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Abstract: Homology, or relationship among characters by common descent, has been notoriously 

difficult to assess for many morphological features, and cell types in particular. The ontogenetic 

origin of such traits means that the only physically inherited information is encoded in the genomes. 

However, the complexity of the underlying gene regulatory network and often miniscule changes 

that can impact gene expression, make it practically impossible to postulate a clear demarcation line 

for what molecular signature should “define” a homologous cell type between two deeply branching 

animals. In this Hypothesis article, we propose the use of the recently characterized irreversible 

genomic states, that occur after chromosomal and sub-chromosomal mixing of genes and regulatory 

elements, to dissect regulatory signatures of each cell type into irreversible and reversible 

configurations. While many of such states will be non-functional, some may permanently impact 

gene expression in a given cell type. Our proposal is that such evolutionarily irreversible, and thus 

synapomorphic, functional genomic states can constitute a criterion for the timing of the origin of 

deep evolutionary cell type homologies. Our proposal thus aims to close the gap between the clearly 

defined homology of the individual genomic characters and their genomic states to the homology at 

the phenotypic level through the identification of the underlying evolutionarily irreversible and 

regulatory linked states. 

Keywords: chromosome evolution; enhancer-promoter contacts; fusion-with-mixing; entropy; 

irreversibility 

 

Homology at the organismal level, including developmental processes [1,2], organ and cell type 

homology [3–5] has been one of the most discussed and debated concepts in the field of evolution 

and development [6]. At the molecular level, lately fueled by the technological advancement in single 

cell transcriptomics, the “molecular signature” of many morphological or developmental traits could 

be identified [4,7–11]. However, complex interplay between regulatory networks during 

development [12] and the transcription factor logic associated with cell types [4] makes it difficult to 

identify a clear shared set of genes that identify a given cell type for clades that have been separated 

from each other for hundreds of millions of years. 

High genomic evolvability and complexity of genomic features that can impact gene regulatory 

networks and their phenotypic outcomes is, arguably, the main unresolved problem when 

attempting to identify the mechanistic basis of homologies at the organismal level and among 

distantly related clades. Many genomic changes, from small nucleotide substitutions, enhancer 

evolution to duplications of genes and regulatory sites [13–15] can lead to evolutionary novelty. 

However, these changes can also equally lead to loss of such novel characters. It is often unclear how 

often such events can or have occurred on the vast macro-evolutionary (above clade-level) time-scale, 

and how often regulatory wiring can be reversed to the ancestral states [16]. Furthermore, it has been 
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found that the genetic basis for clearly homologous characters can be different, in particular in terms 

of its inducing factors during development [17], while the core identity mechanisms are much more 

conserved [18]. 

At the 64th Phyletic Symposium in Jena last year, the lively discussion highlighted again the 

particular problems when assessing the homology of phenotypes and developmental processes that 

comprise the hourglass model [10,19–21]. Ideally, a clear signature of a cell type or a developmental 

process rooted in the underlying genomic information needs to be identified. 

In this Hypothesis we argue for a possible link between genome structure and the cell type 

homology at the macro-evolutionary level. We propose the identification of irreversible or highly 

“entangled” genomic states [22] that may affect gene expression and that can be related to the origin 

of a particular cell type or cell type family. We suggest that irreversibility is the key property in any 

identification of distant organismal homologies, as, considering the macro-evolutionary time-scales, 

there is otherwise no theoretical boundary to (re)evolve various gene expression patterns. Only gene 

regulation that is linked to a specific irreversible genomic state can be treated as a stable 

synapomorphic character within a given clade. Evolutionary irreversibility of a given genomic 

configuration also means that without the information from the outgroup species about the possible 

ancestral state, we irrevocably lose this ancestral state information. 

Over the recent years, accumulation of chromosomal-scale genomes has enabled us to trace the 

evolution of whole chromosomes and study their composition as a function of orthologous gene 

families [23,24]. One of the key identified properties for animal chromosomal evolution was the so-

called “fusion-with-mixing” (Figure 1): when two ancestrally conserved chromosomes undergo 

fusion, the genes on them mix through intra-chromosomal translocations and the resulting state 

(mixed chromosome) cannot be reverted to the original two states comprised of the two ancestral 

gene complements [23]. This chromosomal-scale mixing thus constitutes a very strong 

synapomorphic character that, once established, cannot be reverted and is expected to be observed 

in all descendants of a particular lineage. This property has already been utilized to shed new light 

onto highly debated phylogenetic positions [25]. 

 

Figure 1. Irreversible genomic states at chromosomal (left) and sub-chromosomal (right) scales, their origin, and 

occasional function. Left: chromosomal fusion-with-mixing occurs via, e.g., Robertsonian translocation, followed 

by intra-chromosomal inversions. The information about the ancestral two states (two separate chromosomes) 

is lost after the mixing and if no plesiomorphic (outgroup) information is available. Unfused chromosomal states 

in the “outgroup” species are shown as circles, due to space constraints. Right: similar mixing can be observed 

for the more functionally relevant enhancer-promoter (E-P) contacts within a single chromosome (labelled as 

region “A” and region “B”, with E-P link shown in blue and red, respectively). E-P links are mixed within an 

interactive environment (mediated, e.g., through DNA loop-extrusion) making it unlikely for random inversions 
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to disentangle them into the original state without breaking functional E-P contacts. Over longer time-scales, this 

“entanglement” may lead to the evolution of novel (green arrows) persistent E-P links. Black vertical arrows 

indicate possible evolutionary transitions between homologous states (two-way arrow: reversible; single-way 

arrow: irreversible). Slightly thicker single-way arrow for the final mixed state suggests higher level of its 

entropic mixing. 

The observed maintenance of chromosomal-scale linkages can be largely explained by meiotic 

constraints [26–28] and so far little evidence exists of any regulatory function [29]. On the other hand, 

how genes explore their local, sub-chromosomal, interactive environments and the impact of this 

process for the evolution of novel gene regulation has already been suggested (e.g., the addition of 

hundreds of novel topological and co-regulated units after large-scale genome rearrangements [30]). 

More recent insights suggest that, due to the ongoing process of intra-chromosomal translocations, 

hundreds of stable regulatory interactions can emerge even within fully retained (unfused) 

chromosomes since their origin in the metazoan ancestor [22]. The constraint for the maintenance of 

such sub-chromosomal linkages can be diverse. Mixing of enhancer-promoter (E-P) interactions 

within a topologically-interacting space (e.g., via loop-extrusion mechanisms and/or topologically 

associating domains, TADs [31,32]) may create an “entangled” configuration that is very unlikely to 

be unmixed by random inversions, as these would otherwise break functional E-P contacts (Figure 

1). This constraint thus leads to mixing that is analogous to the chromosomal “fusion-with-mixing”, 

but on a much smaller, sub-chromosomal, level. Thus, similar to the deeply conserved chromosomal-

level synteny, such constraints may result in retention of unrelated genes and their regulatory regions 

within specific genomic neighborhoods (Figure 1). This prediction is corroborated both by the 

frequently observed micro-synteny in animal genomes [33–38] as well as by the findings that 

translocations usually happen at the TAD boundaries [39]. The resulting maintenance of local 

linkages does not imply an immediate functional advantage, with any potential synergetic function 

evolving after this initial “entanglement” (Figure 1). It can thus be expected that this process can lead 

to the evolution and maintenance of a more complex enhancer logic within or associated with the 

local syntenic neighborhood.  

The suggested irreversibility of this evolutionary process enables us to link such states to specific 

changes in gene expression and, eventually, to gene expression that is associated with cell type 

development or function. It suggests that gene sets that define each cell type or a developmental stage 

can be analyzed in terms of their synapomorphic states or regulatory entanglements. Phylogenetic 

dating of the regulatory entanglements and quantification of their irreversibility in particular can 

indicate at what evolutionary node the novelty arose and that a scenario of re-ancestralization 

(unmixing, “disentanglement”) can be ruled out. It will also be possible to define the probability of 

convergence of such mixed states, as has been done for chromosomal-level fusion-with-mixing 

events, which will depend on the number of the involved genomic elements that undergo mixing 

[24,25]. 

The exact quantification and the methodology of the identification of such states begins to 

emerge [22], building on novel interdisciplinary applications, including topological theories [40] in 

macro-evolution. Such ideas may establish a fruitful testing ground for many deep evolutionary 

phenotype homology hypotheses. A signature of such entangled states would comprise of a set of 

enhancers and their target gene(s) located within one interactive region (e.g., a TAD or a loop) where 

the homologous regions in multiple outgroup species are located either in separate interactive 

environments or on different chromosomes [30] (Figure 1). The changes in the gene expression 

associated with a particular cell type should also be tested in this context and it should be expected 

that regulatory entanglement would create a more complex regulatory logic, e.g., by creating additive 

sub-functionalized enhancers or entangled super-enhancers within that region [41,42]. Furthermore, 

regulatory entanglement may also lead to the accumulation of several such states within the same 

genomic locus, i.e., two already entangled states undergoing further fusion and mixing. An example 

may constitute the vertebrate HoxD cluster and complex regulation of the C-TAD and T-TAD regions 
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around it, compared to the plesiomorphic invertebrate state [38,43–45]. While complex enhancer logic 

in many systems and loci has been reported, including enhancers that act over larger genomic 

distances [46], the determination of how much of it arose through regulatory entanglement is lacking. 

It is important to note that, similar to chromosomal rearrangement events in some clades that break 

the ancestral metazoan chromosomal homologies [47], sub-chromosomally “mixed” clusters such as 

Hox can also break apart and scramble within or between chromosomes (e.g., Hox cluster scrambling 

in some metazoan lineages [34,48,49]). However, as at the chromosomal level, sub-chromosomal 

“fission” products are not homologous to the ancestral pre-fusion or pre-mixing state, i.e., they can 

not theoretically revert back to any of the proposed ancestral Hox configurations [50].  

In general, this logic may be viewed to some degree similar to what has been described for 

phylostratigraphy approaches using orphan (novel) genes and other genomic changes that are 

evolutionary very rare [51,52]. However, novel genes often do not perform key cell type associated 

function, and, by definition, have no homology relationship to the outgroups where those genes are 

not found. Thus, such characters have limited implications for ancient cell type origination. In this 

context, it is also important to note that we do not propose that irreversible states resulting from 

mixing of genes and regulatory elements are the only driving force in phenotype or specifically cell 

type evolution. Clearly, many studies have shown a tremendous multitude of genomic changes that 

can result in changes in the gene expression. For core regulatory complexes (CoRCs), co-evolution 

and co-adaptation among transcription factor proteins has been proposed which may comprise a 

novel “mixed” state [4,53]. However, without a clear understanding of transition and reversibility 

properties of such changes across macro-evolution their implications for the cell type constituting 

molecular signatures are limited. We can thus envisage the next macro-evolutionary genomics 

frontier that will encompass studying irreversibility properties in the evolution of a plethora of such 

states. One such additional and least explored feature is the continuing expansion and integration of 

transposable elements into existing regulatory landscapes, which, through enlargement of the E-P 

distances as well as origin of novel regulatory sites, may facilitate formation of cell-type-associated 

irreversible states [54,55] and lead to their “fossilization” [56,57]. 

In summary, we propose that to be able to identify homology at the macro-evolutionary scale, 

irreversibility of the underlying genomic states, if present, may comprise a key criterion. We argue 

that positional characters and their regulatory “entanglement” along chromosomes may provide a 

testable concept to help address this long-lasting question. Finally, knowledge and phylogenetic 

dating of entangled genomic states will be useful in directing sequencing efforts of species that may 

still retain some of the ancestral un-mixed configurations, helping quantify how much of the ancestral 

information has been lost due to this irreversible mixing. 
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