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Abstract: Mesoscale eddies play a critical role in ocean circulation and biogeochemical processes, yet
predicting their dynamic characteristics remains challenging due to nonlinear interactions and
background errors in traditional methods. This study proposes a physics based Long Short-Term
Memory (LSTM) network to predict key eddy features, amplitude, radius, and maximum circularly
averaged speed (MCAs), by integrating multi-source observational data and hydrodynamic
principles. Utilizing 28 years (1993-2020) of daily eddy trajectories from the global META3.1exp atlas
and high-resolution reanalysis data (JCOPE2M) in the Northwest Pacific (15°-35°N, 115°-135°E), we
systematically evaluate the effects of temporal sequence length and physical variables on prediction
performance. The model demonstrates superior accuracy compared to conventional LSTM
approaches, with mean absolute errors (MAE) for 1-7 day predictions increasing from 0.72 cm to 1.37
cm (amplitude), 8.85 km to 18.02 km (radius), and 0.80 cm/s to 2.46 cm/s (MCA). Key innovations
include: 1) Dynamic reconstruction of spatiotemporal label-feature relationships to mitigate error
accumulation, 2) Incorporation of sea surface temperature (SST) and height (SSH), which improve
prediction accuracy by 5.33-5.92% and 3.65-5.47%, respectively, outperforming eddy kinetic energy
inputs. Seasonal analysis reveals lower model accuracy in summer versus winter, particularly for
amplitude (MAE: 1.29 cm vs 1.03 cm) and radius (15.3 km vs 13.2 km). Interannual error patterns
correlate with El Nifio events, highlighting climate-ocean coupling effects. This work advances eddy
prediction through physics-guided machine learning, providing a framework for operational ocean
forecasting. Future extensions could incorporate three-dimensional eddy structures and additional
environmental drivers to enhance predictive capability.

Keywords: mesoscale eddy; LSTM networks; eddy features prediction; error analysis

1. Introduction

Mesoscale phenomena are ubiquitous and highly energetic features of ocean circulation [1].They
carry enormous amounts of energy and have a significant impact on the transfer of mass, momentum
and heat in the oceans, as well as on the distribution of organisms [2,3].Accurate prediction of the
characteristics of mesoscale eddies can help us better understand the formation and evolution of
ocean circulation and provide a scientific basis for the rational development of marine resources.

The study of mesoscale eddies has always been a hot area in marine science. With the continuous
progress of observation technology, our understanding of mesoscale eddies has gradually deepened.
From the early satellite remote sensing observation to the current multi-source data fusion, the
research methods are constantly innovated. However, the prediction of mesoscale eddy
characteristics still faces many challenges, such as the complex ocean environment, variable
meteorological conditions and nonlinear dynamical processes. Generally, there are three main types
of feature prediction methods for mesoscale eddies, namely, statistical prediction methods, numerical
prediction methods, and machine learning prediction methods.

(1) Statistical prediction methods build prediction models by analyzing historical data, Liu ef al [4]

developed a global eddy forecasting system, LICOM Forecast System, based on an ocean

circulation model, was proposed to forecast the physical state of the ocean for 1-8 days. Robinson
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et al [5] originally used a mesoscale eddy observation network for predicting eddy evolution in
two weeks, in which, the model is an anisotropic statistical model used for mixed spatio-
temporal target analysis.

(2) The numerical prediction method is based on the hydrodynamic equations, which are solved
numerically to simulate the motion of the ocean and thus to predict mesoscale eddy features, Li
et al [6] developed a multivariate linear regression model to predict eddy propagation
trajectories at 1 - 4 weeks. This simple empirical model combines ocean parameters that mainly
represent the beta effect and the mean flow advection with the position of eddy propagation. Xu
et al [7] revealed the global distribution pattern of eddy variability by analyzing the overall
pattern of spatial variations of the spectral slope of the wave number. With the development of
computer technology, numerical forecasting has been applied to study ocean eddies. However,
statistical prediction methods and numerical modeling methods have difficulties in predicting
mesoscale eddy currents in terms of handling nonlinear features as well as background errors
[8-10]. Machine learning (ML) methods appear to be effective in dealing with this aspect.

(3) ML prediction methods have played an important role and achieved remarkable results in many
fields of oceanography [11,12]. With the breakthroughs in satellite remote sensing technology,
large-area and long-time series of ocean sample data can be obtained more easily, and the study
of mesoscale eddy current has made many breakthroughs, especially in prediction method.
Automatic identification and extraction of eddy current based on remote sensing data has
become an effective means of predicting eddy current [13].Wang et al [14] constructed a
prediction model for mesoscale eddy features and trajectories using a long and short-term
memory network (LSTM) and extreme random trees. The root-mean-square errors (RMSE)
between the predicted and actual longitudes (latitudes) of the trajectories range from 28.8 km to
47.2 km (23.8 km to 37.2 km). Ashkezari [15] used ML to predict the lifetime of vortices in steady
evolution, constructed and extended a multivariate dataset of mesoscale eddy trajectories, and
achieved a minimum centroid error of 8.507 km on 7-day prediction. Zhu et al [16] proposed a
deep learning approach based on a video prediction model using a neural network to fuse
remotely sensed meta-data with input data, which improved the accuracy with a prediction
error of 5.6 km for 3-day prediction and 13.6 km for 7-day prediction of vorticity center position.
Although ML algorithms are effective in predicting mesoscale eddy features, the forecasts are
strongly affected by sea level anomalies noise in each grid, ignoring the internal physical
relationships of eddy formation as well as the correspondence between before and after times.
This is still a major challenge in predicting target eddies in current fields with complex physical
fields remains.

To solve the above problems, this paper constructs a prediction model containing numerical
vectors of the most relevant physical features of eddies based on mesoscale eddy properties and
physical oceanographic theorems. The model uses an LSTM network to learn the spatio-temporal
variation features to make comprehensive and accurate predictions of the target eddy currents at
different prediction times. The important procedure are as follows: (1) Data preparation: Obtain
mesoscale eddy data from the global atlas and sea surface data from JCOPE2M, and calculate related
physical quantities for model input, (2) Model training: Utilize the LSTM network with its unique
gate mechanism to train on the processed data to form an integrated learning system for predicting
eddy features, and (3) Result evaluation: Employ MAE and RMSE to assess the model's performance
on 63630 eddy samples over 1-7 days, and analyze the impacts of different factors on prediction errors.

The experimental results show that the performance of the proposed method is superior to that
of previously studied methods. The prediction of eddy current properties relies more on historical


https://doi.org/10.20944/preprints202503.1259.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 March 2025

time series data than on propagation trajectories. Finally, the variability characteristics and
predictability of eddy current properties and propagation trajectories are discussed. The eddy
properties have different effects on the model performance in propagation prediction.

This paper is organized as follows. Section 2 describes the data sources, the implementation
process of the methodology and the model structure. Section 3 focuses on the analysis Section 4
provides an extended discussion. Finally, Section 5 gives some conclusions and future research
outlook.

2. Data and Methodology

In this paper, we predicted the eddy characteristics and analyzed the propagation characteristics
based on 28 years (1993-2020) of daily mesoscale eddy signature data, using 15°-35°N latitude and
115°-135°E longitude as the test area. The overall process framework is shown in Section 2.2. The
characterization factors can be divided into two categories. One category describes the relevant
characteristics of the eddy itself, including amplitude (Amp), radius (Rad) and maximum circularly
averaged (MCA) speed. These characteristics reflect the real state of eddies on the two-dimensional
sea surface. The other involves the spatio-temporal information and physical factors related to the
changes of the above eddy features, eddy latitude (Lon) and longitude (Lat), eddy kinetic
energy(EKE), sea surface temperature (SST), sea surface height (SSH), and so on. During the evolution
of eddies, the properties and propagation trajectories are dynamically changing and interrelated. The
two-dimensional properties of eddies are related to the motion and reflect the current state and
changes of the eddies.

2.1.1. Mesoscale Eddy Data

This paper uses the global mesoscale eddy track atlas (META3.1lexp DT) published by Cori
Pegliasco et al [17], which is available in the Archiving, Validation and Interpretation of Satellite
Oceanographic Data (AVISO) (https://www.aviso.altimetry.fr/en/data/data-access). The track atlas
consists of trajectories generated from eddy identification and altimetry maps, and the resolved
detection method used is derived from the py-eddy-tracker (PET) algorithm developed by Mason et
al. [18], which is an improvement on the earlier META2.0, providing complementary eddy
information such as eddy shapes, eddy fringes, maximum speed contours, and average eddy speed
from centre to edge profiles. The multi-physical information helps the mechanical learning algorithm
to improve its accuracy [19], therefore, it is selected in this paper as a source of mesoscale eddy
features.

2.1.2. Sea Surface Physical Information Data

The high-resolution reanalysis dataset used for the physical information is derived from the
Japan Coastal Ocean Predictability Experiment (JCOPE2M) dataset released by the Japan Agency for
Marine-Earth ~ Science and Technology (JAMSTEC), which can be accessed at
http://www jamstec.go.jp/jcope/ [20]. JCOPE2M covers the western North Pacific Ocean with a
temporal resolution of 1 day and a horizontal resolution of 1/12°. It is widely used to study mesoscale
phenomena and flow fields by assimilating high-resolution satellite sea surface temperature (SST)
data, sea surface altitude (SST) level data, and in-situ data into the model using a multiscale three-
dimensional variational method [21].

2.2. LSTM Network for Eddy Current Feature Prediction

LSTM is a special type of recurrent neural network, proposed by Hochreiter and Schmidhuber
in 1997 [22]. It is designed to solve the problems of gradient vanishing and gradient explosion
encountered by traditional recurrent neural network(RNN) when dealing with long sequence data,
and to maintain the persistence of information in the loaded sequence data [23,24]. In this paper, an
attempt is made to use LSTM neural network to train the prediction of mesoscale eddy feature
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sequences under different labeled sequences. The ability of LSTM network to deal with the long and
short-term dependencies can be effectively improved with the existence of mesoscale eddy sequences
under the META3.1 dataset with time series spanning from tens to thousands. The key of the LSTM
is its special network structure, by which, we can predict eddy feature sequences under different
labeled sequences through the introduction of the structure which controls the inflow, storage and
outflow of information by introducing a gating mechanism [25]. As shown in Figure 1, the LSTM
network is a cell form, which is consisted of three gates. And the strcuture of these gates are descrebed
as followed.

lel Ct
tanh

X, ':‘

h t-1 hl

Figure 1. Structure of LSTM network based on physical features.

(1) Forgeting Gate (FG): FG determines to forget or retain information from the cell. And, FG
consists of a sigmoid layer that determines which historical information should be discarded
from the cell. The processed data will produce the state of the neural unit at a specific point in
time, and this state is continuously transmitted over the time series. When the neural unit
receives a new input, it is updated by combining the current input value with the output value
from the previous point in time. The input information passes through the FG,and the forgetting

functions is
f=oWx +W,h +W,; oC_ +D, +Xm) (D

Where X is a vector input at moment ¢, ht_l is an output of the previous moment ; Wf is a weight
matrix corresponding to the current calculation, bf is the bias corresponding to the current

computation, Ct_l is the state of the neural unit at the previous moment, O is the sigmoid function,

o is the product of the corresponding elements, X _ is the Physical information data at the current

m
moment.

According to (1), we determine what information is unnecessary and should be deleted from
memory.

(2) Inputing Gate(IG): IG determines which information enters the cell from the input x. It is a
sigmoid layer and a tanh layer. It consists of two sigmoid layers and a tanh layer. The prior

sigmoid layer decides inputing values i;, which is given by
it =o(WX, +Whihi—l +W;oC, +B, +xm) (2)

Where WXi N Whi N Wci denote the weight matrix corresponding to the current computation,

respectively. Bi is bias matrix.
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The next sigmoid layer together with the tanh layer decides the new value of the cell, which is
C, =tanh(W_x +W, h_ +b,) (3)

Where ch . bi . bC denote the weight matrix and bias corresponding to the current computation,

respectively.
After through FG and IG, we get the cell state value Ct , is written by (4), and taken as the

inputing value of the naxt update cell.
C.=foC, +ioC (4

(3) Outputing Gate(OG): OG determines what information is output from the cell state. It also
consists of two sigmoid layers. The first sigmoid layer decides which information will be output
from the cell state to the next hidden state, and the second sigmoid layer together with the tanh
layer decides the next hidden state of the cell state.

The output arithmetic process of the neural cell at the current moment is
Ot = O-(VVXOX[ +Wh0ht—l +Wco © Ct + bo ) (5)

Where ht =0,° tanh (Ct ) , 0, isan output of the OG.WXo N Who N WCO denote the weight matrix

corresponding to the current computation, respectively. bo is a bias matrix.

In this paper, LSTM networks are used to predict eddy properties. Mesoscale eddy motion
(including speed, shape, radius, displacement, etc.) is a process with temporal and spatial variations
[26]. During the motion process, the positions and properties of vortices at different moments are
characterized, and these properties are related to the previous motion state. Therefore, the future
state of mesoscale eddies can be predicted from the parameters characterizing multiple moments in
the previous sequence. vortices at time t are considered as the inputing values of the LSTM model.The
time series forecasting model can be represented as follows

Yo = (X X_,) (6)

Under the time-series model, we consider a machine learning model based on the corresponding
relationships ((X,t),(Y,t+n)) in the eigenvectors (x,t) and the predicted values (Y,t+n) at different
prediction time steps n, and we constructed a machine learning model to explore the implicit
relationship between these eigen factors and the eddy current prediction labels. The prediction
algorithm consists of the following steps.

Step 1: Process all mesoscale eddy data within the experimental sea area, and rearrange the
individual eddy feature data Xn containing the complete time series into a new sequence according
to eddy labels and before and after time after clearing the missing values and outliers.

Step 2: The eddy feature X at time t is combined with the predicted value Y under the same eddy
label at time #+1 to form a correspondence ((X,t), (Y,#+n)), which is preprocessed and inputted into
the model to obtain the three prediction models for eddy amplitude, radius and MCAs.

Step 3: According to the longitude and latitude and the time difference before and after in the

eddy characteristics, the meridional velocities (V(p) and latitudinal velocities (V) are obtained in

accordance with (7) and (8), and the meridional and latitudinal velocities are brought in to generate
the EKE in accordance with (9).

_111pt,) — o(t,))

(7
’ tz_t1
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v = 111cosp(Arg) — At,))
' tz _t1

1
E=Ep1/Vi+Vf (9

Where p is the fluid density, which is looked on as a constant value in the surface of the

(8)

experimental sea area.

Step 4: Input the data Xw such as EKE, sea surface temperature, sea surface height, efc. into the
model also according to the step 1 and step 2 to get the eddy feature input based on physical
information.

Step 5: Repeat the above steps according to the prediction time interval of n. Then independent
model matrices for different prediction objectives are obtained and the training models are
parallelized to form an integrated learning system for eddy current feature prediction.

The overall process framework is shown in Figure 2.

The Eddy Trajectory Data Training Set
I
¥ 3
Feature Prediction and Propagation Analysis Features Based on Relevant Physical
l Dataset Information
I I
Eddy_ LSTM Net\_/vo_rk Based [ | [ 1
Properties Prediction Input Gate

1 |

I Ed(g;'gr;ft'c : Amplitude

: Latitude | FOrget Gate eoe eoe eoe

I Inner Contour ! H

[ Height I : n C, W, B,

! Longitude ! Radius s
1 Output Gate icti

: Sea Surface : p Eddy property prediction

| Hight | P

' :?I:(ier::cfn : MCA P8 Inter-annual Variability

| N

| Temperature I LS |

I I P Seasonal Differences

Figure 2. Framework for predictive analysis of eddy current properties.

3. Experiment and Results
3.1. Evaluation Criteria

In our model, training starts with initializing the weights of the interlayer nodes and updating
the parameters by gradient descent. According to the iterative processing of the training set, the loss
function is minimized to obtain the optimal solution [27,28], while the model predictions are
assimilated using the true values at regular intervals to further improve the accuracy of the model
predictions.

In order to evaluate the performance of the model in predicting mesoscale eddy currents, the
mean absolute error (MAE) and RMSE are used as the criteria to judge the performance of the
prediction model [29]. The formulae for each evaluation error index are shown in (10) and (11),
repectively.

MAE:%an:Wi—yi\ (10)
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RMSE = (11)

Where yi is the predicted values obtained after model training, Y, is observed true values and n

is the number of samples. The smaller the values of MAE and RMSE obtained, the superior the
performance of the model.

3.2. Prediction of Mesoscale Eddy

Mesoscale oceanic eddies reserve a huge amount of energy and play an important role in
material and energy transport and air-sea interaction [30-33]. In this study, we obtain a large number
of valid samples based on eddy position and property information recorded in the eddy track dataset,
and used machine learning to investigate the eddy evolution trend. Figure 3 shows the histogram of
the property information, including amplitude, radius and MCA information, for the study sea area
from 1993 to 2020; the mean values of the three properties about amplitude, radius, and average
speed are 3.83 cm, 59.57 km, and 20.74 cm/s, respectively.

Number of Eddies
Number of eddies
g
Number of eddies

s L " n L 0 . L L L
150 200 250 300 350 400 50 100 150 200 250 300 350 400 100 200 300 400 500

Amplitude(cm) Radius(km) Average speed(cm/s)
Figure 3. Histogram of eddy current characteristics from 1993 to 2020.

The development of mesoscale eddies is often accompanied by oblique pressure instability,
which makes mesoscale forecasts particularly sensitive to initial conditions [34,35]. At the same time
daily variations in eddy current characteristics are usually stable and small. However, as the
prediction time increases, the stability of this variation decreases. The model can learn complex trends
by using feature information and variations from previous time steps, and the gate structure of the
LSTM network can be used to transmit and update important features in the historical information
time series, as well as to selectively forget invalid information. Historical time series, which are too
long, are wasteful of resources and require long run times, therefore, such series are not suitable for
sample testing or processing of missing data. In the prediction of eddy current properties, we use
historical datasets with different time series lengths to train and test the performance of the LSTM
model. In eddy radius prediction, the model gets the best performance when the prediction time is
short and the time series length is 5 days. When the prediction time is relatively long, a time series
length of 7 days leads to the lowest prediction error. For eddy amplitude and MCA prediction, the
prediction results are similar for different time series lengths, which indicates that the time series
length has little effect on the model performance. It is worth nothing that the prediction error of the
model is so small that small changes in the time series length are not reflected in the overall index.

We calculated the prediction results for 63630 eddy current samples using the optimal
parameters of the LSTM model. Figure 4, Figure 5, and Figure 6 show the temporal distribution of
the errors in eddy current properties over the 1-7 day prediction time. As the prediction time
increases, the number of eddies with large absolute errors increases and the number of eddies with
small errors decreases, resulting in an increase in the average absolute error for all tested eddies. The
distribution of errors of eddy properties is also related to their absolute values, with eddies
characterized by smaller properties producing relatively small errors. Table 1 lists the MAEs of eddy
properties for different prediction times and compares recent studies on eddy prediction. Ma ef al [8]
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found that the polarity of eddy currents has little effect on the prediction of eddy characteristics, so
instead of distinguishing between eddy polarity, we use the average of the prediction errors of
cyclonic and anticyclonic eddies obtained by Ma et al. as the measurement standard for the model in
this paper.

s &
116°E 120°E 124°E 128°E 132°E

Latitude(°N)

Longitude(°E)
HEN e
For(a) For(b)-(h)

Figure 4. (a) Scatterplot of the spatial distribution of eddy amplitudes (cm) in the test set. And Figure 4 (b-h)
Forecast errors (cm) of eddy amplitudes from day 1 to day 7.

116°E 120°E 124°E 128°E 132°E

Longitude(°E)
[ N [
“ T Rortb)-()”

Figure 5. (a) Scatterplot of the spatial distribution of the eddy radius (km) in the test set. And Figure 5 (b-h)
Forecast errors (km) of eddy radii from day 1 to day 7.
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Figure 6. (a) Scatterplot of the spatial distribution of eddy MCA (cm/s) in the test set. And Figure 6 (b-h) Forecast
errors (cm/s) of eddy MCAs from day 1 to day 7.

Table 1. Prediction errors of eddy current characteristics in our work.

Forecasting Days Ist 2nd 3rd 4th 5th 6th 7th
Amplitude(cm) 0.72 0.75 0.88 1.03 1.16 1.27 1.37
Radius(km) 8.85 9.82 1.14 1.32 1.47 1.61 1.80
MCA Speed(cm/s) 0.80 0.89 1.13 1.42 1.73 2.05 2.46
25 [ —@—Our work
gig [ —9-Wangetal
210 f
<05 |
0.0
25 y
» | —@—Our worl
g ig : —o—Wang et al
210}
g s

{1 —9—wangetal

MCAs Errors

5
0
5
4 1 —9—our work
3
2
1
0

Forecasting days

Figure 7. Comparison of MAE between the proposed model and Wang et al. (2020) for amplitude, radius, and
MCAs predictions.
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The results show that the prediction accuracy of the model decreases with the increase of the
number of prediction days, and the MAE increases continuously, and the MAE of the mesoscale eddy
amplitude prediction in the study sea area gradually increases from 0.72 cm on the first day of the
forecast to 1.37 cm on the seventh day, the MAE of the radius prediction increases from 8.85 km to
18.02 km on the first day, and the MAE of the MCAs prediction increases from 0.80 cm/s to 2.46 km/s.
The results indicate the superiority of the proposed model in this paper, which is much better than
the LSTM network model proposed by wang et al. in terms of prediction accuracy, and the results
also indicate the efficiency of the model in this paper in predicting mesoscale eddy properties and its
ability to address the shortcomings of traditional prediction methods. We try to rebuild the
correspondence between the spatio-temporal labels in the dataset and the mesoscale eddy features
after each training of the network, which effectively prevents the model from accumulating errors
during the training, and makes each prediction relatively independent, which is reflected in the
smooth increase of the 7-day prediction error.

4. Discussion

In the study, we build an LSTM network for mesoscale eddy feature prediction based on
physical information under the LSTM network, and try multiple factors including EKE, spatio-
temporal information, sea surface temperature, sea surface height and other factors are added to the
network for training, and according to the conclusions of Xu et al [18], the appropriate input of
physical information can lead to the improvement of the model prediction accuracy of the network
after training by 2.80% to 11.92% .In order to verify that these physical factors do play an important
role in the prediction model, this paper also tries to analyse the error of the model prediction of
mesoscale eddy features under the initial conditions by adding EKE, sea surface temperature, sea
surface height, etc. and adjusting them to the best network parameters. The training results are shown

in Figure 8.
& 58 bR &
i ik o R
el 08 ol 09| 0
w [ B %00 w [ 8 0% 80 ul A
S S ¢
= 0, %8 i~ ® z
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B TIo6° B & &go% B % 8o )
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i Qé%%d’g q 2 A o SREE
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RMSE(cm) RMSE(km) RMSE(cm/s)

Figure 8. Box-line plots of prediction results for three features with different physical information inputs, where
type A is the initial condition, type B is the addition of EKE, type C is the addition of sea surface temperature,
and type D is the addition of sea surface height.

We attempted to train the model 42 times for each of the four physical information input types
when all other things being equal, to obtain the results of the box-and-line plot above, where the
mean RMSE values of the model's predictions of the mesoscale eddy's 7-day amplitude, radius, and
MCAs under the initial conditions are 1.69 ¢cm, 19.2 km, and 2.56 cm/s, respectively. When EKE is
added to the model, the mean RMSE values of the three features are 1.68 cm, 19.2 km and 2.55 cm/s,
respectively, while adding sea surface temperature to the model, the mean RMSE values of the three
features are 1.60 cm, 18.6 km and 2.45 cm/s, respectively, while adding sea surface height to the model,
the mean RMSE values of the three features are 1.59 cm, 18.5km and 2.42 cm /respectively. The results
show that the EKE has a limited, or perhaps even non-existent improvement on the model
performance when other parameters are kept constant, which we speculate, is because the EKE itself
is derived from the latitude/longitude and spatial/temporal information of the eddy trajectory atlas
according to the formulae. Essentially, there is no optimisation of the model training without new
information inputting. While adding the sea-surface temperature to the model, the mesoscale eddy
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7-day amplitude, radius, and MCAs are improved by 5.33%, 3.13%, and 4.30%, respectively. After
adding sea surface height, the prediction accuracies of the three features are improved by 5.92%,
3.65%, and 5.47%, respectively. Therefore, we conclude that the significant enhancement of model
prediction performance, by the addition of sea surface temperature and sea surface height, is
attributed to the input of new physical information. At the same time, this physical information is
independent of the original dataset, which is equivalent to enhancing the input dimension of the
original model and increasing the information abundance. This result also shows that sea surface
temperature play an important role in the variation of mesoscale eddy features as well as sea surface
height.

In addition to the above results, we also discuss the interannual variability of mesoscale eddy
features, and obtain the predicted RMSEs for the amplitude, radius, and MCAs of mesoscale eddies
in different years and different seasons, respectively, and the results are shown in Figure 9.

N
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Figure 9. RMSE. mean for amplitude, radius and MCA speed predictions for different years.

Comparing the RMSEs of the three features in different years with the average RMSE, we find
that there seems to be some kind of overlap in the prediction accuracy of the three features, namely,
almost all of them have a low prediction accuracy in the years of 1993-1994, 1997-1998, 2004-2005,
2009-2010, 2014-2016, and 2020-2021, while, a high or unstable prediction accuracy in the rest of the
years. We consider that the above pheonomenon is related to the El Nifio events. Furthermore find
that the years above-mentioned are El Nifo years.

In terms of seasonal differences, the MAEs of the three features of the mesoscale eddies in the
summer and winter seasons are statistically calculated, and the results in Table 2 show that the
differences between the summer and winter seasons do not seem to be reflected in the speed of the
MCAs, whereas there are more obvious differences in the amplitude and radius.

Table 2. Prediction errors of eddy characteristics in different seasons.

Summer Winter
Amp(cm) 1.29 1.03
Radius(km) 15.3 13.2
MCAs(cm/s) 1.52 1.54

Various studies in recent years have pointed out that eddy motion is correlated with topography,
season, and various other physical quantities [36,37]. In this paper, an end-to-end approach is used
to directly establish the correlation between the initial characteristics of eddies and their propagation
trajectories. Although more important and complex changes may occur, eddy characteristics are a
direct result of speed variations and other influences that include recent eddy propagation patterns
influenced by beta effects and mean advection [13]. Since the complexity of eddy motion is the result
of a combination of factors, training based on machine learning algorithms can indirectly reflect the
correlation of other factors affecting eddy propagation trajectories, thus effectively enabling the

prediction of eddy trajectories.
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5. Conclusions

This study developed a LSTM-based model incorporating physical information for mesoscale
eddy characteristic prediction. Using data from the global mesoscale eddy trajectory atlas and
JCOPE2M dataset within the specified test area (15°-35°N, 115°-135°E) from 1993 - 2020, the
experiment result demonstrate the proposed model has the more accuracy performance than that of
the conventional models.

In the prediction of eddy amplitude, radius, and MCA speed, the MAE values increased with
the extension of the prediction time from 1 to 7 days. For instance, the MAE of amplitude rose from
0.72 cm to 1.37 cm. The model outperformed previous LSTM models in accuracy. By reconstructing
the correspondent relationship between samples and labels, avoiding error accumulation effectively,
and ensuring the reliability of the prediction results. Although EKE had a negligible effect on model
improvement, sea surface temperature and sea surface height, compared to the rest proposed
information, significantly enhanced the prediction accuracy of the three eddy characteristics by
different percentages.

In the analysis of interannual variability, a potential relationship between prediction errors and
the El Nifio phenomenon was identified. In addition, there were obvious seasonal differences in the
prediction accuracy of eddy amplitude and radius. We got the lower accuracy in summer, conversely,
the higher accuracy in winter.

It should be noted that the analyses and methods provided in this paper need to be further
refined and deepened, and the prediction of individual mesoscale eddy characteristics, intensity and
size, especially the seasonal differences in mesoscale eddy systems, need to be further evaluated.
Future research may focus on integrating more variables, such as solar cycle, tidal and currents, to
further enhance the model's performance and deepen the understanding of mesoscale eddy behavior.
In addition, due to the lack of suitable observations, this paper focuses only on the two-dimensional
structure of mesoscale eddies, the three-dimensional field structure is not discussed in this paper,
and this element will be carried out in a subsequent study.
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