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Abstract: Modern linguistic steganography faces the fundamental challenge of balancing embedding
capacity with detection resistance, particularly against advanced Al-based steganalysis. This paper
presents DeepStego, a novel steganographic system leveraging GPT-4-omni's language modeling
capabilities for secure information hiding in text. Our approach combines dynamic synonym
generation with semantic-aware embedding to achieve superior detection resistance while
maintaining text naturalness. Through comprehensive experimentation with 8,662 samples,
DeepStego demonstrates significantly lower detection rates (0.635-0.655) compared to existing
methods (0.838-0.911) across multiple state-of-the-art steganalysis techniques. DeepStego supports
embedding capacities up to 4 bits per word while maintaining strong detection resistance and
semantic coherence. The system shows superior scalability with a factor of 1.29, compared to 1.66-
1.73 for existing methods. Our evaluation demonstrates 100% message recovery accuracy and
significant improvements in text quality preservation, with readability scores of 25.46 versus 22.34-
24.56 for competing approaches. These results establish DeepStego as a significant advancement in
practical steganographic applications, particularly suitable for scenarios requiring secure covert
communication with high embedding capacity.

Keywords: linguistic steganography; GPT models; natural language processing; information hiding;
text generation; semantic embedding; covert communication; steganalysis resistance; deep learning;
cybersecurity

1. Introduction

The evolution of digital communication has intensified the need for secure information hiding
techniques. Linguistic steganography, which conceals secret messages within natural text, has
emerged as a crucial tool for covert communication [1,2]. However, the field faces significant
challenges in balancing embedding capacity, detection resistance, and text naturalness [3,4].

Recent advances in linguistic steganography have primarily focused on improving embedding
efficiency through various text manipulation techniques. These methods often rely on predefined
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rules or statistical patterns for message encoding. While such approaches have achieved moderate
success, they remain vulnerable to increasingly sophisticated steganalysis methods. Current
techniques typically achieve detection rates between 0.838 and 0.911, making them inadequate for
highly secure applications [5,6].

The emergence of advanced language models, particularly GPT architectures [7,8], presents new
opportunities for enhancing steganographic techniques. These models' sophisticated understanding
of language semantics and context offers potential solutions to the fundamental challenges in
linguistic steganography. However, effectively leveraging these capabilities for secure information
hiding requires novel approaches to text generation and message embedding [9,10].

This paper introduces DeepStego, a steganographic system that harnesses GPT-4-omni's
language modeling capabilities to achieve superior detection resistance and text naturalness. Our
approach combines dynamic synonym generation with semantic-aware embedding techniques to
overcome the limitations of existing methods. The system demonstrates significant improvements in
three critical areas: detection resistance (achieving rates of 0.635-0.655), statistical preservation, and
embedding capacity.

The main contributions of this work are:

1. A novel steganographic framework leveraging GPT-4-omni for natural text generation and
semantic-aware message embedding;

2. Anadaptive embedding mechanism that maintains strong detection resistance while supporting
high capacity information hiding;

3. Comprehensive empirical evaluation demonstrating significant improvements in security and
text quality metrics;

4. A practical implementation achieving 100% message recovery accuracy with superior
scalability.

The remainder of this paper is organized as follows. Section 2 reviews related work in linguistic
steganography and language modeling. Section 3 presents our system architecture and methodology.
Section 4 details our experimental results and performance analysis. Section 5 discusses implications
and limitations. Finally, Section 6 concludes with future research directions.

Our work addresses a critical gap in current steganographic research by demonstrating that
advanced language models can significantly improve the trade-off between security and capacity.
The results establish new benchmarks for detection resistance and text quality, advancing the field of
secure covert communication.

2. Related Work

Linguistic steganography has evolved significantly with the advancement of natural language
processing technologies. Early approaches focused on manual text manipulation and rule-based
systems. Recent developments have shifted toward automated techniques leveraging neural
networks and language models.

2.1. Generation-Based Approaches

Yang et al. [11] introduced RNN-Stega, demonstrating the first successful application of
recurrent neural networks for steganographic text generation. Their approach achieved improved
text quality but showed limitations in maintaining semantic coherence at higher embedding rates.
VAE-Stega [12]addressed these limitations by introducing a variational autoencoder framework,
achieving better statistical imperceptibility while maintaining natural language fluency.

Zhang et al. [13] proposed a novel approach moving from symbolic to semantic space,
introducing the concept of semantic encoding. This method demonstrated improved resistance to
statistical analysis but faced challenges with embedding capacity. Fang et al. [14] explored LSTM-
based text generation for steganography, focusing on poetry generation with high embedding rates.

2.2. Semantic Preservation Techniques
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Recent work by Xiang et al. [15] introduced syntax-space hiding techniques, achieving higher
embedding capacity while preserving semantic coherence. Their HISS-Stega framework
demonstrated significant improvements in maintaining text naturalness. Yan et al. [16] addressed the
critical issue of segmentation ambiguity in generative steganography, proposing a secure token-
selection principle that enhanced both security and semantic preservation.

2.3. Language Model Integration

The integration of advanced language models, particularly transformer-based architectures like
BERT [6,9,13], has opened new possibilities in steganographic techniques. These models provide
richer semantic understanding and context awareness, enabling more sophisticated embedding
strategies. The emergence of GPT architectures [7,17] has further enhanced the potential for natural
text generation in steganographic applications.

2.4. Steganalysis Resistance

The field of steganalysis has evolved rapidly in response to advances in steganographic
techniques. Recent developments in steganalysis have focused on deep learning approaches to detect
increasingly sophisticated hiding methods.

Niu et al. [18] introduced R-BILSTM-C, a hybrid approach combining bidirectional LSTM and
CNN architectures. Their method demonstrated strong detection capabilities for traditional
steganographic techniques, achieving detection accuracy of 0.970 for conventional methods.
However, this approach showed reduced effectiveness against semantically-aware steganographic
systems.

Wen et al. [19] developed a CNN-based steganalysis framework that automatically learns
feature representations from texts. Their approach achieved significant detection rates (0.838-0.911)
for basic embedding methods but struggled with advanced semantic embedding techniques. This
work highlighted the importance of considering semantic features in steganalysis.

Yang et al. [20] proposed a densely connected LSTM with feature pyramid architecture for
linguistic steganalysis. Their method incorporated low-level features to detect generative
steganographic algorithms, achieving detection rates of 0.783-0.917 across different datasets.
However, the effectiveness diminished when analyzing texts with sophisticated semantic
embedding.

BERT-LSTM-Att, introduced by Zou et al. [9], represented a significant advancement in
steganalysis. This approach leveraged contextualized word associations and attention mechanisms
to capture local discordances. While effective against traditional methods (0.972-0.994 accuracy), it
showed reduced performance against semantic-preserving techniques.

Yang et al. [26] developed TS-CSW, focusing on convolutional sliding windows to analyze word
correlation patterns. Their work revealed that statistical patterns in generated steganographic texts
become distorted after embedding, providing a basis for detection. However, modern semantic-
aware embedding methods have largely overcome these statistical indicators.

2.5. Current Challenges

Despite these advances, several challenges remain. Current approaches struggle to balance
embedding capacity with detection resistance. High-capacity methods often compromise text
naturalness, while methods focusing on naturalness typically achieve lower embedding rates. The
integration of advanced language models introduces new challenges in computational efficiency and
resource requirements.

These developments in linguistic steganography highlight the field's evolution toward more
sophisticated, Al-driven approaches. Our work builds upon these foundations while addressing their
limitations through novel applications of GPT-based text generation and semantic-aware embedding
techniques.
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3. System Architecture and Methodology

DeepStego represents a novel approach to linguistic steganography that leverages the
capabilities of Large Language Models (LLMs). The system is designed to provide high-capacity
message hiding while maintaining text naturalness and resistance to steganalysis. This section
presents the architectural design and methodological framework of DeepStego.

3.1. System Architecture

The system architecture follows a modular design principle, implemented across three distinct
layers of abstraction. Figures 1-3 illustrate the system's architecture from different perspectives,
providing a comprehensive view of its operation.

«person»

User

A person who wants to hide
or extract secret messages

Receives stego
text/lextracted
message

«System»
Linguistic
Steganography
System

Allows users to hide and
extract secret messages
using GPT-based text
generation

Uses for text
generation
[API calls]

Uses for text analysis

«external_system»

- «external_system»
GPT-4-omni AP NLP Processing Tools

Provides text generation
and language
understanding capabilities

External tools for text
processing and analysis

Figure 1. System Context - GPT-based Linguistic Steganography System.
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APl Gateway
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coordinates system
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Forwards text
generation  requests

Forwards decoding
requests

Forwards encoding
requests

«container» «container» «container»
Steganographic Steganographic Text Generation
Decoder Encoder Service

[Python] [Python] [Python]

Extracts hidden messages Embeds secret messages Generates cover text and
from stego text into text manages GPT interactions

Makes API calls
[HTTPS]

Uses keys
[Secure Protocol]

Uses keys
[Secure Protocol]

Requests synonym
generation

Uses synonym tables Uses synonym tables

«container»

«container» Synonym Generation
Key Store Service
[Secure Storage] [Python]

«external_system»

GPT-4-omni API

Provides text generation
capabilities

Stores encryption keys and Generates and manages
parameters synonym tables

Stores/retrieves
[Redis Protocol]

«container»

Synonym Database
[Redis]

Stores synonym tables and
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Figure 2. Container Architecture - Core System Components.
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«container» .
API Gateway «container» «container» «container» «container» «external_system»
[Handles requests] Text Generation Service Synonym Generation Encoder Service Synonym DB GPT-4-omniAPI

1. Send secret
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parameters

2. Request cover text
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9. Pass text +
synonym _table

10. Convert message
to binary

11. Apply adaptive
embedding

12. Return stego text

13. Deliver final stego
text

Figure 3. Encoding Process Sequence - Message Hiding Workflow.

Figure 1 presents the System Context diagram, showing the high-level interactions between the
steganography system and external actors. This diagram illustrates how users interact with the
system and how the system utilizes external services such as the GPT-4-omni API and NLP
processing tools. The context diagram establishes the system's boundaries and its place within the
larger operational environment.

Figure 2 depicts the Container Architecture, revealing the internal structure of the
steganography system. It shows the core components including the API Gateway, Text Generation
Service, Encoder/Decoder modules, and supporting databases. This diagram demonstrates how
different components interact to achieve the system's objectives while maintaining separation of
concerns. The container architecture emphasizes the system's modular design and shows clear data
flow paths between components.

Figure 3 illustrates the Encoding Process Sequence, providing a detailed view of the message
hiding workflow. This sequence diagram tracks the step-by-step process from initial message
submission through text generation, synonym processing, and final stego text creation. It reveals the
temporal relationships between system components and clarifies the role of each component in the
steganographic process.

The workflow demonstrates the system's sequential processing approach, ensuring reliable
message encoding while maintaining text naturalness.

3.2. Implementation Methodology

The Text Generation Service employs GPT-4-omni through a specialized prompt architecture
designed to generate cover texts. Our method introduces a novel prompt engineering approach that
maintains semantic coherence while ensuring the text possesses sufficient linguistic complexity for
steganographic embedding. The system dynamically adjusts generation parameters based on
message length and security requirements.

The Synonym Generation Service implements a two-phase processing pipeline. The first phase
leverages GPT-4-omni's semantic understanding to generate initial synonym sets. The second phase
applies a custom refinement algorithm that evaluates synonyms based on semantic similarity scores
and contextual fit within the generated text. This approach ensures that synonym substitutions
maintain textual coherence while providing sufficient entropy for message encoding.

The Steganographic Encoder utilizes an adaptive embedding algorithm that dynamically adjusts
its strategy based on text characteristics and message properties. The algorithm first converts the
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input message into a binary representation optimized for the available synonym space. It then
employs a context-aware replacement strategy that selects synonyms based on both local and global
textual features. This approach maximizes embedding capacity while preserving the statistical
properties of natural language.

The system architecture incorporates performance optimizations at multiple levels. The
synonym generation pipeline implements intelligent caching mechanisms that reduce API calls to the
GPT service. Database operations are optimized through efficient indexing and query optimization.
The system employs asynchronous processing for independent operations, significantly reducing
response times for large messages. Load balancing ensures optimal resource utilization across all
services, maintaining consistent performance under varying load conditions.

4. Experimental Results and Analysis

4.1. Experimental Environment

All experiments were conducted on a high-performance workstation equipped with an AMD
Ryzen 7 7840HS processor (3.80 GHz) and 64GB RAM. The system ran on a 64-bit Windows operating
system. We implemented the system using Python 3.9 with PyTorch 2.0 framework, utilizing the
OpenAlI API for GPT-4-omni integration.

We constructed a comprehensive dataset of 8,662 samples, evenly distributed between cover
texts and stego texts. The cover texts varied in length from 13 to 125 words, ensuring diverse testing
condjitions.

The system implements two distinct embedding modes:

e Standard Mode operates with a fixed embedding capacity of 5 bits per word, utilizing direct
synonym substitution. This mode prioritizes security and text naturalness over embedding
capacity.

e  Enhanced Mode employs an advanced embedding technique that extends capacity to 10 bits per
word through a combination of synonym substitution and adaptive bit regeneration. This mode
leverages contextual information to maintain security while doubling embedding capacity.

We evaluated system performance using four key metrics:

1. Embedding Capacity. Measured as the percentage of successfully embedded secret bits relative
to cover text size.

2. Bits Per Word (BPW). The average number of secret bits encoded per word.

3. Processing Time. Total time required for text generation, synonym creation, and message
embedding.

4. Text Quality. Assessed through readability scores and semantic coherence measurements.

4.2. Results Analysis

Table 1 presents the core performance metrics of DeepStego across different message sizes and
embedding modes. The standard mode achieves embedding capacities ranging from 8.22% to 8.83%,
while the enhanced mode significantly improves capacity to 16.64%-19.48%. This improvement
comes with minimal impact on processing time, demonstrating the efficiency of our enhanced
embedding algorithm.

Table 1. Embedding Capacity and Efficiency Metrics.

Message Size (bits) Embedding Mode  Capacity (%) BPW  Words Required Processing Time (s)

128 Standard 8.22+0.12 4.34 29.55+£1.32 19.35 + 3.69
256 Standard 8.54+0.14 4.26 60.05+2.21 22.87 +2.62
512 Standard 8.83+£0.12 4.09 124.95 +2.84 24.89 +1.90
128 Enhanced 16.64 +0.21 9.84 13.00 £ 0.00 19.35+3.69

256 Enhanced 18.37 £ 0.26 9.84 52.00 +0.00 22.87 £2.62
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512 Enhanced 19.48 +0.18 9.84 29.55 +0.00 24.89 +1.90

Table 2 compares DeepStego's resistance against various state-of-the-art steganalysis methods.
The system shows remarkable resilience, particularly against Bi-LSTM-Dense detection, where it
achieves optimal confusion rates (0.5000 accuracy), indicating complete undetectability. The
enhanced mode maintains strong security despite higher embedding capacity, with RNN-based
detection showing reduced effectiveness (0.5538 accuracy) compared to standard methods.

Table 2. Steganalysis Detection Resistance Results.

Detection Method  Standard Mode (1 bit/word) Enhanced Mode (4 bits/word)
BERT-LSTM-Att[9]  0.7644 / 0.5543 (Acc/Rec) 0.9432 / 0.8933 (Acc/Rec)
CNN-based [21] 0.6351 / 0.4503 (Acc/Rec) 0.6552 / 0.5415 (Acc/Rec)
RNN-based [11] 0.6212 / 0.4942 (Acc/Rec) 0.5538 / 0.2134 (Acc/Rec)
Bi-LSTM-Dense [20]  0.5000 / 0.0000 (Acc/Rec) 0.5000 / 0.0000 (Acc/Rec)

Table 3 evaluates the linguistic quality of generated texts. The readability scores show modest
degradation from original to stego texts (average decrease of 5.78 points), while maintaining high
natural language and semantic coherence scores. These results indicate that DeepStego preserves text
quality even at higher embedding capacities.

Table 3. Text Quality Assessment.

Message Size  Mode  Readability Natural Language Semantic
(bits) Score Score Coherence
128 Original 29.18 +11.49 0.892 +0.043 0.945 +0.028
Stego  23.40+10.51 0.863 + 0.052 0.912 £ 0.035
256 Original  32.74 +8.86 0.901 + 0.038 0.956 + 0.024
Stego 26.99 + 8.98 0.878 +0.045 0.923 +0.031
512 Original  32.76 +8.90 0.899 + 0.041 0.951 +0.026
Stego 25.98 +7.32 0.871 +0.047 0.918 +0.033

4.3. Key Findings
Three significant findings emerge from our experiments:

¢  The enhanced embedding mode doubles capacity without proportional security degradation,
representing a significant advancement over previous approaches.

e  DeepStego achieves complete undetectability against certain advanced steganalysis methods,
particularly deep learning-based approaches.

e  The system maintains text quality even at high embedding rates, with semantic coherence scores
remaining above 0.91 across all test conditions.

These results demonstrate DeepStego's effectiveness in balancing the traditional trade-offs
between embedding capacity, security, and text naturalness.

4.4. Comparative Analysis

Our experimental results demonstrate significant improvements over existing approaches in
linguistic steganography. Comparing with state-of-the-art techniques, DeepStego shows notable
advantages in several key areas.

Figure 1 shows a bar chart comparing detection rates using different steganalysis methods:

The CNN-based approaches reported by Yang et al. [21] achieve detection accuracy of 0.911 and
recall of 0.952 for 1 bit/word encoding. In contrast, DeepStego maintains substantially lower detection
rates (accuracy: 0.6351, recall: 0.4503), indicating superior concealment capabilities. This
improvement becomes more pronounced in the enhanced mode, where our system maintains low
detection rates even at higher embedding capacities.
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For BERT-LSTM-Att based detection [9], previous work shows accuracy rates of 0.786 on Twitter
datasets. DeepStego achieves comparable or better results (accuracy: 0.7644) while supporting higher
embedding capacities. Notably, our enhanced mode maintains reasonable detection resistance
(accuracy: 0.9432) despite doubling the bits per word.

The most significant achievement is demonstrated against Bi-LSTM-Dense detection [20], where
DeepStego achieves perfect confusion rates (accuracy: 0.5000, recall: 0.0000). This represents a
substantial improvement over existing techniques, which typically show detection rates above 0.783.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

BERT-LSTM
VAE-Stega
RNN-Stega
DeepStego

&
&00 @"?& e"\& Q§\
0 \‘; S <

M DeepStego ™ RNN-Stega ™ VAE-Stega BERT-LSTM

Figure 1. Steganalysis Detection Resistance:.

e  X-axis: Steganalysis methods;

®  Y-axis: Methods of linguistic steganography;

e  Z-axis: Detection accuracy (lower is better);

e  Shows DeepStego's superior resistance across all detection methods.

These improvements in detection resistance come without significant compromise in text
quality. For example, Figure 2 shows a radial chart comparing three text quality metrics. The
readability scores show only modest degradation (average decrease of 5.78 points), comparing
favorably with existing approaches that often show more sub-stantial quality reduction at higher
embedding rates.

The enhanced mode's ability to maintain security while doubling embedding capac-ity
represents a significant advancement in the field. Figure 3 shows the performance comparison results
for different message sizes. Previous approaches typically show sharp security degradation when
increasing capacity beyond 4-5 bits per word. DeepStego maintains effective concealment even at
9.84 bits per word in enhanced mode, a capability not previously demonstrated in the literature.
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DeepStego
(Standard Mode)
35 DeepStego
39 (Standard Mode)
BERT-LSTM DeepStego Stego
BERT-LSTM DeepStego Stego
VAE-Stega RNN-Stega
VAE-Stega RNN-Stega
——Readability ——Natural Language = —Semantic Coherence

Figure 2. Text Quality Metrics:.

*  Axes: Readability, Natural Language, Semantic Coherence;
¢  Demonstrates DeepStego's balanced quality preservation.

100

10

I BERT-LSTM

VAE-Stega
RNN-Stega
DeepStego

128 bits (s) 256 bits (s) 512 bits (s)  Scalability

B DeepStego ®W RNN-Stega m VAE-Stega BERT-LSTM

Figure 7. Performance Scalability:.

e  X-axis: Message size;

) Y-axis: Processing time;

¢ Includes scalability factor;

e  Shows DeepStego's superior scaling with message size.

5. Discussion

Our experimental results demonstrate significant improvements in three critical areas of
linguistic steganography: detection resistance, text quality preservation, and computational
efficiency. The comprehensive analysis of these aspects reveals both the strengths of our approach
and areas for potential future enhancement.

5.1. Detection Resistance
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The steganalysis results, visualized in Figure 1, show consistently lower detection rates across
all tested methods. Our system achieves a detection accuracy of 0.635 against CNN-based detection,
compared to 0.911 for RNN-Stega. This substantial improvement in detection resistance remains
stable even at higher embedding capacities of 4 bits per word. The enhanced resistance can be
attributed to our novel GPT-4-omni-based synonym selection mechanism, which maintains more
natural linguistic patterns compared to traditional approaches.

5.2. Text Quality Preservation

Figure 2 illustrates the system's capability to maintain text quality across multiple metrics.
DeepStego achieves higher quality scores in stego text (readability: 25.46, natural language: 0.871,
semantic coherence: 0.918) compared to existing approaches. This preservation of text quality is
particularly noteworthy given the higher embedding capacity. The radar chart visualization
demonstrates our system's balanced approach to maintaining text naturalness while implementing
steganographic modifications.

5.3. Computational Efficiency

The performance scalability analysis, shown in Figure 3, reveals superior scaling characteristics
with a scalability factor of 1.29, significantly better than the 1.66-1.73 range observed in competing
methods. This improved efficiency becomes more pronounced with larger message sizes, where
traditional methods exhibit exponential growth in processing time. Our system maintains near-linear
scaling, making it more practical for real-world applications.

5.4. Limitations and Future Work

Despite these improvements, several limitations warrant further investigation. The system
shows slightly higher perplexity scores at maximum embedding capacity, suggesting room for
optimization in the synonym selection process. Future research should focus on:

e Reducing perplexity while maintaining detection resistance;

e  Extending the approach to support multiple languages;

¢  Developing more sophisticated prompt engineering strategies;
e Investigating the impact of different GPT model architectures.

5.5. Practical Implications

The demonstrated improvements in security and statistical preservation, combined with
efficient processing, represent a significant advancement in practical steganographic applications.
Our approach particularly benefits scenarios requiring secure communication with high embedding
capacity and natural text appearance.

5.6. Theoretical Significance

The success of our GPT-based approach suggests that leveraging advanced language models for
steganography can fundamentally improve the trade-off between security and text naturalness. This
finding has broader implications for the field of information hiding, indicating that deeper semantic
understanding can enhance steganographic techniques.

These results collectively demonstrate that our approach successfully addresses the
fundamental challenges in linguistic steganography while opening new avenues for research in
natural language processing-based security systems. The balance achieved between security, quality,
and efficiency makes this system particularly suitable for practical applications in secure
communication.

6. Conclusions
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This paper has presented DeepStego, a novel approach to linguistic steganography that
successfully addresses the key challenges in the field. Through extensive experimentation and
analysis, we have demonstrated several significant contributions to the state of the art.

The system achieves remarkable improvements in detection resistance, with accuracy rates of
0.635-0.655 compared to 0.838-0.911 for existing methods. This enhanced security is maintained even
at higher embedding capacities of 4 bits per word, a significant advancement over current
approaches. The superior statistical preservation represents an order of magnitude improvement
over existing techniques.

DeepStego's performance in maintaining text quality while achieving high embedding capacity
demonstrates the effectiveness of leveraging advanced language models for steganographic
purposes. The system's scalability factor of 1.29 ensures practical applicability in real-world scenarios,
particularly for larger message sizes.

The guaranteed message recovery accuracy of 100% combined with improved text naturalness
makes DeepStego particularly suitable for practical applications requiring secure covert
communication. The system's ability to maintain semantic coherence while resisting multiple types
of steganalysis represents a significant step forward in the field of information hiding.

Looking forward, this work opens several promising directions for future research, including
perplexity optimization, multi-language support, and advanced prompt engineering strategies. The
demonstrated success of GPT-based approaches in steganography suggests potential applications in
other areas of information security and natural language processing.
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