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Abstract: This paper presents a new decentralized adaptive control scheme for motion control of 
robot manipulators built based closed-kinematic chain mechanism (CKCM). By employing the 
synchronization technique and model reference adaptive control (MRAC) based on the Lyapunov 
direct method, the Decentralized Adaptive Synchronized Control (DASC) scheme is developed. The 
DASC scheme can ensure global asymptotic convergence of tracking errors while forcing all active 
joints to move in a predefined synchronous manner in the presence of uncertainties and sudden 
changes in payload. In addition, the control scheme has a simple structure that does not depend on 
the knowledge of the dynamic mathematical model of a robot manipulator resulting in 
computational efficiency of control scheme implementation. Results of computer simulation 
conducted to evaluate the performance of the control scheme applied to control the motion of a 
CKCM manipulator with 6 degrees of freedom are reported and discussed.  

Keywords: Decentralized control; model reference adaptive control; closed-kinematic chain 
mechanism; parallel robots; synchronized tracking control; Stewart Platform  
 

1. Introduction 

Robot manipulators, whose structure assumes a closed-kinematic chain mechanism (CKCM) 
have attracted great attention from robotic researchers due to their advantages over their counterpart, 
namely manipulators with open kinematic chain mechanism (OKCM) [1]. CKCM manipulators can 
mitigate weaknesses of OKCM manipulators such as low stiffness, poor stability, small payload and 
accumulated and amplified errors from link to link [2]. The CKCM was first employed in the design 
and construction of the Stewart Platform (SP) that possesses 6 degrees of freedom (DOF) [3]. 
Nowadays, the SP has a wide application area in spacecraft simulation, medical rehabilitation and 
high-speed assembly operation, vehicle dynamics, high-speed train dynamics, airplane dynamics, 
drone manipulation, medical rehabilitation and high-speed assembly operation [4,31,32]. 

In order for a robot to track a desired trajectory, a closed-loop feedback controller employs 
sensors to be aware of its surroundings and then adjusts appropriate control strategy to achieve a 
desired performance like the way a human brain works. In general, robotic systems are complicated, 
time-varying and highly nonlinear systems with uncertainties and disturbances in their working 
environment [5]. Moreover, due to the closed-loop structure of CKCM manipulators, the motion of 
each active joint is constrained by the motion of other active joints. Thus, the lack of synchronization 
between active joints will lead to a large coupling effect, which degrades the performance of the 
whole system or even damages its mechanical structure, especially at high speed and large payload. 
Therefore, it is essential for a CKCM manipulator to possess a synchronized controller that has the 
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capacity to adapt and improve itself under changing conditions without human intervention and to 
force each active joint to follow its desired trajectory as close as possible while synchronizing its 
motion with the other active joint’s motions in a defined synchronous manner. 

Recently, synchronization method based on the cross-coupling control technology has been 
developed to solve the above problem by allowing each control loop to receive feedback from itself 
as well as from the others to achieve better coordination and then improve the manipulator 
performance significantly [6]. This approach is a powerful tool for not only CKCM manipulators but 
also systems that require multiple objects to operate simultaneously to achieve a common goal such 
as swarm of mobile robot [7,8] or multiple robotic manipulator systems [9,10].   

Most existing synchronized control schemes are model-based adaptive control schemes [11,12] 
and their implementation requires a precise dynamical model of the manipulator [13–15]. Due to the 
fact that it is difficult if not possible to acquire a precise dynamical model of the manipulator and its 
associated mathematical calculation is computationally intensive, these synchronized control 
schemes are not suitable for real-time applications of CKCM manipulators particularly of those with 
more than 2 DOFs. To tackle the above dynamic modelling issue, robotic researchers have considered 
intelligent approaches such as fuzzy logic [16,17] and artificial neural network control schemes 
[18,19]. However, these intelligent controllers exhibited shortcomings such as assurance of stability, 
high computational demand, slow convergence rate, and time-consuming training process. Finally, 
the authors in [20–22] considered synchronized control schemes that have simple structures and do 
not require the knowledge of the manipulator dynamics in the implementation of their control laws. 
However, their controller gains must still be selected based on conservative estimates of the 
manipulator dynamic model, which could be problematic and impractical. 

During the trajectory tracking processes, CKCM manipulators can be treated as a group of multi 
OKCM manipulators holding the same payload.  Hence, it is possible to develop a decentralized 
control scheme in which each active joint is controlled independently to minimize the computational 
cost and move synchronously to achieve the desired tracking performance of the moving platform 
[22]. 

In this paper, we develop a new decentralized adaptive synchronized control (DASC) scheme 
for CKCM manipulators. Unlike conventional decentralized control schemes [23], each sub-controller 
of the DASC scheme receives feedback from not only its active joint but also from 2 neighboring ones. 
Then, by applying the model reference adaptive control (MRAC) technique based on the Lyapunov 
direct method into the synchronized control method, the DASC scheme guarantees the global 
asymptotic convergence of tracking errors to zero, while synchronizing all active joint’s motion and 
overcoming uncertainties and disturbances. Moreover, the DASC scheme whose controller gains are 
updated by an adaptation law driven only by the actual and desired trajectories of active joints is 
computationally efficient and thus is suitable for real-time applications.  

The structure of this paper is as follows. Section 2 describes the synchronization control method 
and Section 3 presents the development of the DASC scheme. Section 4 presents and discusses the 
results of a computer simulation study conducted to evaluate the effectiveness of the DASC scheme 
in comparison with another existing adaptive control scheme. Section 5 concludes the paper with 
summary and future research directions. 

2. Synchronization Control 

For a CKCM manipulator with 𝑛 active joints, the synchronization goal can be described by 𝑞ଵሺ𝑡ሻ 𝑞ௗଵሺtሻ = 𝑞ଶሺ𝑡ሻ  𝑞ௗଶሺtሻ = ⋯ = 𝑞௡ሺ𝑡ሻ 𝑞ௗ௡ሺtሻ (1)

where 𝑞ௗ௜ and  𝑞௜ሺ𝑡ሻ denote the desired and actual trajectory of the  𝑖௧௛ active joint, respectively. 
If all ratios in (1) are equal or in other words, if Equation (1) is valid, then all active joints will 

move in a synchronous manner [20]. However, considering synchronization of all active joints may 
lead to a heavy computational burden especially when the number of active joints is large.  
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We proceed to rewrite (1) as a set of subgoals 𝑞௜ሺ𝑡ሻ𝑞ௗ௜ሺ𝑡ሻ = 𝑞௜ାଵሺ𝑡ሻ𝑞ௗ௜ାଵሺ𝑡ሻ (2)

From subgoals (2), synchronization functions are defined as 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧ 𝑓ଵሾ𝑞ଵሺ𝑡ሻ,𝑞ଶሺ𝑡ሻሿ = 𝑞ଵሺ𝑡ሻ𝑞ௗଵ − 𝑞ଶሺ𝑡ሻ𝑞ௗଶ = 0𝑓ଶሾ𝑞ଶሺ𝑡ሻ,𝑞ଷሺ𝑡ሻሿ = 𝑞ଶሺ𝑡ሻ𝑞ௗଶሺ𝑡ሻ − 𝑞ଷሺ𝑡ሻ𝑞ௗଷሺ𝑡ሻ = 0⋮𝑓௜ሾ𝑞௜ሺ𝑡ሻ,𝑞௜ାଵሺ𝑡ሻሿ = 𝑞௜ሺ𝑡ሻ𝑞ௗ௜ሺ𝑡ሻ − 𝑞௜ାଵሺ𝑡ሻ𝑞ௗ௜ାଵሺ𝑡ሻ = 0⋮𝑓௡ሾ𝑞௡ሺ𝑡ሻ,𝑞ଵሺ𝑡ሻሿ = 𝑞௡ሺ𝑡ሻ𝑞ௗ௡ሺ𝑡ሻ − 𝑞ଵሺ𝑡ሻ𝑞ௗଵሺ𝑡ሻ = 0

 (3)

Using Taylor Series [30] to expand (3) at the desired joint trajectories 𝑞ௗ௜(𝑡) to obtain 

𝑓௜ሾ𝑞௜(𝑡ሻ,𝑞௜ାଵ(𝑡ሻሿ = 𝑓௜ሾ𝑞ௗ௜(𝑡ሻ,𝑞ௗ௜ାଵ(𝑡ሻሿ + ෍ ቈ𝜕𝑓௜(. ሻ𝜕𝑞௝ ቤ቉           𝑞𝑑𝑖(𝑡ሻ
௝ୀ௜ାଵ
௝ୀ௜ ൛𝑞௝(𝑡ሻ − 𝑞ௗ௝(tሻ + 𝒪ൣ𝑞௝(𝑡ሻ൧ൟ = 

−∑ ൤డ௙೔(.ሻడ௤ೕ ฬ൨      𝑞𝑑𝑖(𝑡ሻ௝ୀ௜ାଵ௝ୀ௜ 𝑞௘௝(𝑡ሻ + 𝒪ൣ𝑞௝(𝑡ሻ൧  (4) 

where 𝒪ൣ𝑞௝(𝑡ሻ൧ denotes the higher order terms.  
Considering only the first-order derivative, then (4) becomes                                        𝑓௜ሾ𝑞௜(𝑡ሻ,𝑞௜ାଵ(𝑡ሻሿ = ௤೐೔(௧ሻ௤೏೔(௧ሻ − ௤೐೔శభ(௧ሻ௤೏೔శభ(௧ሻ = 0     (5) 

where 
                                          𝑞௘௜(𝑡ሻ = 𝑞ௗ௜(𝑡ሻ −  𝑞௜(𝑡ሻ.      (6) 
and 𝑞௘௜(𝑡ሻ, 𝑞ௗ௜(𝑡ሻ,𝑞௜(𝑡ሻ denote tracking error trajectory, desired trajectory and actual trajectory of the 𝑖𝑡ℎ active joint, respectively. Next, we define the synchronization errors as [20] 

 
                                  𝜀ଵ(𝑡ሻ = 𝑝ଵ(𝑡ሻ𝑞ୣଵ(𝑡ሻ − 𝑝ଶ(𝑡ሻ𝑞ୣଶ(𝑡ሻ                                  𝜀ଶ(𝑡ሻ = 𝑝ଶ(𝑡ሻ𝑞ୣଶ(𝑡ሻ − 𝑝ଷ(𝑡ሻ𝑞ୣଷ(𝑡ሻ⋮                                     𝜀௜(𝑡ሻ = 𝑝௜(𝑡ሻ𝑞ୣ௜(𝑡ሻ − 𝑝௜ାଵ(𝑡ሻ𝑞ୣ௜ାଵ(𝑡ሻ⋮                                𝜀௡(𝑡ሻ = 𝑝௡(𝑡ሻ𝑞௘௡(𝑡ሻ − 𝑝ଵ(𝑡ሻ𝑞ୣଵ(𝑡ሻ

       (7) 
where 𝜀௜ represents the synchronization error of the 𝑖௧௛ active joint and  𝑝௜(tሻ = ଵ௤೏೔(௧ሻ  and 𝑐௜(𝑡ሻ is 

bounded. Obviously, if all synchronization errors in (7) are equal to zero, then the synchronization 
goal (1) is automatically achieved. 

It is noted that by making all 𝜀௜(𝑡ሻ = 0, only the synchronization goal is achieved. However, the 
goal of the control scheme is to drive both tracking and synchronization errors to zero. 

Consequently, an error encompassing both synchronization and tracking should be defined. 
Thus, we define the cross-coupling errors that combine both tracking errors and synchronization 
errors as [29]                                         𝑒ଵ∗(tሻ = 𝑞ୣଵ(tሻ + 𝛽 ׬ [𝜀ଵ(𝑤ሻ − 𝜀௡(𝑤ሻ]𝑑𝑤௧଴                                        𝑒ଶ∗(tሻ = 𝑞ୣଶ(tሻ + 𝛽 ׬ [𝜀ଶ(𝑤ሻ − 𝜀ଵ(𝑤ሻ]𝑑𝑤௧଴⋮                                            𝑒௜∗(tሻ = 𝑞ୣ௜(tሻ + 𝛽 ׬ [𝜀௜(𝑤ሻ − 𝜀௜ିଵ(𝑤ሻ]𝑑𝑤௧଴⋮                                            𝑒௡∗(tሻ = 𝑞௘௡(tሻ + 𝛽 ׬ [𝜀௡(𝑤ሻ − 𝜀௡ିଵ(𝑤ሻ]𝑑𝑤௧଴

   (8) 
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where 𝛽 is a positive coupling parameter and 𝑒௜∗(tሻ represents the cross-coupling error of the 𝑖௧௛ 
active joint. From (7) and (8), it is noted that the local controller of each joint receives feedback 
information from not only itself but also the two neighboring ones. 

3. Development of the DASC Scheme 

The dynamics of a robot manipulator having n active joints can be expressed in joint-space as 
[25]                                                𝑀(𝑞ሻ𝑞ሷ + 𝑁(𝑞, 𝑞ሶ ሻ + 𝐺(𝑞ሻ + 𝐻(𝑞ሶ ሻ = 𝑇(𝑡ሻ      (9) 
where 𝑞 is the nx1 vector of joint displacement, 𝑀(𝑞ሻ is the n x n symmetric positive definite inertia 
matrix, 𝑁(𝑞, 𝑞ሶ ሻ is the n x 1 Coriolis and centrifugal torque vector, 𝐺(𝑞ሻ is the n x 1 gravitational 
torque vector and 𝐻(𝑞ሶ ሻ is the n x 1 frictional torque vector. 

The 𝑖𝑡ℎ subsystem of the dynamical system (9) can be written as the following decentralized 
form [23]               𝑚௜௜(𝑞ሻ𝑞ሷ௜௜(𝑡ሻ + ቈ∑ 𝑚௜௝(𝑞ሻ𝑞ሷ௝଺௝ୀଵ௝ஷଵ (𝑡ሻ቉ + 𝑛௜(𝑞, 𝑞ሶ ሻ + 𝑔௜(𝑞ሻ + ℎ௜(𝑞ሶ ሻ = 𝑇௜(𝑡ሻ  (10) 

where 𝑇௜ is the control input of the 𝑖𝑡ℎ active joint. 
As seen in (10),the 𝑖𝑡ℎ subsystem not only contains the gravity, friction, Coriolis and centrifugal 

torque, namely  𝑛௜(𝑞, 𝑞ሶ ሻ + 𝑔௜(𝑞ሻ + ℎ௜(𝑞ሻ for the 𝑖𝑡ℎ active joint but also is coupled between it and 

the remaining subsystems shown by the term ቈ∑ 𝑚௜௝(𝑞ሻ𝑞ሷ௝଺௝ୀଵ௝ஷଵ (𝑡ሻ቉. 
Let               𝑑௜(𝑞, 𝑞ሶ , 𝑞ሷ ሻ = ∑ 𝑚௜௝(𝑞ሻ𝑞ሷ௝଺௝ୀଵ௝ஷଵ (𝑡ሻ + 𝑛௜(𝑞, 𝑞ሶ ሻ + 𝑔௜(𝑞ሻ +ℎ௜(𝑞ሶ ሻ   (11) 

Then (10) becomes        𝑚௜௜(𝑞ሻ𝑞ሷ௜௜(𝑡ሻ + 𝑑௜(𝑞, 𝑞ሶ , 𝑞ሷ ሻ = 𝑇௜(𝑡ሻ     (12) 
Next, we define a command vector ui(t) as                    𝑢௜(𝑡ሻ = 𝑞ௗ௜(𝑡ሻ + 𝛽 ׬ [𝜀௡(𝑤ሻ − 𝜀௡ିଵ(𝑤ሻ]𝑑𝑤௧଴ + 𝛼 ׬ 𝑒௜∗(𝑤ሻ𝑑𝑤௧଴   (13) 

where 𝑞ௗ௜(𝑡ሻ  denotes the desired trajectory of the  𝑖௧௛ active joint and  𝛼 is a positive constant. 
We also define a generalized error ri(t) as                          𝑟௜(𝑡ሻ = 𝑢௜(𝑡ሻ − 𝑞௜(𝑡ሻ = 𝑒௜∗(𝑡ሻ +  𝛼 ׬ 𝑒௜∗(𝑤ሻ𝑑𝑤௧଴     (14) 

Now a control law for the 𝑖𝑡ℎ subsystem in (10), can be defined as 𝑇௜(𝑡ሻ = 𝑓௜(𝑡ሻ + [𝑘଴௜(𝑡ሻ𝑟௜(𝑡ሻ + 𝑘ଵ௜(𝑡ሻ𝑟ሶ௜(𝑡ሻ] + [𝑎௜(𝑡ሻ𝑢௜(𝑡ሻ + 𝑏௜(𝑡ሻ𝑢ሶ ௜(𝑡ሻ + 𝑐௜(𝑡ሻ𝑢ሷ ௜(𝑡ሻ]             (15) 
Substituting (15) into (10) in light of (12) and dropping the subscript i for simplicity, we obtain 

the error differential equation in terms of the generalized error r(t) which is indeed ri(t) as  𝑚𝑟ሷ(𝑡ሻ + 𝑘ଵ(𝑡ሻ𝑟ሶ(𝑡ሻ + 𝑘଴(𝑡ሻ𝑟(𝑡ሻ = 𝑑 − 𝑓(𝑡ሻ − 𝑎(𝑡ሻ𝑢(𝑡ሻ − 𝑏(𝑡ሻ𝑢ሶ (𝑡ሻ + (𝑚 − 𝑐ሻ𝑢ሷ (𝑡ሻ         (16) 

Let us define the 2x1 position-velocity error vector 𝑋(𝑡ሻ = ൬𝑟(𝑡ሻ𝑟ሶ(𝑡ሻ൰ and then express Equation 

(16) in a state space form as   𝑋ሶ(𝑡ሻ = ൬ 0 1−∆ଵ −∆ଶ൰𝑋(𝑡ሻ + ൬ 0∆଴൰ + ൬ 0∆ଷ൰ 𝑢(𝑡ሻ +  ൬ 0∆ସ൰ 𝑢ሶ (𝑡ሻ + ൬ 0∆ହ൰ 𝑢ሷ (𝑡ሻ   (17) 
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where the variables ∆ଵ= ௞బ௠ ; ∆ଶ= ௞భ௠ ; ∆଴= ௗି௙௠ ; ∆ଷ= ି௔௠ ;  ∆ସ= ି௕௠ ; ∆ହ= (௠ି௖ሻ௠  contain the adjustable 
controller gains 𝑘ଵ(𝑡ሻ, 𝑘଴(𝑡ሻ,𝑓(𝑡ሻ,𝑎(𝑡ሻ, 𝑏(𝑡ሻ, and 𝑐(𝑡).  

Equation (17) represents the “adjustable system” in the framework of MRAC. Next, the desired 
performance of the 𝑖௧௛  active joint can be specified in terms of a second-order homogeneous 
differential equation                                    𝑟ሷ௠(𝑡) + 2𝜔𝜉𝑟ሶ௠(𝑡) + 𝜔ଶ𝑟௠(𝑡) = 0     (18) 

where 𝜉  is the damping ratio,  𝜔   is the natural frequency and 𝑟௠(𝑡)   represents the desired 
trajectory of 𝑟(𝑡). 

Equation (18) can be written in a state space form as 𝑋ሶ௠(𝑡) = ൬ 0 1−𝐷ଵ −𝐷ଶ൰𝑋௠(𝑡) = 𝐷𝑋௠(𝑡)    (19) 

where 𝐷 =  ൬ 0 1−𝐷ଵ −𝐷ଶ൰ , 𝑋௠(𝑡) = ൬𝑟௠(𝑡)𝑟ሶ௠(𝑡)൰ , 𝐷ଵ = 𝜔ଶ , 𝐷ଶ = 2𝜔𝜉  and 𝑟௠(𝑡)  and 𝑟ሶ௠(𝑡)  are the 

desired generalized position error and velocity errors, respectively.  
Equation (19) represents the “reference model” and its solution is found as                                      𝑋௠(𝑡) = exp(𝐷𝑡)𝑋௠(0)    (20) 

which under the assumption that the initial values of the actual and the desired trajectory are 
identical. In other words,  𝑋௠(0) = 0 yields 𝑋(0) = 0. 

We define the adaptation error vector E(t) as                                   𝐸(𝑡) = 𝑋௠(𝑡) − 𝑋(𝑡)       (21) 
Then from (17) and (19), we obtain 𝐸ሶ (𝑡) = ൬ 0 1−𝐷ଵ −𝐷ଶ൰𝐸(𝑡) + ൬ 0 1∆ଵ−𝐷ଵ ∆ଵ−𝐷ଵ൰𝑋(𝑡) + ൬ 0−∆଴൰ + ൬ 0−∆ଷ൰ 𝑢(𝑡) +൬ 0−∆ସ൰ 𝑢ሶ (𝑡) + ൬ 0−∆ହ൰ 𝑢ሷ (t) (22) 

Now, the controller adaptation laws will be derived to achieve the control objective, expressed 
by 𝑋(𝑡) ⟶ 𝑋௠(𝑡) or 𝐸(𝑡) ⟶0 as t→ ∞. To achieve this, we select a Lyapunov function candidate 𝑣(𝑡) [23] such that  𝑣(𝑡) = 𝐸்𝑃𝐸 + 𝑄௢(Δ଴ − Δ଴∗)ଶ + 𝑄ଵ(Δଵ−𝐷ଵ − Δଵ∗)ଶ + 𝑄ଶ(Δଶ−𝐷ଶ − Δଶ∗)ଶ +𝑄ଷ(Δଷ − Δଷ∗)ଶ + 𝑄ସ(Δସ − Δସ∗)ଶ + 𝑄ହ(Δହ − Δହ∗)ଶ   (23) 

where Δ଴∗,Δଵ∗, … ,Δ଺∗ are function of time and 𝑄௢,𝑄ଵ, … ,𝑄ହ are arbitrary positive scalar. 
To stabilize the linear part of (22), it is sufficient to choose 𝜉௜ and 𝜔௜ such that the matrix D 

becomes Hurwitz, or all eigenvalues of D have negative real parts.  If so, there exists a symmetric 

positive definite matrix P=൤𝑃ଵ 𝑃ଶ𝑃ଶ 𝑃ଷ൨ to satisfy the following Lyapunov Equation                                                           𝑃𝐷 + 𝐷்𝑃 = −𝑄      (24) 

for any arbitrary symmetric positive definite matrix Q. 
Finally, from [23], particularly in the section entitled Derivation of the Adaption Laws, the 

derivative of 𝑣(𝑡), namely 𝑣ሶ(𝑡) will be negative definite of 𝐸(𝑡) when we choose the following 
adaptation laws 𝑓(𝑡) = 𝑓(0) + 𝜂ଶΩ(t) + 𝜂ଵ ׬ Ω(w)dw௧଴        
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𝑘଴(𝑡) = 𝑘଴(0) + 𝛾ଶΩ(t)r(𝑡) + 𝛾ଵ ׬ Ω(w)r(w)dw௧଴     𝑘ଵ(𝑡) = 𝑘ଵ(0) + 𝜆ଶΩ(t)𝑟ሶ(𝑡) + 𝜆ଵ ׬ Ω(w)𝑟ሶ(w)dw௧଴      𝑎(𝑡) = a(0) + 𝜇ଶΩ(t)u(t) + 𝜇ଵ ׬ Ω(w)u(w)dw௧଴       𝑏(𝑡) = 𝑏(0) + 𝜌ଶΩ(t)𝑢ሶ (𝑡) + 𝜌ଵ ׬ Ω(w)𝑢ሶ (𝑤)dw௧଴      𝑐(𝑡) = 𝑐(0) + 𝜎ଶΩ(t)𝑢ሷ (𝑡) + 𝜎ଵ ׬ Ω(w)𝑢ሷ (w)dw௧଴      

where 𝜂ଵ, 𝛾ଵ, 𝜆ଵ, 𝜇ଵ,𝜌ଵ,𝜎ଵ  are positive constant and 𝜂ଶ, 𝛾ଶ, 𝜆ଶ,𝜇ଶ,𝜌ଶ,𝜎ଶ  are zero or positive 
constant, Ω(𝑡) = 𝑃ଶ𝑟(𝑡) + 𝑃ଷ𝑟ሶ(𝑡)  where 𝑃ଶ  and 𝑃ଷ  are positive constant, depending on the 
reference model. Furthermore, 𝑓  (0), 𝑘଴  (0), 𝑘ଵ  (0), 𝑎  (0), 𝑏(0) ,  𝑐(0)  which are the initial 
conditions of 𝑓(𝑡), 𝑘଴(𝑡), 𝑘ଵ(𝑡), 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), respectively, can be set arbitrarily. 

As a result, 𝑋(𝑡) ⟶ 0 as 𝑡 →  ∞  results in ቈ𝑒௜∗(𝑡) +  𝛽 ׬ 𝑒௜∗(𝑤)𝑑𝑤௧଴𝑒ሶ௜∗(𝑡) +  𝛽𝑒௜∗(𝑡) ቉  ⟶ 0 as t→ ∞.  

Then, 𝑒௜∗(𝑡) ⟶ 0 and 𝑒ሶ௜∗(𝑡) ⟶ 0 as t→ ∞ [27]. Thus, 𝑞௘௜(𝑡), 𝑞ሶ௘௜(𝑡)  are bounded from (9) and 
from differentiating (9). Moreover, 𝜀ሶ௜(𝑡)  are bounded from differentiating (8), then 𝜀௜(𝑡)  are 
uniformly continuous since every function which is differentiable and has bounded derivative is 
uniformly continuous [24].  

From Barbalat’s Lemma [26], suppose that 𝑓 ∶ [0,∞] → ℝ   is uniformly continuous and its 
derivative is bounded. Then, 𝑓(𝑡) ⟶ 0 as t→ ∞ holds. Therefore, 𝜀௜(𝑡) ⟶ 0 as t→ ∞ since 𝜀௜(𝑡) 
are uniformly continuous and 𝜀ሶ௜(𝑡)  are bounded. From (8) and (9),  𝜀௜(𝑡) ⟶ 0  and 𝑒௜∗(𝑡) ⟶ 0  
results in 𝑒௜(𝑡) ⟶ 0  as t→ ∞ for all 𝑖 = 1 − 𝑛. Therefore, the control objective is achieved.  

It is noted that the adaptation laws are solutions for controller gain matrices of control law (15) 
and based on the actual, desired performances and their derivatives. Furthermore, we note that the 
control law (15) consists of three terms 

• The first term 𝑓௜(𝑡) represents auxiliary signal to improve the tracking performance and partly 
compensate for disturbance 𝑑(𝑡) 

• The second term 𝜏௜௙௕(𝑡) = [𝑘଴௜(𝑡)𝑟௜(𝑡) + 𝑘ଵ௜(𝑡)𝑟ሶ௜(𝑡)]=  [𝑘଴௜(𝑡) + 𝛼]𝑒௜∗(𝑡) + 𝛼𝑘଴௜(𝑡)׬ 𝑒௜∗(𝑤)𝑑𝑤]௧଴ +𝑘ଵ௜(𝑡)𝑒ప∗ሶ (𝑡) represents the PID feedback controller 
• The last term 𝜏௜௙௙(𝑡) = [𝑎௜(𝑡)𝑢௜(𝑡) + 𝑏௜(𝑡)𝑢ሶ ௜(𝑡) + 𝑐௜𝑢ሷ ௜(𝑡)] represent the feedforward controller 

The structure of the controller is shown in Figure 1. The required inputs of 𝑖𝑡ℎ controller is the 
desired position, velocity, acceleration of its active joint. The required measurements are the actual 
positions and velocities of its active joint and 2 adjacent ones. 
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Figure 1. Decentralized adaptive synchronized control scheme of the 𝑖𝑡ℎ active joint. 

4. Computer Simulation Study 

This section presents and discusses results of a computer simulation study conducted to evaluate 
the effectiveness of the developed DASC scheme applied to control the motion of a 6- DOF CKCM 
manipulator with properties listed in Table 1. The computer simulation study is carried out using 
MATLAB/Simulink. Figure 2 shows the Simulink model of the manipulator.  

 

Figure 2. Simulink model of the 6-DOF CKCM. 

Table 1. Parameters of the 6-DOF CKCM manipulator. 

Plant parameters Value 
Base radius (m) 0.36 
Platform radius(m) 0.27 
Initial height (m) 0.5 
Base offset angle (deg) 2.5 
Platform offset angle (deg) 10 
Mass of the platform (kg) 4.92 
Mass of the leg cylinder (kg) 10.29 
Inertia coefficient of the platform, Ixx (kg*m2) 0.09 
Inertia coefficient of the platform, Iyy (kg*m2) 0.09 
Inertia coefficient of the platform, Izz (kg*m2) 0.18 
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For comparison purpose, the developed DASC and the traditional adaptive controller developed 
by Seraji in [23] are employed track a reference model with the desired damping ratios and natural 
frequencies chosen as 𝜔i = 10𝑟𝑎𝑑/𝑠; 𝜁i = 1, for 𝑖 = 1, 2, 3,…, 6. We aim at comparing the performance 
of the DASC with the Seraji Controller when tracking  a circular path in the X-Y plane, described by 
the following equations 

ቐ 𝑥(𝑡) = 0.1 cos(2𝜋𝑡)    (𝑚)𝑦(𝑡) = 0.1 sin(2𝜋𝑡)        (𝑚)    𝑧(𝑡) = 0.5                       (𝑚)  

𝛼(𝑡) = 𝛽(𝑡) = 𝛾(𝑡) = 0 (𝑟𝑎𝑑) 

where 𝛼(𝑡),𝛽(𝑡), 𝛾(𝑡) are rotations about the 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) axes. To evaluate the adaptive ability 
of the above controllers, a 40kg payload is suddenly applied at the center of the mass of the moving 
platform at time t=3 sec.  

Figure 3 and Figure 4 show synchronization errors of the 2 controllers. From these figures, the 
DASC scheme can guarantee the global asymptotic convergence to zero of synchronization errors 
while the Seraji Controller cannot.  

Figure 5 and Figure 6 show the tracking errors of 2 controllers. As seen from these figures, before 
a payload is applied, the Seraji Controller needs more time to force the manipulator approach to the 
steady state. When the payload is applied at 3s, the system with the DASC scheme enters the steady 
state after 𝑡 ≥ 3.5𝑠 while the Seraji Controller cannot. Moreover, the steady-state errors of the DASC 
scheme are much smaller than those of the Seraji Controller.  

Figure 7 and Figure 8 illustrate the trajectory tracking of 2 controllers in the X-Y and the  X-Y-Z 
planes, respectively. As shown by these figures, the Seraji Controller gets off track at the beginning 
and after the introduction of the full payload. Moreover, the DASC scheme has a better adaptation to 
track the motion with a much smaller deviation from the desired trajectory until the end of the 
motion. 

Table 2 shows that the average absolute position errors and the tracking and synchronization 
errors of the 6 legs of the manipulator of the DASC are significantly smaller than those of the Seraji 
Controller.  

 

Figure 3. Synchronization errors of DASC Controller. 
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Figure 4. Synchronization errors of the Seraji Controller. 

 

Figure 5. Tracking error of the DASC Controller. 
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Figure 6. Tracking error of adaptive controller.

Figure 7. Trajectory tracking in X-Y plane.
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Figure 8. Trajectory tracking in X-Y-Z plane.

Table 2. Average absolute errors.

Seraji 
Controller

DASC
Controller𝑋(𝑚𝑚) 0.508 0.0226𝑌(𝑚𝑚) 0.501 0.0284𝑍(𝑚𝑚) 0.28 0.0947𝑒ଵ(𝑚𝑚) 0.379 0.0988𝑒ଶ(𝑚𝑚) 0.323 0.0905𝑒ଷ(𝑚𝑚) 0.318 0.0909𝑒ସ(𝑚𝑚) 0.375 0.0972𝑒ହ(𝑚𝑚) 0.331 0.0832𝑒଺(𝑚𝑚) 0.341 0.0860𝜀ଵ(𝑚𝑚) 0.5109 0.0021𝜀ଶ(𝑚𝑚) 0.6637 0.0122𝜀ଷ(𝑚𝑚) 0.6245 0.0156𝜀ସ(𝑚𝑚) 0.7342 0.0176𝜀ହ(𝑚𝑚) 0.3961 0.0117𝜀଺(𝑚𝑚) 0.8946 0.0211

5. Conclusion

In this paper, by treating the trajectory tracking control of a CKCM manipulator as synchronized 
control of multi OKCM manipulators, we developed a new decentralized adaptive synchronized 
controller, called DASC for CKCM manipulators.  The developed controller does not require any 
knowledge of the manipulator dynamics and guarantees the global asymptotic convergence of both 
tracking and synchronization errors while overcoming uncertainties and sudden changes in payload. 
Computer simulations conducted to study the performance of the DASC Controller in comparison 
with the Seraji Controller show that the DASC has better tracking performance. From our computer 
simulation study, we conclude that in general, adaptive controllers with synchronized error control 
perform better than those without it. Further work is to apply the DASC in controlling motion of real 
CKCM manipulators and compare its performance to that of existing adaptive controllers. 
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