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Simple Summary: The study used Random Test-Split (RTS) and Cross-Validation (CV) machine 

learning data partition methods to test different models to classify cattle behavior foraging behaviors 

states, foraging activities, posture, and activity by posture, using GPS coupled accelerometer data 

with 12-hour / days continuous recording observation as supporting ground truth. RTS in XGBoost 

performing best for general activity state classification, while CV in Random Forest excelled in more 

detailed foraging activities and activity-posture classifications. Key movement indicators like speed, 

Actindex, and sensor values (x, y, and z) were vital in predicting behaviors, suggesting specific 

sensors for tracking behaviors of interest to ranchers. The results highlight the benefits of continuous 

monitoring and advanced data analysis for real-time livestock tracking, leading to better grazing 

management, improved animal welfare, and more sustainable land use. 

Abstract: The study classified cows’ foraging behaviors using machine learning (ML) models 

evaluated through Random Test-Split (RTS) and Cross-Validation (CV) data partition methods. 

Models included Perceptron, Logistic Regression, Support Vector Machine, K-Nearest Neighbors, 

Random Forest (RF), and XGBoost (XGB). These models classified activity states (Active vs. Static), 

foraging behaviors (Grazing (GR), Resting (RE), Walking (W), Ruminating (RU)), posture states 

(Standing up (SU) vs. Lying down (LD)), and activity-by-posture combinations (RU_SU, RU_LD, 

RE_SU, RE_LD). XGB achieved the highest accuracy for state classification (74.5% RTS, 74.2% CV) 

and foraging behavior (69.4% CV). RF outperformed XGB in other classifications, including GR, RE, 

and RU (62.9% CV vs. 56.4% RTS), posture (83.9% CV vs. 79.4% RTS), and activity-by-posture (58.8% 

CV vs. 56.4% RTS). Key predictors varied: Speed and Actindex were crucial for GR and W when 

increasing and for RE and RU when decreasing. X low values were linked to RE_SU and RU_SU, 

while X and Z influenced RE_LD more. RTS showed higher accuracy in behavioral state and general 

foraging classification. These results emphasize CV in RF’s reliability in managing complex 

behavioral patterns and the importance of continuous recording devices and movement metrics to 

monitor cattle behavior accurately. 

Keywords: random test-split; cross-validation; random forest; XGBoost; foraging behaviors 
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1. Introduction 

Herbivores, particularly livestock, have an important role in the structure and functioning of 

arid and semiarid grassland ecosystems characterized by low and unpredictable rainfall. These 

ecosystems, often dominated by grass monocultures, are ecologically vital and yet vulnerable [1]often 

facing challenges such as limited forage availability, nutritional quality and seasonal variations in 

plant productivity [2]. As primary consumers, herbivores are central to nutrient cycling, plant 

community dynamics, and overall ecosystem health. Their foraging behavior, including activities 

such as grazing, rumination, walking, resting, and drinking water, directly or indirectly influences 

vegetation structure, biodiversity, and soil health. The foraging activities of herbivores affect nutrient 

cycling and soil conditions, which are crucial for maintaining healthy plant communities [3]. For 

instance, optimal grazing can enhance nutrient availability by depositing dung and urine, which 

enriches the soil and supports plant growth [4]. However, overgrazing can lead to irreversible 

damage, such as soil erosion and loss of plant species diversity, ultimately decreasing land 

productivity [5]. Additional activities, such as grooming and nursing, are also important as they 

contribute to livestock populations’ social structure and overall well-being [6], indirectly affecting 

their productivity and ecological systems. Understanding these behaviors is vital for improving land 

management strategies, ensuring sustainability, while mitigating the negative impacts of overgrazing 

and climate change [7]. Traditional methods of monitoring herbivore grazing behavior, such as fixed-

point sampling and direct visual observation, are often impractical and labor-intensive, particularly 

in the vast and remote locations throughout arid and semiarid grasslands. 

Bailey et al. [8] recommended the use of precision livestock management (PLM) tools by real-

time monitoring and management approaches that use global position system (GPS) tracking, 

accelerometers, and other sensor technologies in maintaining rangeland health. Nyamuryekung’e 

[9]) emphasized the use of these animal movement tracking devices to assess grazing patterns and 

classify foraging behaviors in these challenging environments. While GPS collars provide precise 

location data, enabling researchers to track animal movements across large areas, additional data 

such as identifying grazing hotspots across the landscape is significant. For instance, 

Nyamuryekung’e et al. [10] used collars to provide insights into grazing, walking, and resting times, 

and other research groups (e.g., Brennan et al. [11]) have even assessed season-long season livestock 

grazing behavior using low-cost collars. Accelerometers detect changes in movement patterns with 

specific activities, such as grazing and standing [12,13]. By combining GPS data with accelerometer 

information, researchers can more accurately infer foraging behaviors and better understand how 

herbivores utilize the landscape [14]. Bailey et al. [15] suggested that combinations of GPS tracking 

coupled with accelerometer monitoring may be more accurate than either device used by itself. 

However, Ganskopp and Johnson [16] pointed out that these devices have accuracy-related 

challenges like satellite-related errors and loss of satellite reception owing to atmospheric conditions, 

topography, canopy, and near infrastructure. Bonneau et al. [17] recommended combining telemetry 

devices with timestamp cameras, while Aquilani et al. [18] and Bailey et al. [15] further emphasized 

the use of both cameras with machine learning (ML) to enhance the assessment and understanding 

of livestock grazing behavior. Cameras can effectively capture foraging and mothering behaviors 

such as grooming and nursing, and social interactions, such as mating or fighting, as well as 

responses to environmental factors like vegetation changes, water availability, or the presence of 

predators. However, camera systems are subject to limitations, especially battery life, during 

continuous recording in free-ranging grazing systems with no power source [19]. 

Several studies revealed that ML, a collection of powerful data processing and analysis 

techniques, can be applied to animal behavioral classification based on data collected using wearable 

sensors [12,20,21]). Integrating GPS, Accelerometer, and camera data requires advanced data analysis 

techniques, such as ML algorithms, to process large, multimodal datasets and automatically identify 

complex behavioral patterns. Supervised machine-learning models have been used successfully to 

improve classification accuracy and effectively manage non-linear relationships in datasets, making 

them well-suited for distinguishing behaviors [22] like grazing versus non-grazing. For example, 
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Augustine and Derner [23] studied grazing behaviors in semiarid rangelands using a two-axis 

accelerometer and GPS data, identifying distance traveled and head-down posture (assessed by the 

y-axis sensor) as primary indicators. They applied classification and regression tree (CART) analyses, 

achieving 87.8% accuracy for grazing and 86.5% for non-grazing activities, with an overall 

misclassification rate of 12.9%. Cabezas et al. (2022) extended these findings by combining GPS and 

accelerometer data to analyze herd movement patterns and classify behaviors, thus demonstrating 

the added value of spatial data for sustainable rangeland use. Despite employing coupled devices, 

their study used different supervised ML methods for accelerometer-based behavior classification 

and unsupervised k-medoids ML algorithm for GPS data analysis. 

In conclusion, a gap remains in integrating coupled GPS-accelerometer data with continuous 

behavioral observation systems, such as external field cameras, to test various supervised ML models 

for livestock behavior classification. While most studies have focused on confined systems, this 

research targets free-grazing environments, where landscape features and forage availability 

significantly influence cattle behavior and movement patterns. By continuously observing behaviors 

like grazing, rumination, and resting through external cameras, this study aims to improve the 

accuracy of activity classification, which is crucial for optimizing grazing management and 

enhancing animal welfare. Accurate detection of these behaviors will also support better health 

monitoring by identifying signs of stress or discomfort. Furthermore, emphasizes the application 

ofadvanced ML data partition techniques, such as data splitting, cross-validation, and different 

supervised models, is expected to improve classification accuracy. This study hypothesizes that 

refining these models with more appropriate data partition technique will lead to more reliable 

predictions, advancing precision livestock monitoring and promoting sustainable grazing 

management in diverse rangeland environments. 

2. Materials and Methods 

2.1. Study Areas 

This study was conducted at the USU Richmond Research farm (41.9227° N, 111.8136° W); 

elevation: 1511 m, annual temperature ranges -8.9°C to 15.6°C, annual precipitation of 525.8 mm and 

snowfall of 177.8 cm [24]. The experimental pasture, delineated by a five-strand barbed wire 

perimeter fence, entails 222,578.3 square meters of meadow brome grass (Bromus inermis) pasture 

monoculture (~ 2500 Kg/ha; [25]) with an uneven distribution of intermediate wheatgrass 

(Thinopyrum intermedium). A semi-permanent electric fence was also built at the center of the pasture 

to divide it into 2 equal blocks. Temporary electric fence, perpendicular to this fence divided the 

pasture into 6 paddocks of 36,421.74 square meters (Figure 1). The study procedures described herein 

was approved by the Utah State University Institutional Animal Care and Use Committee (approval 

number 2566). 

2.2. Animals, Sensors, and Camera Deployment 

The experiment was conducted from July to September 2024. Twenty-four Angus matured 

mother cows (body weight [BW] 614 ± 20 kg) and their nursing calves (6 to 8 months of age) (BW = 

244 ± 4 kg) were randomly assigned to six paddocks of brome grass monoculture (4 pairs/paddock). 

Of these, 22 cows were randomly fitted with LiteTrack Iridium 750+ GPS collars coupled with triaxial 

accelerometers (Lotek Engineering, Newmarket, Ontario, Canada). Each collar weighed 

approximately 900 grams and was designed for a neck size of 50 cm. The collars featured a buckle for 

easy placement, and the fit was adjusted to allow a person’s fingers to fit comfortably between the 

cow’s neck and the collar. The collars were set to collect one GPS position every 5 minutes. The 

Standard fix was collar configuration, recording 18 positions, which offers greater detail in tracking 

animal movements. In contrast, the SWIFT configuration, with only 9 positions, still provides 

adequate data to monitor foraging behavior at the same interval accurately. The reduced number of 

GPS positions in SWIFT fixes was offset by the method’s increased efficiency and lower power 
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consumption. Data was transmitted via the Iridium satellite network. The collars operated within a 

frequency range of 148 MHz to 174 MHz for data transmission, ensuring reliable real-time 

communication with the satellite even in remote locations. They were designed to withstand extreme 

environmental conditions, with an operating temperature between -40°C to 70°C. The collars 

captured data such as GMT Time (time of recording), Latitude and Longitude (geographic location), 

Altitude (elevation above sea level), Temperature (ambient temperature), Voltage (collar battery 

level), DOP (Dilution of Precision, reflecting GPS data quality), and Satellites (number of satellites 

used in the GPS fix). 

Additionally, these GPS collars have incorporated a tri-axis accelerometer to track movement on 

three axes: X (left-right), Y (forward-backward), and Z (up-down), recording pendular beats across 

all axes every 5 minutes, coinciding with the GPS position fixes. The orientation of the collars was 

controlled during attachment to the animals to ensure consistent and reliable accelerometer readings 

across all axes, maintaining data consistency. Ground truth observations were conducted through 

video recordings using three GoPro Hero 12 cameras from August 27 to 29, 2024, following an initial 

12-hour training session on August 26. During this session, the cows were closely followed with 

cameras to familiarize them with the operator and equipment, ensuring their behavior was not 

affected during the recording period. Three cows were randomly selected as focal animals from the 

22 collared cows, representing three of the six paddocks. To facilitate monitoring, these cows were 

marked on their backs with white paint (Rust-Oleum) for easy visibility from any angle. Three 

observers, each equipped with one of the GoPro cameras, were assigned to follow one focal cow per 

paddock. They maintained a 5 to 10-meter distance to the animal to ensure comprehensive video 

recording during designated periods. Recording sessions were conducted over three consecutive 

days (August 27–29), with video footage captured using the cameras mounted with GoPro Volta for 

extended battery life. Each day, the cows were observed during three intervals: morning (7:00 am–

11:00 am), afternoon (12:00 pm–4:00 pm), and evening (5:00 pm–8:00 pm). These intervals were 

chosen to capture the majority of the activities performed by the cows across daylight: grazing, 

resting, walking, and ruminating behaviors. These are essential components of the cows’ activity 

patterns and ensure that all behaviors are adequately covered. 

2.3. Pre-Processing of GPS, Accelerometer, and Camera Data 

The experiment collected GPS and accelerometer data for all 22 cow collars (22GAD) 

(approximately 4 collars/paddock), which were pre-processed to ensure accuracy and consistency 

before analysis. Data pre-processing, cleaning, and visualization were conducted using ArcGIS Pro 

version 3.2.2 and R version 4.4.2. Using ArcGIS Pro, 22 GADS (latitude/longitude in degrees) were 

converted into a point feature class in WGS_1984 using the “XY Table to Point” tool, and points 

outside the study area were removed by clipping with the “Richmond study shapefile” for all 

paddocks. The GPS collars had a positional accuracy of approximately 10 meters, which resulted in 

some data points crossing into adjacent paddocks, especially since the paddocks were close together 

and separated by an electric fence. This error caused cows’ data points to be detected in the wrong 

paddocks. To mitigate this, the “Buffer” tool in ArcGIS Pro was used to omit any points affected by 

this error by buffering a 10-meter distance around each corner of the paddocks. After that, the 

exported cleaned 22 GAD with GPS geographic coordinates (degrees) column was converted to a 

projected coordinate system of eastern and northern points (meters) in the Utah State geographical 

UTM 12 northern zone (WGS84) using R software. The timestamps, initially reported in GMT, were 

also converted to Utah Mountain Time (Zone-12, UTC-6), the local time zone for each GPS-

accelerometer data point. We further adopted Liu et al. [26] data cleaning procedure in our 22 GAD 

by omitting points with a duration of less than 5 minutes, at least 4 satellites used for data recording 

to estimate the 3 position, and altitude ranges between 1500 and 1570 m based on the description of 

the study location. The dataset comprising merged GPS and accelerometer data for the observed three 

animals (3RC) was extracted from the overall 22 GAD dataset. During the cleaning process, only 1% 

of data points were omitted from the 3RC dataset. The distances traveled, speed, and tri-axis 
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accelerometer (X: forward-backward, Y: side-side, and Z: up-down) showing movement patterns by 

a single cow was visualized in R. The data accurately reflected the cows’ movements, with high 

sensor spikes corresponding to active behaviors such as grazing and walking, while low spikes were 

associated with static behaviors. 

Three trained technicians were assigned to watch each cow’s videos and label behavior activities 

in the prepared datasheet. Five exclusive cow behaviors were distinguished: grazing, walking, 

resting, rumination, and drinking water. During the transcription process, a behavior change was 

considered when a cow shifted from one activity to another, with the transition occurring at more 

than a 3-minute interval. Grazing was defined as the cow actively foraging with the head down to 

the grass with or without leg step movement; walking referred to cow displacement in space without 

foraging or ruminating; rumination was stationary behavior identified when the cow was observed 

chewing a regurgitated bolus of feed and continuing to chew until it was swallowed again; and 

Resting was defined as any period of immobility, either standing or lying down, with minimal 

movement, apart from head movements or chewing the cud, and when cows were not grazing, 

walking, or ruminating; Drinking water referred when cow’s mouth was over or in the water trough. 

The cows’ resting or ruminating postures were also noted accordingly, as the animal was standing 

up or lying down. Nursing was defined as the behavior when a calf suckles from its mother, while 

grooming referred to actions where cows lick, scratch, or use their heads or tongues to interact with 

themselves or other cows. An animal was labeled as performing a specific activity if it engaged in the 

behavior for over 3 minutes. During transitions between activities, intervals lasting less than 3 

minutes were considered part of the previous activity, while intervals exceeding 3 minutes were 

classified as a change into a new activity. These behaviors were further categorized into two primary 

states: active (AC) and static (ST). Active behaviors included walking, grazing, and drinking water, 

while static behaviors encompassed ruminating and resting. The cow’s standing or lying down 

posture was also recorded for each static behavior. Grooming and nursing were categorized as static 

behaviors when performed for prolonged periods but classified as “other” when occurring briefly. 

This structured approach to behavior categorization enabled detailed tracking of each cow’s activity 

patterns and time allocation. 

2.4. Feature Calculations 

The accelerometer and GPS data were used to derive different features for input in several 

Machine learning models to classify previously defined behaviors. The features calculated from 

accelerometer data were Sum_XYZ, calculated by aggregating the values of the X, Y, and Z axes, 

reflecting the overall intensity of movement, and Avg_XYZ was determined as the average 

movement values across the three axes. In addition, absolute values of each axis were computed 

using the absolute value notation (|X|, |Y|, |Z|), allowing for a more precise representation of 

movement intensity; Sum_XYZ_absolute involved summing the absolute values (|X| + |Y| + |Z|) of 

the X, Y, and Z axes; Avg_Sum_XYZ_absolute was the average of these summed absolute values. 

Activity Index (Actindex), conceptually resembling the Magnitude of Acceleration, was calculated 

by taking the square root of the sum of squared values of accelerations across the X, Y, and Z axes. 

This index measures the cows’ activity levels, where higher values indicate more active behaviors 

and lower values suggest rest periods. Energy expenditure was computed as the cumulative sum of 

the Actindex, representing the total energy expended per duration of time particular behavior 

observed. We also adopted additional features from Versluijs et al. [27] , such as overall dynamic 

body acceleration (ODBA), Vector of Dynamic Body Acceleration (VEDBA), Magnitude of 

Acceleration (AMAG), Pitch, and Roll. 

𝑃𝑖𝑡𝑐ℎ = 𝑎𝑟𝑡𝑎𝑛(
𝑥

√𝑦2+𝑧2
) (1) 

𝑅𝑜𝑙𝑙 = 𝑎𝑟𝑡𝑎𝑛(
𝑦

√𝑥2+𝑧2
) (2) 

ODBA=|dx|+|dy|+|dz| (3) 

𝐴𝑀𝐴𝐺 =  √𝑥2 + 𝑦2 + 𝑧2 (4) 
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𝑉𝐸𝐷𝐵𝐴 =  √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (5) 

From the GPS data, we calculated several metrics to analyze animal movement. Distance 

(meters) represents the distance traveled between two consecutive GPS points. Speed is derived from 

the distance traveled over time during the observation period, indicating the movement speed of the 

cow. The Straightness Index was calculated as the ratio of the straight-line distance between the initial 

recording and subsequent coordinates of a particular movement for each cow and day. Additionally, 

the Movement Angle (bearing) was determined using an arc-tangent function with respect to a due 

east trajectory. This calculates the angle (in radians) between the first and last coordinates, and this 

angle was subsequently converted to degrees. The derived GPS and accelerometer metrics were 

multiplied to calculate combined sensor features. This approach enabled a more comprehensive 

analysis of the cows’ movement and behavior patterns, providing deeper insights into their foraging 

behaviors using combined GPS-accelerometer devices. ML models were tested on different 

performance parameters using all calculated features to classify cattle foraging behaviors. 

A random forest tree-based method was used to select features by aggregating trees and 

providing average feature importance. Following this, a filter method using the correlation coefficient 

was applied to measure the relationship between selected features and the target variable, helping to 

avoid feature redundancy. Thereafter, machine learning models were tested on different 

performance parameters using all calculated features to classify cattle foraging behaviors. 

2.5. Machine Learning Data Partition Strategy 

The study applied the Random Train-Test Split (RTS) and 5-fold cross-validation (CV) data 

partition methods to evaluate various ML models for classifying animal behavior and activities. RTS 

divides the dataset into training and testing subsets, typically using a 70:30 ratio, and is particularly 

effective in resource-constrained scenarios [28]. However, the split ratio can influence model 

performance, and multiple splits have been shown to enhance reliability [29]. In contrast, 5-fold CV 

partitions the data into five equal subsets, rotating the training and testing roles across all folds [30]. 

This method minimizes overfitting and provides a more robust performance estimate [31]. Despite 

the strengths of these approaches, challenges in model selection remain. As Cawley and Talbot [32] 

emphasized, biased performance evaluation can occur when selection criteria are improperly 

optimized, underscoring the need for careful model selection practices. The study evaluated six ML 

models for behavior classification, each employing distinct learning approaches: Perceptron adjusts 

weights based on errors, Logistic Regression predicts probabilities using a sigmoid function, Support 

Vector Machine (SVM) separates classes with optimal margins [29], K-Nearest Neighbors (KNN) 

classifies based on the nearest data points, Random Forest (RF) aggregates multiple decision trees for 

robust predictions, and XGBoost (XGB) enhances accuracy through gradient-boosted trees [30]. To 

ensure a fair and reliable assessment of both methods and their impact on classification accuracy, the 

study prioritized using the models with highest accuracy in RTS as the benchmark for evaluating the 

CV method. 

2.6. Models Performance Assessment 

The performance of the models was evaluated based on several metrics. Accuracy was measured 

as the proportion of correctly classified instances (both positive and negative) out of the total 

instances: (TP+TN)/(TP+TN+FP +FN). Precision measures the proportion of correctly predicted 

positive instances out of all predicted positives: TP/(TP+FP). Recall estimates the proportion of 

correctly predicted positive instances out of the total positive instances: TP/(TP+FN). The F1 score 

combines the precision and recall scores into a single measure, providing a balance between the two: 

2 * (Precision * Recall) / (Precision + Recall). 
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3. Results 

3.1. Data Summary and Challenges 

The dataset consists of 1,280 recorded instances, with 632 classified as active and 648 as static. 

The behavioral states were distributed as follows: 535 cases of grazing (GR), 258 of resting (RE), 390 

of ruminating (RU), 83 of walking (W), and 14 of drinking water (DW). Resting behavior was further 

broken down into 99 instances of resting in a lying down (RE_LD) posture and 159 instances of resting 

in a standing upright (RE_SU) posture. Ruminating behavior was similarly divided into 209 

ruminating in a lying down (RU_LD) posture and 148 ruminating in a standing upright (RU_SU) 

posture. Posture data showed 925 instances of standing upright (SU) and 308 instances of lying down 

(LD). Behavioral classification was based on GPS movement patterns, accelerometer thresholds, and 

direct observations. Some challenges occurred during data collection. Three GPS collars apart from 

the observed cows failed to collect data throughout the experimental period, which reduced the 

sample size. Camera overheating after 3 to 4 hours due to high summer temperatures disrupted 

continuous video recording intended for validation. 

3.2. Behavior Classification Using Random Train-Test Split Method 

3.2.1. States Classification 

The performance of different models is shown in Table 1. Various features were included as 

input to optimize classification accuracy across machine learning models. The features selected X, Y, 

Z, Actindex, Distance and Speed achieved the highest classification accuracy. Ensemble learning 

models achieved higher classification rates and fewer misclassifications than simple classifiers. The 

Perceptron model exhibited the lowest performance among the models tested, with an accuracy of 

63.8%, lower than Logistic Regression (72.4%). Similarly, SVM achieved an accuracy of 71.1%, which 

is 2.9% lower than KNN (74.0%). However, ensemble models outperformed other approaches, with 

Random Forest achieving 73.2% accuracy, 9.4% higher than Perceptron, along with consistent Static 

metrics of 74.0%. XGBoost demonstrated the highest performance, achieving 74.2% accuracy, 10.4% 

higher than Perceptron, and a Static Precision of 72.0%, Static Recall of 79.0%, and a Static F1 Score of 

75.0%. These results highlight the effectiveness of ensemble learning models for this classification, 

particularly XGBoost, in accurately classifying cows’ behavioral states. 

Table 1. Table presenting performance metrics for each model on test data, including accuracy, precision, recall, 

F1 score for active and static states using Random test split method (RTS). The best results for a given metric are 

bolded to highlight which model was optimal for that analysis or task. 

 Model 

Model 

Accuracy 

(%) 

STATES 

Active Static 

 

Precisi

on (%) 

Recall 

(%) 

 F1 Score 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Perceptron 63.8 68 52 59 62 76 68 

Logistic Regression 72.4 76 65 70 70 79 74 

Support Vector  71.1 73 67 70 70 75 72 

K-Nearest Neighbor 74 73 74 74 74 74 74 

Random Forest 73.2 73 73 73 73 74 74 

XGBoost 74.2 77 69 73 72 79 75 
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3.2.2. Activity Classification 

The behavior classification results are presented in Table 2. The same features used for state 

classification were applied, excluding Sum_XYZ after feature selection. Random Forest achieved the 

highest overall accuracy in general activities, with accuracies of 65.9% for GR (Grazing), 68% for RE 

(Resting), and 50% for W (Walking). It excelled in GR and RE, but struggled with W. XGBoost 

followed closely, with 63.3% accuracy for GR, 67% for RE, and 13% for W, facing similar challenges 

with Walking. SVM showed the highest Precision for W (100%) but had low Recall (4%), indicating 

it could identify W when present but missed many instances. Logistic Regression performed poorly 

with W, with an F1 Score of 0%, making it ineffective for classifying W. For fine activities, Random 

Forest remained the most reliable model, with an overall accuracy of 59.7%, excelling in GR (67%) 

and RU (Ruminating) (60%) (Table 2). XGBoost had an accuracy of 61.7% for GR and RU, but 

struggled with RE, similar to its performance with general activities. 

In summary, Random Forest was the most consistent and accurate model for both general and 

fine activities classification. XGBoost showed solid performance but had limitations with W and RE. 

SVM had high precision for W but poor recall, while Logistic Regression underperformed overall, 

especially with W. 

Table 2. The table presents the overall performance of different ML models: Grazing (GR), Resting (RE), Walking 

(W) and Ruminating (RU) using Random test split method (RTS). The best results for a given metric are bolded 

to highlight which model was optimal for that analysis or task. 

Classification  Model Activity 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Model 

Accuracy (%) 

General 

activities 

Perceptron 

GR 50 64 57  

 45.8 

  

RE 54 35 42 

W 4 8 5 

Logistic 

Regression 

GR 60 53 56  

61.2  

  

RE 62 76 68 

W 0 0 0 

SVM 

GR 62 55 58  

 

 62.5 

  

RE 63 77 69 

W 100 4 8 

K-Nearest 

Neighbor 

GR 55 64 59  

 60.4 

  

RE 65 65 65 

W 100 4 8 

Random Forest 

GR 63 64 64  

 65.9 

  

RE 68 75 71 

W 50 4 7 

XGBoost 

GR 63 62 62 63.3 

  

  

RE 67 72 69 

W 13 8 10 

Fine activities 

Perceptron 

GR 70 63 66 

53.5 RE 25 12 16 

RU 46 68 55 

Logistic 

Regression 

GR 62 76 68 
56.1 

RE 0 0 0 
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RU 49 66 56 

SVM 

GR 66 70 68 

58 RE 53 12 19 

RU 50 72 59 

K-Nearest 

Neighbor 

GR 64 71 67 

54.9 RE 37 30 33 

RU 50 50 50 

Random Forest 

GR 67 73 70 

59.7 RE 38 30 34 

RU 60 62 61 

XGBoost 

GR 67 78 72 

61.7 RE 46 31 37 

RU 59 59 59 

3.3. Behavior Classification Using Cross-Validation Method 

3.3.1. States Classification 

We adopted a random 5-fold cross-validation technique to assess performance in activity 

classification. We used features selected from above to identify consistent predictors across methods 

for classifying states as Static (ST) or Active (AC). Performance metrics showed that XGBoost 

outperformed other models with 74.2% accuracy, followed by Random Forest at 73.2%, while Logistic 

Regression had the lowest accuracy at 69% and a 31% misclassification rate. XGBoost 

hyperparameters included 200 rounds, eta of 0.06, maximum depth of 4, colsample_bytree and 

min_child_weight of 0.5, and subsample of 0.8. Partial Dependence Plots (PDPs) revealed that Speed 

and Actindex were the strongest predictors of AC, with Actindex increasing sharply up to 30 and 

stabilizing, and Speed rising until 50 metres/min before plateauing (Figure 3). X showed a slight 

positive effect, Y displayed a negative sigmoidal trend, and Z had a positive sigmoidal pattern. These 

results confirmed that Speed, Actindex, and X were strongly associated with AC, with XGBoost 

delivering the most precise and confident predictions compared to the broader distributions in 

Logistic Regression and Random Forest. 

 

Figure 3. Partial Dependence Plots (PDPs) for predicting active states in cows using different features: X, Y, Z, 

Speed (metre/minutes), and Actindex. 

3.3.2. Activity Classification and by Posture 

Similar to the Random Split (RS) method, we initially tested the classification of grazing (GR), 

resting (RE), and walking (W) using a 5-fold cross-validation approach. The features selected were 

consistent with those identified in the RS method, suggesting a stable pattern across both techniques 
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of which the same set of features were used in activity classification and by posture. Since XGBoost 

and Random Forest were found to perform better, we focused on these models for fine behaviors 

classification, including posture-based classification in the cross-validation method. After fine-

tuning, XGBoost slightly outperformed Random Forest, achieving 69.38% overall accuracy compared 

to 68.51%. Both models performed well for grazing (GR, ~67%) and resting (RE, ~77%), but struggled 

with walking (W), where XGBoost (48.3%) outperformed Random Forest (22.2%) (Table 3). After 

reclassifying behaviors into GR, rumination (RU), and RE, accuracy dropped to 62.38% (RF) and 

60.35% (XGB). For precision, Random Forest performed better for RE (47.1% vs. 36.5%), while 

XGBoost had a slight edge for GR (67.2% vs. 66.6%) and RU (58.9% vs. 59.6%). Both models performed 

well for posture classification (standing vs. lying down), with Random Forest at 83.94% and XGBoost 

at 83.7%. RF excelled in LD (79.9%), while XGB performed slightly better in SU (85.1%). For activity-

by-posture classification, both models had ~58.8% accuracy. XGBoost was better at detecting RE_LD 

(47.6%), while Random Forest performed better for RE_SU (46.2%). 

Table 3. The table presents the overall performance of different machine learning models: Grazing (GR), Resting 

(RE), Walking (W) and Ruminating (RU) and Resting in Lying (RE_LD), Resting in Standing (RE_SU), 

Ruminating in Lying (RU_LD), and Ruminating in Standing (RU_SU) using Cross-validation method (CV). The 

best results for a given metric are bolded to highlight which model was optimal for that analysis or task. 

Classification Method 

Model 

accuracy 

(%) 

Behaviors  
Precisio

n (%) 

Recall 

(%) 

F1 

(%) 

General 

activities 

Random Forest 68.51 

GR 65.2 67.9 66.5 

RE 71.8 77.5 74.5 

W 22.2 2.4 4.3 

XGBoost 69.38 

GR 67.1 67.2 67.2 

RE 72 77.9 74.9 

W 48.3 16.9 25 

Fine activities 

Random Forest 62.38 

GR 66.6 80.9 73.1 

RE 47.1 18.6 26.7 

RU 59.6 65.9 62.6 

XGBoost 60.35 

GR 67.2 76.4 71.5 

RE 36.5 20.9 26.6 

RU 58.9 64.4 61.5 

Posture  

Random forest 83.94 
LD 79.9 47.7 59.8 

SU 84.7 96 90 

XGBoost 83.7 
LD 76.4 50.3 60.7 

SU 85.1 94.8 89.7 

Activities by 

posture  

Random Forest 58.87 

RE_LD 30.6 15.2 20.3 

RE_SU 46.2 34 39.1 

RU_LD 50.9 52.6 51.8 

RU_SU 52.2 39.9 45.2 

XGBoost 58.78 

RE_LD 47.6 10.1 16.7 

RE_SU 43.1 13.8 21 

RU_LD 52.3 55.5 53.8 

RU_SU 64.4 25.7 36.7 
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The Partial Dependence Plots (PDPs) show that Actindex and Speed are strong predictors for 

GR and W, with a sharp increase before stabilizing (Figure 4a). They decrease consistently for RE and 

RU, indicating a negative effect. X increases sharply for GR and plays a key role for RE and RU when 

it decreases (Figure 4b). Y shows more variability but is slightly linked to RU. Z drops sharply for RE 

and increases for GR. For posture classification (Figure 4c), Speed and X are the strongest predictors 

of standing up (SU) over lying down (LD), with Speed increasing sharply up to 50 before leveling off 

and X maintaining a positive trend. In posture-by-activity classification, Speed is a strong predictor 

of resting (RE_LD, RE_SU) and rumination behaviors (RU_LD, RU_SU), with lower values indicating 

these states. X and Z are secondary predictors, with higher X values linked to RE_LD (Figure 4d). In 

summary, Speed is a key predictor for GR and W when they increase, and for RE and RU when they 

decrease. X is strong for GR when it increases, while both X and Y predict RE and RU when they 

decrease. Z predicts RE with a sharp drop and positively influences GR when it increases. Speed and 

X are the best predictors for SU over LD, emphasizing their role in classifying foraging behaviors. 

 

Figure 4. Partial Dependence Plots (PDPs) showing predicted features for (a) general activities Grazing (GR), 

Resting (RE), and Walking (W); (b) fine activities GR, RE, and Rumination (RU); (c) posture Standing up (SU) 

versus Lying down (LD); and (d) activity by posture RE_LD (resting lying down), RE_SU (resting standing up), 

RU_LD (rumination lying down), and RU_SU (rumination standing). Features include speed (meters per 

minute), Actindex, and X, Y, and Z axes, analyzed using the CV method. 

4. Discussion 

4.1. State Classification 

The classification of cows’ behavioral states provided key insights into the performance of the 

methods tested across various machine learning models. For classifying cows’ behavioral states 

(Active vs. Static), XGBoost achieved the highest accuracy, with 74.5% for RTS and 74.2% for CV. This 

consistency highlights the model’s robustness and aligns with prior findings by Putun and Yilmaz 
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[33] and Ibrahim et al. [34], who noted XGBoost’s exceptional ability to handle complex datasets and 

accurately classify animal behaviors. Similarly, Random Forest also performed well, improving 

accuracy from 73.2% in RTS to 74.1% in CV. These results are consistent with the observations of 

Chakraborty et al. [35] and Wyner et al. [36], who highlighted the model’s adaptability and 

generalization capabilities across diverse datasets. However, despite the strong performance of 

ensemble models like XGBoost and Random Forest, challenges remain regarding scalability and 

robustness. Expanding trials to include more observations (cows) and integrating diverse data 

sources could further enhance these models’ performance [37] [38]Simpler models, such as Logistic 

Regression, were more prone to underfitting. This finding is evident in many PDPs in our present 

study, which reveal complex relationships between predictors and the response that a sigmoidal 

function cannot fully capture. Overall, ensemble models such as XGBoost and Random Forest 

consistently outperformed the simpler classifiers, showcasing their effectiveness in handling complex 

datasets with higher accuracy and fewer misclassifications. 

Partial Dependence Plots (PDPs) revealed the relationships between key features and cows’ 

activity states, with Speed and Actindex emerging as the most significant predictors of active 

behavior. These findings align with Pütün and Yılmaz [33] and Mladenova et al. [39], who similarly 

identified these metrics as reliable indicators of cow activity. Additional X, Y, and Z features showed 

varying effects. Feature X exhibited a slight positive influence, Y displayed a weak negative trend, 

and Z followed a positive sigmoidal trajectory. Although not as strong as Speed and Actindex, these 

features collectively contribute to the overall prediction accuracy [33]. Tracking Speed and Actindex 

allow ranchers to identify active cows effectively while incorporating additional features like X, Y, 

and Z, which can further refine prediction accuracy. These insights offer actionable data for 

improving herd management by identifying key behavioral patterns associated with specific features 

[40]. Furthermore, the results underscore the value of non-parametric ensemble learning models like 

XGBoost, which demonstrated superior accuracy and robustness. By integrating ML models with 

meaningful feature selection, ranchers can develop more accurate and efficient livestock monitoring 

systems, ultimately enhancing animal behavior tracking and herd management practices [41] 

4.2. Activity Classification 

When comparing the performance of Random Forest (RF) and XGBoost (XGB) across different 

classification tasks, a clear distinction emerges between the cross-validation (CV) and random test 

split (RTS) methods. In the Grazing (GR), Resting (RE), and Walking (W) classification task, the 

performance of XGBoost and Random Forest varied depending on the evaluation method. XGBoost 

slightly outperformed Random Forest using the cross-validation method, achieving an overall 

accuracy of 69.38%. However, in the random split method, Random Forest achieved a higher overall 

accuracy of 65.9%, compared to XGBoost’s 63.3%. Both models faced challenges with the Walking 

(W) classification, but XGBoost achieved a higher accuracy of 48.3%, compared to RF’s 22.2%. This 

variability in performance aligns with findings from various studies that highlight the context-

dependent nature of these algorithms. For instance, animal foraging activities can vary due to factors 

such as forage availability and climate. Walking (W) may be less prevalent in monoculture grassland 

systems than other behaviors, potentially leading to highly imbalanced data. The finding is 

supported by Wang [42] who found that XGBoost outperformed Random Forest by better handling 

class imbalances and complex data structures, achieving higher accuracy. Additionally, XGBoost is 

particularly effective on structured, medium-sized datasets, as evidenced by its performance in 

telecommunications customer data analysis [43]. The results align with the Grazing, Resting, and 

Walking tasks, where the dataset’s structure and size may have favored XGBoost in the cross-

validation method. 

Random Forest (RF) is known for its robustness and ability to handle medium datasets, which 

is particularly beneficial for classifying complex behaviors, such as those of cattle. When the 

behavioral activities were reclassified into Grazing (GR), Ruminating (RU), and Resting (RE), cross-

validation with Random Forest achieved an overall higher accuracy compared to XGBoost (Table 3). 
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Regarding precision, Random Forest showed higher precision for GR and RU than RE, indicating its 

effectiveness in distinguishing between active behaviors like grazing and ruminating but less so for 

resting, consistent with the findings of Pütün and Yılmaz [44]. The algorithm’s overall accuracy was 

based on 5-minute fixed-sensor data from three cows, continuously recorded over three days (48 

hours). Several studies on foraging behavior observation in long-range scenarios have reported 

higher accuracy, suggesting that integrating multi-sensor systems and ML for high-resolution data, 

as seen in continuous observations like the present study, could lead to even higher accuracy. 

Accuracy would likely increase further with extended observation periods over a week or two. Even 

in a confined dairy experiment conducted by Chen et al.[45] , continuous observation provided a 

more precise representation of cattle behavior compared to fixed-interval sampling. Their study also 

highlighted that longer observation periods enhance accuracy, as behaviors fluctuate over time due 

to environmental factors, resource availability, and individual variability. After removing Walking 

(W) and Drinking Water (DW), the focus shifted to the more distinguishable behaviors: Grazing (GR), 

Resting (RE), and Ruminating (RU). RF continued to show superior performance in this updated 

classification, achieving higher accuracy compared to XGBoost’s (Tables 2 and 3). The exclusion of 

Walking and Drinking Water allowed for better differentiation between the remaining activities, 

reducing misclassifications. This improved performance highlights RF’s ability to better handle the 

task of distinguishing between complex behaviors like Resting (RE), Grazing (GR), and Ruminating 

(RU), as seen in studies such as Wang et al. [23]. Several studies have achieved notable accuracy in 

classifying grazing and non-grazing behaviors. Augustine and Derner [23] reported 87.8% accuracy 

by observing 5 to 9 cows during the summers of 2008 and 2011, with GPS position recorded at 5-

minute intervals and tri-axis accelerometers detecting 255 movements per interval. Similarly, 

Brennan et al. [11] achieved an 11.2% misclassification rate by observing 2-3 cows from 2016 to 2018 

in South Dakota by using low-cost homemade GPS collars equipped with high-frequency 3-axis 

accelerometers, recording GPS fixes at 1-minute intervals and accelerometer data at 12 Hz. While 

these studies relied on intermittent observations over several years with extensive ground truth and 

high-frequency data, they are resource-intensive and less feasible for routine ranching. In contrast, 

the present study used continuous observations of three cows for 12 hours per day over three days, 

with GPS and accelerometer data recorded at 5-minute intervals. This approach achieved a 

classification accuracy of 74.5%, offering a more cost-effective and practical alternative with longer 

battery life and affordable equipment for ranching operations. However, slightly less accurate, 

continuous observation at fixed intervals provides a solid foundation for real-time behavioral 

monitoring. Extending observation periods or increasing the sample size, combined with multi-

sensor integration and ML, could further enhance the accuracy of foraging behavior classification, 

bridging the gap between resource-intensive research and practical applications for ranchers. 

In the posture Classification task, where the model classified whether the animal was Standing 

or Lying Down, RF again outperformed XGBoost, achieving high accuracy compared to XGBoost’s 

slightly lower accuracy. This result emphasizes RF’s strength in handling complex feature 

interactions, particularly in classification tasks that involve posture data. These findings align with 

Biau [46] who showed that RF excels in non-linear classification tasks, such as those involving subtle 

distinctions between postures and activities. Kleanthous al. [47] similarly found that RF performed 

well in tasks involving continuous sensor data with subtle distinctions, such as determining an 

animal’s posture. RF demonstrated superior performance across all sub-categories in the activity by 

posture classification task. RF achieved high accuracy for grazing (GR), while XGBoost achieved 

slightly lower accuracy. However, both models struggled to classify Resting (RE) when lying down 

(RE_LD) and standing (RE_SU), with RF achieving only moderate accuracy in these sub-categories. 

XGBoost performed slightly better in these sub-categories but still lagged behind RF in overall 

accuracy for this task. These findings are consistent with Chen and Guestrin [48] who noted that 

XGBoost performs well with balanced datasets but struggles with imbalanced class distributions, 

particularly in tasks involving fine-grained categories, such as posture-based activities. In contrast, 

RF’s ability to handle multiple imbalanced categories makes it more robust. In conclusion, while both 
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RF and XGBoost faced challenges, particularly with the classification of Walking (W) and Drinking 

Water (DW), Random Forest (RF) consistently outperformed XGBoost across most tasks, especially 

in more complex classifications like posture Classification and Activity by Posture. RF’s ability to 

manage intricate feature interactions, particularly in tasks involving multiple categories or posture 

data, gives it a distinct advantage. XGBoost, although slightly more accurate in the Random Split 

Method after excluding problematic activities, still lagged behind RF in most tasks, particularly in 

posture and activity-by-posture classification. These results align with previous studies, which 

suggest that RF is better suited for non-linear feature relationships, while XGBoost excels in linear 

tasks but struggles with high-dimensional and overlapping datasets. Additionally, the continuous 

nature of the observation data, combined with GPS and accelerometer sensors that record at 5-minute 

intervals, could provide similar accuracy while extending battery life and reducing device costs. This 

makes it more feasible for long-term use in foraging behavior classification and addresses the 

challenges posed by highly variable and overlapping feature patterns. Understanding animal 

foraging behaviors becomes crucial for sustaining rangeland ecosystem health in arid and semi-arid 

regions, which are sensitive to disturbances such as overgrazing and desertification. 

The Partial Dependence Plots (PDPs) revealed key features influencing animal behaviors. For 

Grazing (GR), speed was the most significant predictor, with grazing probability decreasing as speed 

increased. This finding supports previous research by Jia et al. (2018), who noted that grazing cattle 

typically exhibit confined movement patterns. The Y-axis showed strong positive correlations, 

indicating lateral movements characteristic of grazing, while the Z-axis displayed a complex trend, 

reflecting the vertical head and neck motions during grazing. The findings are consistent with those 

of Sivakumar et al. [28], who observed similar head and neck movements during grazing. For Resting 

(RE), speed and Actindex were the main predictors. Low speed and a stable Actindex indicated 

minimal movement, which aligns with findings from Liu et al. [22], who reported that resting periods 

in cattle are marked by low variability in movement data, showing minimal activity. In Ruminating 

(RU), Actindex was the most influential predictor, capturing repetitive activity patterns. The Y-axis 

showed moderate importance, with lateral movements correlating to rumination, and the Z-axis 

showed a pattern of vertical head motions, consistent with findings by Tamura et al. [49]. 

Additionally, speed played a moderate role, with limited but structured movement, while the X-axis 

contributed spatial movement data, supporting Zhang et al. [50], who found that the X-axis is likely 

to relevant for sheep ruminating classification. For activity by posture Classification, the X-axis, and 

mean speed were key features in distinguishing between lying and standing postures. Both the X and 

Z axes were critical for predicting posture, confirming the findings of Liu et al. [26], who highlighted 

the importance of accelerometer data for posture classification. Rasmussen et al. (2018) also 

emphasized the effectiveness of using multiple axes for posture detection. 

5. Conclusions 

This study examined the use of Random Test-Split (RTS) and Cross-Validation (CV) data 

partition methods to test different models to classify cattle behavior foraging behaviors states, 

foraging activities, posture, and activity by posture based based on GPS and accelerometer data. 

XGBoost outperformed Random Forest (RF) overall state classification either active or static. RF 

under 5-fold CV excelled in tasks like Grazing, Resting, and Walking (GR, RE, W) as well in more 

complex classifications, such as posture and activity-by-posture classification. RF’s ability to manage 

intricate feature interactions and imbalanced class distributions, especially in Walking (W) and 

Resting (RE), made it more effective for these tasks. Partial Dependence Plots (PDPs) highlighted key 

features like Speed and Actindex which were crucial for predicting active behaviors and grazing 

patterns, supporting findings from previous research. The continuous sensor data collected at 5-

minute intervals over multiple days provided higher temporal resolution, capturing short-term 

behavior changes often missed in intermittent data collection methods. This approach improved 

classification accuracy and offered a cost-effective, practical solution for real-time livestock 

monitoring. In contrast to multi-year, intermittent observation studies, continuous data collection 
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allows for more detailed insights into behavioral shifts throughout the day. The ability to track 

behaviors like grazing, resting, and walking in real time makes this approach ideal for long-term 

monitoring and practical applications in livestock management. The integration of machine learning 

models with continuous behavioral data has the potential to revolutionize livestock management 

systems. Offering real-time devices and accurate insights enables better decision-making for 

ranchers, improving herd management and farm productivity. Future research should focus on 

scaling these methods, incorporating diverse data sources, and evaluating the long-term effectiveness 

of continuous monitoring for comprehensive livestock management. 
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