 

also indicate the efficiency of the model in this paper in predicting mesoscale eddy properties and its 

ability to address the shortcomings of traditional prediction methods. We try to rebuild the 

correspondence between the spatio-temporal labels in the dataset and the mesoscale eddy features 

after each training of the network, which effectively prevents the model from accumulating errors 

during the training, and makes each prediction relatively independent, which is reflected in the 

smooth increase of the 7-day prediction error. 

4. Discussion 

In the study, we build an LSTM network for mesoscale eddy feature prediction based on 

physical information under the LSTM network, and try multiple factors including EKE, spatio-

temporal information, sea surface temperature, sea surface height and other factors are added to the 

network for training, and according to the conclusions of Xu et al [18], the appropriate input of 

physical information can lead to the improvement of the model prediction accuracy of the network 

after training by 2.80% to 11.92% .In order to verify that these physical factors do play an important 

role in the prediction model, this paper also tries to analyse the error of the model prediction of 

mesoscale eddy features under the initial conditions by adding EKE, sea surface temperature, sea 

surface height, etc. and adjusting them to the best network parameters. The training results are shown 

in Figure 8. 

 

Figure 8. Box-line plots of prediction results for three features with different physical information inputs, where 

type A is the initial condition, type B is the addition of EKE, type C is the addition of sea surface temperature, 

and type D is the addition of sea surface height. 

We attempted to train the model 42 times for each of the four physical information input types 

when all other things being equal, to obtain the results of the box-and-line plot above, where the 

mean RMSE values of the model's predictions of the mesoscale eddy's 7-day amplitude, radius, and 

MCAs under the initial conditions are 1.69 cm, 19.2 km, and 2.56 cm/s, respectively. When EKE is 

added to the model, the mean RMSE values of the three features are 1.68 cm, 19.2 km and 2.55 cm/s, 

respectively, while adding sea surface temperature to the model, the mean RMSE values of the three 

features are 1.60 cm, 18.6 km and 2.45 cm/s, respectively, while adding sea surface height to the model, 

the mean RMSE values of the three features are 1.59 cm, 18.5km and 2.42 cm /respectively. The results 

show that the EKE has a limited, or perhaps even non-existent improvement on the model 

performance when other parameters are kept constant, which we speculate, is because the EKE itself 

is derived from the latitude/longitude and spatial/temporal information of the eddy trajectory atlas 

according to the formulae. Essentially, there is no optimisation of the model training without new 

information inputting. While adding the sea-surface temperature to the model, the mesoscale eddy 
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7-day amplitude, radius, and MCAs are improved by 5.33%, 3.13%, and 4.30%, respectively. After 

adding sea surface height, the prediction accuracies of the three features are improved by 5.92%, 

3.65%, and 5.47%, respectively. Therefore, we conclude that the significant enhancement of model 

prediction performance, by the addition of sea surface temperature and sea surface height, is 

attributed to the input of new physical information. At the same time, this physical information is 

independent of the original dataset, which is equivalent to enhancing the input dimension of the 

original model and increasing the information abundance. This result also shows that sea surface 

temperature play an important role in the variation of mesoscale eddy features as well as sea surface 

height. 

In addition to the above results, we also discuss the interannual variability of mesoscale eddy 

features, and obtain the predicted RMSEs for the amplitude, radius, and MCAs of mesoscale eddies 

in different years and different seasons, respectively, and the results are shown in Figure 9. 

 

Figure 9. RMSE. mean for amplitude, radius and MCA speed predictions for different years. 

Comparing the RMSEs of the three features in different years with the average RMSE, we find 

that there seems to be some kind of overlap in the prediction accuracy of the three features, namely, 

almost all of them have a low prediction accuracy in the years of 1993-1994, 1997-1998, 2004-2005, 

2009-2010, 2014-2016, and 2020-2021, while, a high or unstable prediction accuracy in the rest of the 

years. We consider that the above pheonomenon is related to the El Niño events. Furthermore find 

that the years above-mentioned are El Niño years. 

In terms of seasonal differences, the MAEs of the three features of the mesoscale eddies in the 

summer and winter seasons are statistically calculated, and the results in Table 2 show that the 

differences between the summer and winter seasons do not seem to be reflected in the speed of the 

MCAs, whereas there are more obvious differences in the amplitude and radius. 

Table 2. Prediction errors of eddy characteristics in different seasons. 

 Summer Winter 

Amp(cm) 1.29 1.03 

Radius(km) 15.3 13.2 

MCAs(cm/s) 1.52 1.54 

Various studies in recent years have pointed out that eddy motion is correlated with topography, 

season, and various other physical quantities [36,37]. In this paper, an end-to-end approach is used 

to directly establish the correlation between the initial characteristics of eddies and their propagation 

trajectories. Although more important and complex changes may occur, eddy characteristics are a 

direct result of speed variations and other influences that include recent eddy propagation patterns 

influenced by beta effects and mean advection [13]. Since the complexity of eddy motion is the result 

of a combination of factors, training based on machine learning algorithms can indirectly reflect the 

correlation of other factors affecting eddy propagation trajectories, thus effectively enabling the 

prediction of eddy trajectories. 

1993 1996 1999 2002 2005 2008 2011 2014 2017 2020

1.60

1.62

1.64

R
M

S
E

(c
m

)

year(a)

 RMSE predicted mean

1993 1996 1999 2002 2005 2008 2011 2014 2017 2020
19.0

19.2

19.4

R
M

S
E

(c
m

/s
)

year(a)

 RMSE predicted mean

1993 1996 1999 2002 2005 2008 2011 2014 2017 2020
2.52

2.55

2.58

2.61

R
M

S
E

(c
m

/s
)

year(a)

 RMSE predicted mean

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 March 2025 doi:10.20944/preprints202503.1259.v1

https://doi.org/10.20944/preprints202503.1259.v1


 12 of 14 

 

5. Conclusions 

This study developed a LSTM-based model incorporating physical information for mesoscale 

eddy characteristic prediction. Using data from the global mesoscale eddy trajectory atlas and 

JCOPE2M dataset within the specified test area (15°-35°N, 115°-135°E) from 1993 - 2020, the 

experiment result demonstrate the proposed model has the more accuracy performance than that of 

the conventional models. 

In the prediction of eddy amplitude, radius, and MCA speed, the MAE values increased with 

the extension of the prediction time from 1 to 7 days. For instance, the MAE of amplitude rose from 

0.72 cm to 1.37 cm. The model outperformed previous LSTM models in accuracy. By reconstructing 

the correspondent relationship between samples and labels, avoiding error accumulation effectively, 

and ensuring the reliability of the prediction results. Although EKE had a negligible effect on model 

improvement, sea surface temperature and sea surface height, compared to the rest proposed 

information, significantly enhanced the prediction accuracy of the three eddy characteristics by 

different percentages. 

In the analysis of interannual variability, a potential relationship between prediction errors and 

the El Niño phenomenon was identified. In addition, there were obvious seasonal differences in the 

prediction accuracy of eddy amplitude and radius. We got the lower accuracy in summer, conversely, 

the higher accuracy in winter. 

It should be noted that the analyses and methods provided in this paper need to be further 

refined and deepened, and the prediction of individual mesoscale eddy characteristics, intensity and 

size, especially the seasonal differences in mesoscale eddy systems, need to be further evaluated. 

Future research may focus on integrating more variables, such as solar cycle, tidal and currents, to 

further enhance the model's performance and deepen the understanding of mesoscale eddy behavior. 

In addition, due to the lack of suitable observations, this paper focuses only on the two-dimensional 

structure of mesoscale eddies, the three-dimensional field structure is not discussed in this paper, 

and this element will be carried out in a subsequent study. 
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