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Abstract: The identification of influential nodes in complex networks is fundamental for assessing 

their importance, particularly when simultaneously considering topological structure and nodal 

attributes. In this paper, we introduce SL-WLEN (Semi-local Centrality with Weighted and 

Lexicographic Extended Neighborhood), a novel centrality metric designed to identify the most 

influential nodes in complex networks. SL-WLEN integrates topological structure and nodal 

attributes by combining local components (degree and nodal values) with semi-local components 

(Local Relative Average Shortest Path LRASP and lexicographic ordering), thereby overcoming 

limitations of existing methods that treat these aspects independently. The incorporation of 

lexicographic ordering preserves the relative importance of nodes at each neighborhood level, 

ensuring that those with high values maintain their influence in the final metric without distortions 

from statistical aggregations. The metric was validated on a chip manufacturing quality control 

network comprising 1,555 nodes, where each node represents a critical process characteristic. The 

weighted connections between nodes reflect correlations among characteristics, enabling the 

evaluation of how changes propagate through the system and affect final product quality. Robustness 

testing demonstrates that SL-WLEN maintains high stability under various perturbations: preserving 

Top-1 rankings (98%) and correlations (R²>0.92) even with 50% link removal, while maintaining 

robustness above 80% under moderate network modifications. These findings evidence its 

effectiveness for complex network analysis in dynamic environments. 

Keywords: semi-local centrality; complex networks; lexicographic ordering; influential nodes; 

quality control 

 

1. Introduction 

Complex network analysis fundamentally focuses on studying its structure, dynamics, and 

interaction to understand the importance of its nodes and connections in information diffusion, 

resilience, and global information. This has garnered significant attention in recent years [1]. 

Processes such as synchronization, diffusion, and cascade effects are predominantly influenced by 

nodes with higher influence and connectivity [2]. Thus, the study of these problems holds theoretical 

relevance, which is reflected in its practical applications across fields including computational 

biology, computer science, social networks, and artificial intelligence [3]. 

According to the information provided by a network, centrality metrics are classified into three 

groups (local, semi-local, and global). Each evaluates node influence from two perspectives: their 

topological structure, which analyzes connections and positions within the network, and their valued 

nodal attributes, which consider quantifiable characteristics and weights assigned to each node to 

determine its importance in the network. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Local metrics are subdivided into two categories: those based on topological structure, such as 

Degree Centrality [4], which evaluates direct connections, PageRank [5], which analyzes nodes as 

web pages, and Trust-PageRank [6]; and those with nodal weights such as Node-weighted Degree 

Centrality [7], which incorporates weights through an f(Wx) function, and the 

WNDegree/WNEDegree/WNEOpshalDegree variants [8] that integrate nodal attributes with 

topological structure. 

Semi-local metrics can also be approached from these two perspectives: those based on 

topological structure such as K-Shell [9], which identifies influential nodes through iterative removal, 

Mixed Degree Decomposition [10], which considers residual degrees, Semi-local Centrality [11], 

which evaluates first and second-level neighbors, Local Structural Centrality [12], and Degree and 

Importance of Lines [13]; and those with nodal weights such as Node-weighted Harmonic Centrality 

[14], which combines weights and geodesic distances, Node-weighted Betweenness Centrality [15], 

which evaluates flows between nodes, Modified Node-weighted Eigenvector Centrality [16], and 

MCNDI [17], which integrates multiple indicators through the CRITIC method. 

Global metrics represent the third group that utilizes information from the entire network. 

Among those based on classical structural topological approaches, notable examples include 

Betweenness Centrality [4], which analyzes shortest paths between nodes, Closeness Centrality [17], 

which evaluates proximity to other nodes, and Eigenvector Centrality [19], which considers the 

importance of neighboring nodes; while from the nodal attributes perspective, they incorporate 

developments such as LARSP [20] and LASP [21] that optimize shortest path calculations, and ARP 

[22] that considers reciprocal distances in directed networks. 

These metrics have attempted to provide a balance between accuracy and efficiency in complex 

network analysis; however, local and global metrics possess limitations. Local metrics exhibit 

constraints as they only consider highly restricted information from nodes' immediate neighborhood 

[23]. While computationally simple and efficient in considering only the nearest neighbors, their 

capability to identify truly influential nodes is compromised by this limited network vision. 

Meanwhile, global metrics, although more accurate by utilizing information from the entire network, 

face considerable practical challenges. Their high computational complexity makes them impractical 

for large-scale networks [24]. 

Semi-local metrics, particularly those implementing the Extended Neighborhood Concept 

(ENC), overcome these limitations by providing an optimal balance. By considering local subgraphs 

with LRASP (Local Relative Average Shortest Path), they generally achieve high accuracy in 

identifying influential nodes while maintaining manageable computational complexity [25]. This 

approach enables evaluation of both topological position and semi-local structure, simultaneously 

considering node importance and the influence of its nearby neighbors. 

Despite advances in semi-local metrics such as LASP, which incorporates LRASP and ENC to 

evaluate centrality by combining topological structure, there remains a significant gap in developing 

metrics that effectively integrate both topological structure and nodal values at the semi-local level. 

While metrics such as Node-weighted Harmonic Centrality evaluates nodal weights with geodesic 

distances and Node-weighted Betweenness Centrality considers flows between weighted nodes, 

these analyze weights in isolation without considering how these values affect the structure of local 

connections. This separation between weight and structure is particularly problematic in networks 

where a node's influence depends on both factors in an interrelated manner, as occurs in phenomena 

such as quality control in manufacturing environments or scientific collaboration networks, where 

both node attributes and network position jointly determine their actual importance. For instance, 

the works of [26–30] have addressed quality control through complex network analysis, although 

limiting themselves to the study of topological structure. 

Lexicographic ordering has been utilized in various complex network contexts. Notable 

applications include the study of information diffusion through nodal configuration mapping [31] 

and node importance evaluation through minimal winning coalitions [32]. However, its potential for 

integrating topological structure with nodal values in centrality metrics remains relatively 
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unexplored. This gap motivates the development of a new metric that leverages lexicographic 

ordering properties to simultaneously evaluate structure and nodal values in specific testing contexts, 

such as quality control. 

In this context, this paper proposes a novel semi-local centrality metric called SL-WLEN (Semi-

local centrality with weighted and lexicographic extended neighborhood in node-attributed 

weighted networks), specifically designed for a quality control network in chip production, where 

nodes represent critical quality characteristics and their relationships are defined by correlations 

between characteristics. The metric integrates both topological structure and nodal values through 

lexicographic ordering, aiming to capture the actual importance of characteristics based not only on 

their individual values but also on their interactions with other characteristics, vital for maintaining 

production system equilibrium. 

The methodology of this work encompasses the construction of a quality control process 

network for chip production, followed by the theoretical formulation of the new SL-WLEN metric, 

its practical implementation, and culminates with a comprehensive robustness analysis to validate 

its effectiveness. 

2. Establishment of a Quality Control Process Network for Chip Production  

Complex network theory constitutes a viable methodology for analyzing and modeling 

interrelationships in quality control systems for chip manufacturing [29]. By establishing a network 

model that maps the evolution of critical quality parameters during the production process, it 

becomes possible to precisely identify crucial control points in the manufacturing chain. This 

approach enables visualization of how each stage in the chip manufacturing process influences 

subsequent stages, facilitating early detection of potential quality deviations [27]. 

To create a network that represents the dynamics of quality control in the chip manufacturing 

process, it is necessary to analyze and process information regarding specific characteristics that 

influence finished product quality. This enables the definition of each mode and how they relate and 

interact with one another. 

2.1. Baseline Information Configuring the Network 

The data used to configure the network consists of two sets. The first is a matrix X∈R^Nxp, where 

N=1,763 corresponds to the number of observations or manufactured products and p=1,555 

represents the quality characteristics. The matrix is defined according to Eq. 1. 

𝑋 =

[
 
 
 
 
 
𝑥11 𝑥12 𝑥13 … 𝑥1𝑗 … 𝑥1𝑝

𝑥21 𝑥22 𝑥23 … 𝑥2𝑗 … 𝑥2𝑝

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 … 𝑥𝑖𝑗 … 𝑥𝑖𝑝

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 … 𝑥𝑛𝑗 … 𝑥𝑛𝑝]

 
 
 
 
 

 (1) 

where 𝑥𝑖𝑗 ∈ {0,1} , ∀ i, j ∈  ℕ con 1 ≤ i ≤ n, 1 ≤ j ≤ p 

Each row 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗 , … , 𝑥𝑖𝑝} represents the characteristics of the 𝑖 -th product. Each 

column vector 𝑥𝑖 = {𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑖𝑗 , … , 𝑥𝑛𝑗}  represents the values of the 𝑗 -th characteristic for all 

products. Each component 𝑥𝑖𝑗 indicates the presence (1) or absence (0) of quality defects in the j-th 

characteristic for the 𝑖-th product. Each product is manufactured in the same system. The second set 

corresponds to a vector 𝑌 ∈ 𝑅𝑁, where 𝑁 = 1,763. Each element of vector 𝑌 contains information 

associated with the quality of each product or observation from matrix 𝑋. Specifically, it indicates 

whether the i-th finished product meets the required final quality (1) or is defective (0). 

2.2. Network Node Definition 

Within the network model, each node represents a quality characteristic of the manufactured 

product, and the nodal value of each node is defined based on a logistic regression model with Lasso 
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(𝐿1)  regularization. This allows assigning a numerical value 𝑣𝑖  to each node, representing the 

relevance or influence of the corresponding characteristic on the manufactured product's quality. The 

objective function for logistic regression with Lasso regularization is expressed according Eq. 2. 

−
1

𝑁
∑{𝑦𝑖 log 𝑃(𝑌 = 1|𝑥𝑖) + (1 − 𝑌𝑖) log 𝑃(𝑌 = 0|𝑥𝑖)}

𝑁

𝑖=1

+ 𝜆‖𝛽‖1  

= −
1

𝑁
∑{𝑦𝑖(𝛽0 + 𝛽𝑇𝑥𝑖) − 𝑙𝑜𝑔(1 + 𝑒𝛽𝑜+𝛽𝑇𝑥𝑖)}

𝑁

𝑖=1

+ 𝜆‖𝛽‖1 

(2) 

where 𝑁 is the total number of observations in the dataset, (𝑦𝑖) is the i-th observation of the binary 

dependent variables, 𝑋 ∈ 𝑅𝑁𝑥𝑝  is the matrix of feature vectors (independent variables) for all 𝑁 

observations, and 𝑌 ∈ 𝑅𝑁 is the binary dependent vector, with 𝛽 being the model coefficients, and 

𝜆 the regularization parameter. 

The equation consists of two components: the first is the negative log-likelihood expression for 

binary logistic regression: −
1

𝑁
∑ {𝑦𝑖 log 𝑃(𝑌 = 1|𝑥𝑖) + (1 − 𝑌𝑖) log 𝑃(𝑌 = 0|𝑥𝑖)}

𝑁
𝑖=1 , obtained after 

applying the negative natural logarithm to the original likelihood function (Eq. 2), while the second 

component, the 𝐿1  penalty, integrates two elements: 𝜆  representing the 𝐿1  regularization 

parameter and the norm ‖𝛽‖1. 

Regarding the expression 𝜆‖𝛽‖1, the L1 norm (‖𝛽‖1)  of vector 𝛽 is defined as the sum of the 

absolute values of its components. In other words, for vector 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑛)   the norm is 

expressed as‖𝛽‖1 = |𝛽1|+, |𝛽2|, +⋯+ |𝛽𝑛|, which measures the total magnitude of the coefficients. λ 

is a regularization parameter that controls the strength of the penalty. The larger λ is, the greater the 

penalty, leading to smaller coefficients. This additional penalty has the effect of 'shrinking' some 

coefficients towards zero, and in some cases, may cause certain coefficients to be exactly zero. 

The incorporation of penalti 𝜆‖𝛽‖1 into the objective function of the LASSO logistic regression 

enables automatic feature selection. By forcing some coefficients to zero, the lasso tends to select a 

more relevant subset of features, eliminating less important ones. This could result in simpler and 

more generalizable models. 

From the fitted model, the resulting 𝛽 coefficients were utilized as nodal values 𝑣𝑖 within the 

network model. Each node 𝑖 represents a quality characteristic of the manufactured product, and its 

nodal value 𝑣𝑖 is defined by the absolute magnitude of its estimated coefficient in the Lasso model 

(Eq. 3). 

𝑣𝑖 = |𝛽𝑖|, ∀𝑖∈ {1,2, … , 𝑝} (3) 

2.3. Edge Weight Determination 

The connections in the quality characteristics network are established through the Phi (𝜑) 

coefficient, which quantifies the degree and direction of statistical association between pairs of binary 

characteristics in matrix 𝑋 ∈ 𝑅𝑁𝑥𝑝. For each pair of characteristics 𝑖, 𝑗, the 𝜑 coefficient defines the 

edge connecting them, evaluating the actual correlation between their variation patterns. This 

coefficient is calculated using the formula 𝜑𝑖𝑗 =
(𝑎𝑑−𝑏𝑐)

√((𝑎+𝑏)+(𝑐+𝑑)+(𝑎+𝑐)+(𝑏+𝑑))

; where 𝑎, 𝑏, 𝑐, 𝑑 correspond 

to the frequencies in the 2×2 contingency table between characteristics 𝑖, 𝑗 : 𝑎  is the positive 

coincidence frequency (1,1), 𝑏 the frequency of combination (1,0), 𝑐 the frequency of combination 

(0,1), and d the negative coincidence frequency (0,0). 

The weight of each edge 𝑤𝑖𝑗  is defined through a threshold function applied to the 𝜑 

coefficient. The function establishes that  𝑤𝑖𝑗 = 𝜑𝑖𝑗  if 𝜑𝑖𝑗 ≥ τ, or 𝜑𝑖𝑗 ≤ −τ, and equals 0 if −τ <

𝜑𝑖𝑗 < τ , where 𝜏  represents a statistical significance threshold. This threshold filters weak 

correlations, allowing only statistically significant relationships to form part of the network structure. 

The topological structure of the graph is described by the adjacency matrix 
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𝐴 ∈ 𝑅𝑝𝑥𝑝, where 𝐴𝑖𝑗 = 1 if nodes 𝑖, 𝑗 are connected, and 𝐴𝑖𝑗 = 0 otherwise. The 𝜑 coefficient 

has a range between [-1,1], with extreme values indicating perfect association: 𝜑𝑖𝑗 = 1 for perfect 

positive association, 𝜑𝑖𝑗 = −1  for perfect negative association, and 𝜑𝑖𝑗 = 𝑜  for absence of 

association. This enables the construction of a network that faithfully reflects relationships between 

quality characteristics, capturing both positive and negative associations while avoiding irrelevant 

connections that could introduce noise into the analysis. 

The symmetry of the 𝜑 coefficient 𝜑𝑖𝑗(𝜑𝑖𝑗 = 𝜑𝑗𝑖 ) and its specificity for binary variables make 

it ideal for modeling complex processes, such as chip manufacturing. 

2.4. Construction of the Quality Control Network in Chip Manufacturing 

During the chip manufacturing process, quality emerges as a complex phenomenon resulting 

from the dynamic interaction among multiple characteristics. This work adopts a complex network-

based approach, visualizing quality control as an integrated system where each characteristic 

influences both individually and through its interactions with others. 

The network is constructed by representing each quality characteristic as a node, whose 

importance is determined through analysis of historical production data. Edges between nodes 

represent significant correlations between characteristics, revealing how changes in one can 

propagate and affect others. The resulting structure is an undirected weighted network, where nodal 

values quantify the individual importance of each characteristic, while edge weights reveal the 

strength of relationships between them. This model enables visual understanding of how the 

production system's equilibrium depends on both individual characteristics and their complex 

network of interactions. 

3. Definition of a Centrality Metric for Identification and Categorization of 

Quality Characteristics Based on the Network 

3.1. Literature Review 

he study of complex networks provides methodological frameworks and fundamental 

structures that enable the development of more advanced and sophisticated artificial intelligence 

systems [33]. The intersection between AI and complex networks has revolutionized the analysis and 

optimization of interconnected systems, enabling the development of promising and effective 

solutions across various technological and social domains [34]. Within the framework of complex 

network analysis, the identification of influential elements and understanding their impact on the 

global system has garnered significant interest in recent years. This has led to the development and 

evolution of various metrics and methodologies aimed at quantifying the relative importance of 

components within these interconnected structures. 

In this context, the present review examines the development of these metrics, focusing on the 

progression from purely structural approaches toward more sophisticated methods that integrate 

both the intrinsic attributes of nodes and the weights of their connections, thus responding to the 

growing need for more comprehensive analyses in complex networks that better reflect real-world 

phenomena. The analysis encompasses both local and semi-local centrality metrics, considering the 

topological connections between neighbors and their relative influence within the network structure. 

Consider an unweighted and undirected network 𝐺 = (𝑉, 𝐸), where 𝑉  represents the set of 

nodes and 𝐸 the set of edges, depending on the application context. The adjacency matrix associated 

with 𝐺  is described by 𝐴 = {𝑎𝑖𝑗} ∈ ℝ𝑁𝑥𝑀 , where 𝑎𝑖,𝑗  represents the weight of an edge between 

nodes 𝑖 and 𝑗. The set 𝑇(𝑣) denotes the neighbors of node 𝑣. The degree of a node 𝑣, denoted as 

𝑘𝑣, is defined according to Eq. 4. 

𝑘𝑣 = ∑ 𝑎𝑢,𝑣

𝑢∈𝑉

 (4) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2025 doi:10.20944/preprints202503.0399.v1

https://doi.org/10.20944/preprints202503.0399.v1


 6 of 22 

 

Each node 𝑣 ∈ 𝑉 is characterized by an attribute vector 𝑥𝑣 = (𝑥𝑣
1, … , 𝑥𝑣

𝑑) ∈ ℝ𝑑, where 𝑑 is the 

number of attributes and each component 𝑥𝑣
𝑘 represents the value of the k-th attribute of node 𝑣. This 

characterization enables the integration of both the topological structure of the network and the 

intrinsic properties of its nodes in the centrality measure. 

Such description proposes a complex network characterized by weighted edges and nodes with 

valued attributes, allowing the modeling of systems where the centrality and influence of each 

element depends on both its topological structure and the intrinsic properties of the analyzed node 

and those that form its relational environment. This representation is particularly relevant in contexts 

where the importance of an element cannot be determined solely by its connectivity patterns but 

requires considering the heterogeneity of nodal attributes and their interaction with the network 

structure. 

In the context of these complex networks, where centrality depends on both the weighted 

topological structure and nodal attributes, the scientific literature has followed a progressive 

development in its approaches to measuring node importance. This development is characterized by 

three distinctive stages: initially, metrics focused exclusively on the network's topological structure, 

considering only node connections; subsequently, two parallel research lines emerged, one focused 

on incorporating edge weights and another on considering nodal attributes independently; finally, 

recent efforts seek to integrate both aspects into unified metrics, although this implies greater 

computational challenges. This evolution reflects the growing understanding of the 

multidimensional nature of centrality in complex networks, where a node's importance is defined by 

the interaction between its structural position and intrinsic characteristics. 

Table 1 presents the evolution of metrics that exclusively consider topological structure and edge 

weights, encompassing different network analysis levels. Among global metrics, [4] Betweenness 

Centrality (BC) considers the frequency with which a node appears in the shortest paths between all 

node pairs in the network, while Closeness Centrality (CC) measures the proximity of a node to all 

others through geodesic distances, Degree Centrality (DC) proposed by [35] evaluates importance 

according to a node's direct connections. Semi-local metrics include Local Structural Centrality (LSC) 

by [11], which incorporates both neighbor degrees and their local clustering coefficients, the DIL 

(Degree and Importance of Lines) metric by [13] that combines node degree with the weighted 

importance of adjacent connections, LRASP [19] which evaluates centrality considering induced 

subgraphs, WHC [36] that integrates multiple centrality measures, and INASP [18] which combines 

three different aspects of local influence. 

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited. 

Reference Metric Category Formula Parameter Description 

[35] DC Local 𝐷𝐶(𝑣)  =  𝑘𝑣 
𝑘𝑣 is the number of neighbors of the 

node 𝑣 

[4] BC Global 𝐵𝐶(𝑣)  =  ∑
𝛿𝑤,𝑣(𝑣)

𝛿𝑤,𝑣𝑠≠𝑣≠𝑡∈𝑉
  

𝛿𝑤,𝑣 is the shortest path between 𝑢 

and 𝑤, an 𝛿𝑤,𝑣(𝑣) is the shortest 

path between 𝑢 and 𝑤 passing 

through 𝑣 

[11] SC Semilocal 𝑆𝐶(𝑣)  =  ∑ ∑ 𝑘𝑤
𝑤∈𝛤(𝑢)𝑤∈𝛤(𝑣)

 𝑘𝑤 is the number of neighbors of 

node 𝑤 

[12] LSC Semi-local 

𝐿𝑆𝐶(𝑣)  =  ∑ (𝛼. 𝑘𝑤(1
𝑤∈𝛤(𝑣)

− 𝛼)∑ 𝐶𝑤
𝑤∈𝛤(𝑣)

) 

𝛼 is a tunable balance parameter, 

and 𝐶𝑤 is the local clustering 

coefcient for 𝑤 

Liu et al. (2016) DIL Semi-local 

𝐷𝐼𝐿(𝑣)  =  𝑘𝑣  + ∑ (𝐼𝑎𝑢,𝑣
𝑤∈𝛤(𝑣)

−
𝑘𝑣 − 1

𝑘𝑣+𝑘𝑢 − 2
) 

𝐼𝑎𝑢,𝑣
=

𝑐

𝜆
 is the importance of 𝑎𝑢,𝑣 in 

terms of connectivity, 𝜆 =
𝑝

2
+ 1 is 

the importance of 𝑎𝑢,𝑣 in terms of 

fungibility, and 𝑝 is the number of 

triangles with one side 𝑎𝑢,𝑣 

[19] LRASP Semi-local 𝐿𝑅𝐴𝑆𝑃(𝑣)  =  
|𝐴𝑆𝑃[𝐺𝑁𝐿(𝑣)\𝑣] − 𝐴𝑆𝑃𝐺𝑁𝐿(𝑣)|

𝐴𝑆𝑃[𝐺𝑁𝐿(𝑣)]
 

𝐺𝑁𝐿(𝑣) is the set of all neighbors up 

to level 𝐿 of 𝑣 in network 𝐺, and  

𝐺𝑁𝐿(𝑣)\𝑣 is the induced subgraph of 

𝐺𝑁𝐿(𝑣) after node 𝑣 is removed 
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[36] WHC Semi-local 

𝑊𝐻𝐶(𝑣)  

= ∑ (𝑘𝑣+𝑘𝑢
𝑤∈𝛤(𝑣)

+
𝑒𝑘𝑠𝑢/𝑁

𝐸𝐶(𝑢)
) .

𝑓(𝑣, 𝑢)

∑ 𝑓(𝑣, 𝑢)𝑤∈𝛤(𝑣)
  

𝐸𝐶(𝑢) is the 𝐸𝐶 centrality score for 

node 𝑢, ‘𝑒’ denotes natural 

logarithm, and 𝑓(𝑣, 𝑢) is the weight 

between nodes 𝑣 and 𝑢 

[18] INASP Semi-local 
𝐼𝑁𝐴𝑆𝑃(𝑣) = 𝛼𝑘𝑤 + 𝛽.∑ ∑

𝑘𝑢

𝑙𝑢∈𝑉+𝑙𝑣

𝐿

𝑙=1

+ γ. 𝐴𝑆𝑃̂[𝐺𝑣̂] 

𝐿 is the maximum neighborhood 

level, 𝑉+𝑙𝑣 is the set of nodes at 𝑙 −

ℎ𝑜𝑝 from 𝑣, and 𝐴𝑆𝑃̂[𝐺𝑣̂] is defned 

as 𝐿𝑅𝐴𝑆𝑃. Also, 𝛼, 𝛽 and 𝛾 are the 

impact coefficients 

More advanced metrics focus on information propagation and node distance in complex 

networks, such as LARSP, ARP, and LASP. LARSP (Local Average Shortest Path) is a local metric 

that measures node centrality based on the average length of shortest paths from that node to all 

other nodes in its local subgraph. Its objective is to capture the node's influence on information 

propagation within its immediate neighborhood, considering how local connectivity impacts the 

node's capacity to transmit information across the network. ARP (Average Reciprocal Path) extends 

the LARSP concept by considering the reciprocal distance of shortest paths in a directed network. 

Specifically, it evaluates how the path structure between nodes, considering edge directions, affects 

node centrality. LASP (Local Average Shortest Path) is an optimized version of LARSP that 

incorporates a weighted local average of shortest distances, reducing computational complexity by 

focusing on each node's local subgraph. 

Meanwhile, metrics considering valued nodal attributes (Table 2) also present different 

analytical scopes. Local metrics include node-weighted degree [7], which modifies the traditional 

degree definition by incorporating a nodal weight function, and WNDegree variants [8] that integrate 

nodal attributes with local topological structure. Semi-local metrics include node-weighted harmonic 

centrality [14] that considers geodesic distances in the extended neighborhood, node-weighted 

betweenness centrality [15] that incorporates the importance of communication between nearby node 

pairs, and modified eigenvector centrality [16] that adjusts nodal weight influence through a variable 

parameter. Additionally, hybrid metrics have been developed, such as the nodal attribute screening 

method, applicable at both local and global levels, and the MCNDI metric that integrates multiple 

indicators through the CRITIC method, combining local and global aspects [17]. 

Table 2. Node-attribute based centrality metrics. 

Reference Metric Category Formula Parameter Description 

[7] 

Node-

weighted 

Degree 

Centrality 

Local ∑
𝑓(𝑤𝑥). 𝑎𝑢,𝑣

∑𝑓(𝑤𝑥)𝑢∈𝑉(𝑢)
 𝑓(𝑤𝑥) is the weight function of node 𝑥 

[14] 

Node-

weighted 

Harmzonic 

Centrality 

Semi-

local 𝑓(𝑤𝑥) +

∑
𝑓(𝑤𝑢)

𝑑𝑢,𝑣 + 1𝑢∈𝑉(𝑢)

∑ 𝑓(𝑤𝑥)𝑥∈𝑉
 

𝑑𝑢,𝑣  is the shortest path distance between 

nodes 𝑢 and 𝑣. 

[15] 

Node-

weighted 

Betweenness 

Centrality 

Semi-

local 
∑ 𝑓(𝑤𝑠,  𝑤𝑡)

𝜎𝑠𝑡(𝑢)

𝜎𝑠𝑡𝑠,𝑡∈;𝑠≠𝑢≠𝑡
 

𝜎𝑠𝑡(𝑢) is the number of shortest paths 

between 𝑠 and 𝑡 that pass through 𝑢. 

[16] 

Modified 

Node-

weighted 

Eigenvector 

Centrality 

Semi-

local 
𝐸𝐶(𝑢)  ·  𝑊𝑢

𝛽
 

𝛽 ∈ [−1,1] is an adjustment parameter, 𝐸𝐶(𝑢)  

is the unweighted eigenvector centrality. 

[37] 

Node Attribute 

Screening 

Centrality 

Local/Glo

bal 
𝑦 =  𝑏₀ +  𝑏₁𝑥₁ +. . . + 𝑏ᵢ𝑥ᵢ 

𝑦 is a centrality, 𝑥ᵢ is a nodal attributes and 𝑏ᵢ 

are regression coefficients. 

[8] 

Node-

weighted 

Degree 

Centrality 

Local 

𝑊𝑁𝐶(𝑣𝑖)

= 𝑤𝑖 [𝐷𝑒𝑔𝑟𝑒𝑒(𝑣𝑖)

+ 𝛼. ((degout(𝑣𝑖))
1−𝛼

.∑ 𝑤𝑖,𝑗
𝛼

𝑣𝑗𝜖𝑜𝑢𝑡(𝑣𝑖)
)] 

𝑤𝑖 represents the weight of node 𝑣𝑖, while 

𝐷𝑒𝑔𝑟𝑒𝑒(𝑣𝑖) denotes the degree of the node. 

𝑑𝑒𝑔𝑜𝑢𝑡(𝑣𝑖) refers to the number of outgoing 

connections of the node. The parameter 𝛼 

controls the balance in the equation, and 𝑤𝑖,𝑗 

represents the weight of the link between 

nodes 𝑣𝑖 and. 𝑣𝑗. 

[17] 
Multi-attribute 

CRITIC 

Multi-

atributo 

𝑀𝐶𝑁𝐷𝐼𝑖  =  𝑤1 · 𝐻𝑖  +  𝑤2 · 𝐶𝑂𝐶𝑖  +  𝑤3

· 𝐾𝑆𝑖  +  𝑤4

· 𝑁𝐶𝐶𝑖 

𝐻𝑖 represents the 𝐻 − 𝑖𝑛𝑑𝑒𝑥, 𝐶𝑂𝐶𝑖 denotes 

closeness centrality, 𝐾𝑆𝑖 corresponds to the 
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Network 

Decision 

Indicator 

(MCNDI) 

𝑘 − 𝑠ℎ𝑒𝑙𝑙 value, and 𝑁𝐶𝐶𝑖 signifies the 

network constraint coefficient. The weights 𝑤𝑗 

are computed using the CRITIC method 

The integration of nodal attributes and connectivity in combined centrality metrics began with 

seminal works, such as [38], who addressed attributed graph analysis by incorporating categorical 

attributes in centrality evaluation. Their proposal extends classical measures through the E-I 

homophily index and betweenness metrics, enabling node classification into groups based on 

qualitative characteristics. While this approach represents an initial step in considering nodal 

attributes, it is limited to categorical characteristics without exploiting the richness of numerical 

attributes that could more precisely capture actors' influence in the network. 

A more comprehensive advancement in integrating global structure and attributes was 

proposed by [8], who developed a metric called node and edge-weighted closeness centrality, which 

calculates nodal importance considering both normalized distances between nodes and connection 

weights along shortest paths. This measure integrates the network's global structure and connection 

weights into a global centrality metric. This measure, denoted as 𝐶𝑊𝑁𝐸𝐶𝑒𝑛𝑡𝑟(𝑣𝑖) = 𝑤𝑖 ⋅

𝐶𝑊𝐸𝐶𝑒𝑛𝑡𝑟(𝑣𝑖), is defined as the product between the weight of node 𝑣𝑖 and its weighted closeness 

centrality 𝐶𝑊𝐸𝐶𝑒𝑛𝑡𝑟(𝑣𝑖). The latter is calculated as 𝐶𝑊𝑁𝐸𝐶𝑒𝑛𝑡𝑟(𝑣𝑖) = ∑
∑ 𝑤(𝑒)𝑒∈𝑆ℎ𝑜𝑟𝑡ℎ𝑃𝑎𝑡ℎ(𝑣𝑖,𝑣𝑗)

|𝑆ℎ𝑜𝑟𝑡𝑃𝑎𝑟𝑡ℎ(𝑣𝑖,𝑣𝑗)|
𝑢𝑗∈𝑉{𝑖} , 

where 𝑤(𝑒) represents the edge weight e in the shortest path 𝑆ℎ𝑜𝑟𝑡𝑃𝑎𝑟𝑡ℎ(𝑣𝑖 , 𝑣𝑗)denotes the length 

of said path, measured as the number of links between nodes 𝑣𝑖and 𝑣𝑗. However, its main limitation 

lies in the need to calculate shortest distances between each node pair, resulting in high 

computational complexity, especially in extensive and complex networks. This complexity increases 

significantly in networks with weights and nodal attributes, due to the additional analysis required 

for each connection. 

The development of centrality metrics reflects a progression from purely structural approaches 

toward approximations that incorporate edge weights or nodal attributes independently. However, 

there exists a significant gap in developing metrics that simultaneously integrate both edge weights 

and valued nodal attributes while maintaining manageable computational complexity. Existing 

attempts, such as [8], although promising, face significant limitations in terms of scalability and 

computational efficiency. This gap is particularly relevant in the current context, where complex 

networks frequently exhibit heterogeneity in their connections and diversity in their node 

characteristics. Therefore, developing a centrality metric that can efficiently capture this duality while 

maintaining feasible computational complexity represents a necessary research direction to advance 

the understanding and analysis of real-world complex networks. 

3.2. Proposed Metric: Semi-Local Centrality with Weighted and Lexicographic Extended Neighborhood in 

Node-Attributed Weighted Networks (SL-WLEN) 

The SL-WLEN metric quantifies node centrality in complex networks based on the LARSP (Local 

Average Shortest Path) connectivity analysis through its DegreeLocal and DegreeSemiLocal 

components, which evaluate partial centrality as a function of connection degrees. SL-WLEN extends 

this foundation by incorporating two additional components: a local component through the 

normalized node value, and a semi-local component via SemilocalNodeLexOrder, which introduces 

lexicographic ordering of neighbors. This component combination enhances the metric's capability 

to reflect the influence of characteristics in chip manufacturing, enabling the identification of the most 

relevant features of the final product by considering both their connectivity and their intrinsic values, 

as well as their structural position within the network. Figure 1 illustrates the metric implementation 

process. 
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Figure 1. General implementation process of the proposed centrality metric. 

3.3. Integration of Lexicographic Ordering 

SL-WLEN integrates SemilocalNodeLexOrder, enabling a more precise characterization of node 

influence within its structural and attributive context. The implementation of SL-WLEN is based on 

Extended Neighborhood Connectivity (ENC), which extracts a subgraph encompassing node 

neighbors up to a distance L. For details on ENC, see work of [21], pages 114 and 115. 

Once the subgraph is obtained through ENC, SemilocalNodeLexOrder quantifies node influence 

by considering its position in a lexicographic ordering based on attributes and neighborhood 

structure. At each distance level l, SemilocalNodeLexOrder assigns higher weights to better-

positioned nodes within the ordering, allowing the capture of subtle differences in nodes' relative 

importance. 

The metric operates by considering 1) prioritization of important features through lexicographic 

comparison, 2) influence penalization as distance increases and adjustment of node influence based 

on neighbor connectivity, and 3) influence accumulation. 

Prioritization of important features through lexicographic comparison:  

In the chip quality network, each node represents a quality characteristic, and its importance 

depends not only on its individual contribution but on its relationship with other characteristics. The 

SemilocalNodeLexOrder function enables node ordering based on their relative importance within 

their neighborhood, ensuring that the most influential characteristics maintain a priority position. 

Given a node 𝑣, its local influence is measured from the lexicographic ordering of its immediate 

neighborhood at a distance 𝑙. The set of neighbors 𝑁𝑙(𝑣)is ordered according to the importance value 

of each characteristic 𝑣𝑎𝑙(𝑢) , obtaining 𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣) = [𝑢1, 𝑢2 , … , 𝑢𝑘] such that ∀𝑖 < 𝑗, 𝑣𝑎𝑙 (𝑢𝑖) ≥

𝑎𝑙 (𝑢𝑗). This ordering favors nodes with highly relevant characteristics for chip quality, ensuring that 

those with higher values carry greater weight in the metric. In terms of chip manufacturing, this 

means that characteristics that most influence defects or improvements in the final product will 

occupy priority positions within the centrality evaluation. The partial contribution of a node 𝑣 at 

level 𝑙 is defined as 𝜙𝑙(𝑣) =
(𝑁−𝑝𝑜𝑠(𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣)))

𝑁−1
  where 𝑁 − 𝑝𝑜𝑠(𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣) is v's position in the 

lexicographic order. If a node has neighbors with high impact on chip quality, its position in the list 

will be lower (closer to 1), increasing the numerator and, consequently, its influence in the metric. 

Distance-based influence penalization and node influence adjustment based on neighbor 

connectivity: 

Start Input: Network 𝐺
Considering the node 𝑣 ∈ 𝐺 to 

calculate the influence

Extracting the subgraph 
෠𝐺(𝑣) based on ENC

Calculation of node influence based 
on weights assigned to edges in 

෠𝐺(𝑣)

• Calculation of  "Local Influence" on 
෠𝐺(𝑣) for node 𝑣 based on degree

• Calculation of "Semi - Local 
Influence" on ෠𝐺(𝑣) for node 𝑣 based 

on reliable paths

Calculation of node influence 
based on nodal values in ෠𝐺(𝑣)

• "Local Influence" in ෠𝐺(𝑣) for node 𝑣
is its own normalized nodal value

• Calculation of "Semi-Local Influence" 
in ෠𝐺(𝑣) for node 𝑣 based on 

lexicographical ordering

Combining Local-Influence, 
Semi-Local-Influence
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In the chip quality network, the effect of a characteristic can propagate through multiple 

interactions. However, its impact must be reduced with distance to prevent overvaluation of distant 

connections. The influence of v at each level l is weighted according to its neighborhood size and the 

maximum connectivity at that level 𝜙𝑙(𝑣) =
(𝑁−𝑝𝑜𝑠(𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣)))

𝑁−1
.

|𝑁𝑙(𝑣)|

max {|𝑁𝑙(𝑥)|:𝑥∈𝑉}
.

1

𝐿+𝑙
. Here, the first 

term maintains the lexicographic priority based on the characteristic's importance, while the second 

term adjusts the relative contribution according to neighborhood size, enabling differentiation of 

highly connected characteristics, and the third term introduces a penalization that reduces influence 

as distance increases, modeling the decreasing effect of characteristic propagation in manufacturing. 

This adjustment aims to capture indirect relationships between characteristics without 

excessively diluting or overestimating their influence, ensuring that closer nodes have a more 

relevant impact on the metric, while the effects of distant nodes are attenuated in a controlled manner. 

In the context of chip quality, this approach helps evaluate not only directly influential characteristics 

but also those affecting the product in a more indirect yet equally relevant way, without excessive 

overvaluation. 

Influence Accumulation: 

Finally, the total semi-local influence of node v is obtained by accumulating partial contributions 

at each exploration level up to maximum L in the form 𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(𝑣) = ∑ 𝜙𝑙(𝑣)𝐿
𝑙=1 . 

This enables consideration of how a characteristic affects chip quality not only directly but also 

through indirect relationships with other characteristics. Additionally, it balances influence from 𝑙 =

1 to 𝑙 = 𝐿, preventing nodes with high connectivity from dominating the metric, and providing a 

fair evaluation based on network structure. Lexicographic ordering proves particularly appropriate 

for evaluating chip manufacturing quality due to its unique capability to preserve the importance of 

critical characteristics. Unlike existing metrics, which tend to dilute the influence of important 

characteristics through various procedures, lexicographic ordering maintains the relevance of the 

most significant nodes throughout the analysis. 

Traditional metrics present limitations in this context. Some use weighted sums like Node-

weighted Degree Centrality, others rely on distance normalizations like Node-weighted Harmonic 

Centrality, or employ shortest paths like Node-weighted Betweenness Centrality. There are also those 

that apply products with adjustable parameters, linear regressions, or combine multiple indices, such 

as MCNDI. All these approaches may inadvertently reduce the influence of critical characteristics 

through their statistical aggregations. In contrast, lexicographic ordering preserves the relative 

importance of each characteristic through three complementary aspects: prioritizes nodes based on 

their individual value, connectivity level, and influence adjusted by distance. This combination 

enables a more precise evaluation where the importance of each characteristic is determined by its 

own value and its relationships with neighboring characteristics, without losing critical information 

in the process. 

3.4. Definitions 

The SL-WLEN metric quantifies node centrality in a complex network by considering two levels 

of analysis: local and semi-local, and integrating weighted connectivity components and nodal 

attributes. Its purpose is to capture node influence not only through direct connectivity but also by 

evaluating the importance of its neighbors at different proximity levels, their characteristics, and their 

relative position in the network. To achieve this, it integrates four main factors: local influence by 

connectivity (DegreeLocal), local influence by node (𝜁𝑉𝑣
𝑛𝑜𝑟𝑚) , Semi-Local Degree influence 

(DegreeSemiLocal), and Semi-Local node value influence based on lexicographic ordering 

(SemilocalNodeLexOrder). 

In the final metric, (𝜁𝑉𝑣
𝑛𝑜𝑟𝑚)  normalizes the node value by relativizing it within its 

neighborhood, capturing its intrinsic importance beyond structural connectivity. 

Definition 1: Local influence by connectivity (DegreeLocal) 

DegreeLocal captures the local influence of the node based on its direct connectivity, 

normalizing the node degree with respect to the total network size. This reflects its immediate 
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importance within the network. The local influence by connectivity of v denoted as 𝜙𝐷𝑒𝑔𝑟𝑒𝑒𝐿𝑜𝑐𝑎𝑙(𝑣) 

is defined according to Eq. 5. 

𝜑𝐷𝑒𝑔𝑟𝑒𝑒 𝐿𝑜𝑐𝑎𝑙(𝑣) =
𝑘𝑣

𝑁
 (5) 

where 𝑘𝑣 is the degree of node 𝑣 and 𝑁 is the number of directly connected nodes. 

Definition 2: Semi-Local Degree Influence (DegreeSemiLocal) 

DegreeSemiLocal, derived from LARSP [20] and based on LASP [21], quantifies semi-local 

influence by considering nearby neighbors within a subgraph extracted through the ENC (Extended 

Neighborhood Connectivity) concept. This influence is weighted based on several aspects: weighted 

connectivity, which reflects the intensity of relationships between the node and its neighbors through 

edge weights; proximity, where neighbor influence decreases as distance increases, modeling impact 

propagation within the network; and structural importance, which prioritizes neighbors with higher 

topological relevance. The semi-local influence of v, denoted as 𝜑𝐷𝑒𝑔𝑟𝑒𝑒𝑆𝑒𝑚𝑖𝐿𝑜𝑐𝑎𝑙(𝑣), is defined 

according to Eq. 6. 

𝜑𝐷𝑒𝑔𝑟𝑒𝑒 𝑆𝑒𝑚𝑖 𝐿𝑜𝑐𝑎𝑙(𝑣) =
1

|𝐺𝑁𝐿(𝑣)|
∑ ∑ √

𝑤𝑢,𝑣. 𝑘𝑣

𝑑𝑢,𝑣(𝑘𝑢 + 𝑘𝑣)
𝑢∈𝑇𝑡(𝑣)

𝐿

𝑙=1

 (6) 

where |𝐺𝑁𝐿(𝑣)|| is the set of all neighbors up to level L of node 𝑣 in network 𝐺, and 𝑇𝑡(𝑣) is the set 

of all neighbors at level 𝑙 of node 𝑣. 

Definition 3: Semi-Local Node Value Influence Based on Lexicographic Ordering 

(SemilocalNodeLexOrder) 

SemilocalNodeLexOrder introduces a novel perspective through lexicographic ordering of 

nodes based on their attributes and neighborhood structure. This evaluates how a node's relative 

position within this order affects its influence, considering its structural and attributive environment 

at different distance levels. Additionally, it includes the contribution of nearby neighbors within a 

subgraph extracted through ENC, enabling a deeper evaluation of the node within its topological 

and attributive context. 

The Semi-Local Node Influence based on Lexicographic 

𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(𝑣)  measures node influence by considering its nearby 

neighbors at different distance levels (up to a maximum 𝐿). Each level contributes with a partial 

contribution 𝜙𝑙that depends on the node's position in the lexicographic order 𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣) within 

its neighborhood, the number of neighbors at that distance, and the maximum degree among nodes 

at the same level according to Eq. 7. 

𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(𝑣) = ∑𝜙𝑙(𝑣)

𝐿

𝑙=1

 (7) 

where 𝜙𝑙 the partial contribution per level is defined according to Eq. 8. 

𝜙𝑙(𝑣) =
(𝑁 − 𝑝𝑜𝑠(𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣)))

𝑁 − 1
.

|𝑁𝑙(𝑣)|

max {|𝑁𝑙(𝑥)|: 𝑥 ∈ 𝑉}
.

1

𝐿 + 𝑙
 (8) 

Here, 𝑁 = |𝑉| is the total number of nodes, 𝑝𝑜𝑠(𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣))defines node v's position in the 

lexicographic order 𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙  at level 𝑙 , |𝑁𝑙(𝑣)| is the number of neighbors at distance 𝑙  from 

node 𝑣, max {|𝑁𝑙(𝑥)|: 𝑥 ∈ 𝑉} is the maximum degree among all nodes at level 𝑙, 𝐿 is the maximum 

exploration level. 

The ordering function 𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣)  is defined as an ordered set of nodes based on 

lexicographic comparison (Eq. 9). 

𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥𝑙(𝑣) = [𝑢1, 𝑢2 , … , 𝑢𝑘|𝑢𝑖 ∈ 𝑉, ∀𝑖, 𝑗: 𝐶𝑜𝑚𝑝𝑙(𝑢𝑖 , 𝑢𝑗) = 1 (9) 

While 𝜙𝐶𝑜𝑚𝑝𝑙(𝑢, 𝑧): 
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𝜙𝐶𝑜𝑚𝑝𝑙(𝑢, 𝑧)

= {
1, 𝑠𝑖 ∃ 𝑖 ≤ min(|𝑁𝑙(𝑢)|, |𝑁𝑙(𝑧)|) : (∀j < i: val(𝑁𝑙(𝑢))

𝑗
= val(𝑁𝑙(𝑧))𝑗

∧ 𝑣𝑎𝑙(𝑁𝑙(𝑢))
𝑗
> 𝑣𝑎𝑙(𝑁𝑙(𝑧))𝑖

)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(10) 

where 𝑁𝑙(𝑣) = {𝑢 ∈ 𝑉|𝑑(𝑣, 𝑢) = 1}  is a set of neighbors of v at distance 𝑙 , val(𝑁𝑙(𝑣)) =

sort_desc({val(u)|u ∈ 𝑁𝑙(𝑢)}) are values of 𝑣's neighbors sorted in descending order, and 𝑑(𝑣, 𝑢) is 

the shortest path length between 𝑣 and 𝑢 in 𝐺. 

The metric uses normalized values for each node, obtained by dividing its value by the 

maximum value of its neighbors at the same distance level, which adjusts its influence based on 

relative importance within the neighborhood. 

Special considerations 

If several nodes have the same lexicographic order (𝐶𝑜𝑚𝑝𝑙(𝑢, 𝑧) = 𝐶𝑜𝑚𝑝𝑙(𝑧, 𝑢) = 0, it is resolved 

by assigning the same order for the set of nodes V. The term 𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(𝑣) can be 

interpreted as the sum of contributions 𝜙𝑙(𝑣) from each level 𝑙, facilitating detailed analysis of each 

node's behavior at each exploration level. 

Definition 4: Total Influence 

For a node 𝑣, SL-WLEN is defined by Eq. 11: 

𝑆𝐿 − 𝑊𝐿𝐸𝑁(𝑣) = 𝜉. 𝜑𝐷𝑒𝑔𝑟𝑒𝑒𝐿𝑜𝑐𝑎𝑙(𝑣) + 𝜁𝑉𝑣
𝑛𝑜𝑟𝑚 +  𝛿. 𝜑𝐷𝑒𝑔𝑟𝑒𝑒 𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙(𝑣)

+ 𝛾𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(𝑣) 
(11) 

where 𝜉, 𝜁, 𝛿 and 𝛾 are adjustable parameters between 0 and 1. The first two control the local and 

semi-local influence of node connectivity, and the remaining ones control the local and semi-local 

influence of its nodal value, satisfying the condition 𝜉 + 𝜁 + 𝛿 + 𝛾 = 1. 

4. SL-WLEN Example 

To better clarify the computational procedure of the proposed metric, we describe a numerical 

example. An undirected weighted graph with 11 nodes and 14 edges is assumed, as shown in Figure 

2. We present a calculation example for 𝑣6, considering 𝐿 = 2 and edge weights 𝑤𝑢,𝑣 as shown on 

the edges, with assigned nodal values 𝑉 = {𝑉1,2,9,11 = 1.5; 𝑉3,4,5,7 = 0.5; 𝑉6,8,10 = 4}. 

7

11

85

3

4

1

2

96

10

0.3
0.3

0.3

0.3

0.1

0.4

0.5

0.1

0.8

0.8

0.9

0.1

0.8

0.80.4

0.1

 

Figure 2. A simple graph with 11 nodes and 14 edges. 

According to Definition 1, since 𝑘6 = 7 and 𝑁 =  11.According to Definition 2, the calculation 

of 𝜑𝐷𝑒𝑔𝑟𝑒𝑒 𝑆𝑒𝑚𝑖 𝐿𝑜𝑐𝑎𝑙(6) is performed as follows: 
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𝜑𝐷𝑒𝑔𝑟𝑒𝑒 𝑆𝑒𝑚𝑖 𝐿𝑜𝑐𝑎𝑙(6)

=
1

10
[(√

0.1 (7)

2 + 7
)

𝑢=2

+ (√
0.1(7)

4 + 7
)

𝑢=3

+ (√
0.3 . (7)

4 + 7
)

𝑢=4

+ (√
0.3(7)

2 + 7
)

𝑢=5

+ (√
0.8 (7)

2 + 7
)

𝑢=7

+ (√
0.5(7)

3 + 7
)

𝑢=9

+ (√
0.4 (7)

1 + 7
)

𝑢=10

]

𝑙=1

+ [(√
0.3 (7)

2(2 + 7)
)

𝑢=1

+ (√
0.3(7)

2(3 + 7)
)

𝑢=8

+ (√
0.3 . (7)

2(2 + 7)
)

𝑢=11

]

𝑙=2

= 0.4028 

(12) 

𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(6) is determined from Definition 3. 

At level 1, the neighbors of 𝑣6 are nodes number 2, 3, 4, 5, 7 and 9, giving a total of |∣ 𝑁1(6) ∣=

7| neighbors. To calculate the lexicographic order, the normalized values associated with these nodes 

are considered, which are 0.375, 0.125, 0.125, 0.125, 0.125, 0.375, and 1.00. These values are sorted in 

descending order to form node V6's signature, resulting in {1.0, 0.375, 0.375, 0.125, 0.125, 0.125, 0.125}. 

Comparing this signature with other nodes in the graph generates a ranking where nodes with higher 

signatures are placed first. In this case, node 𝑣6  occupies position 4 in the level 1 lexicographic 

ranking, defined as 𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥1. 

At level 2, the neighbors of 𝑣6  are nodes number 1, 8 and 11, resulting in ∣ 𝑁2(6) ∣= 3| 

neighbors. The normalized values associated with these neighbors are 0.375, 1.0, and 0.375, which are 

sorted in descending order to form 𝑣6 's signature at this level, obtaining {1.0, 0.375 𝑦 0.375} . 

Following the same signature comparison process to determine lexicographic order, it is concluded 

that 𝑣6 occupies position 4 in the level 2 lexicographic ranking, defined as 𝑂𝑟𝑑𝑒𝑟𝐿𝑒𝑥2. Substituting 

the values in Eq. 6 and 7, 𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(6) is determined as: 

𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(6)

= [
(𝑁 − 𝑝𝑜𝑠1)

(𝑁 − 1)
.

|𝑁1(6)|

max {|𝑁1|}
.

1

𝐿 + 𝑙
]
𝑙=1

+ [
(𝑁 − 𝑝𝑜𝑠2)

(𝑁 − 1)
.

|𝑁2(6)|

max {|𝑁2|}
.

1

𝐿 + 𝑙
]
𝑙=2

 
(13) 

𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(6) = [
(11 − 4)

(11 − 1)
.
7

7
.

1

2 + 𝑙
]
𝑙=1

+ [
(11 − 4)

(11 − 1)
.
3

7
.

1

2 + 2
]
𝑙=2

 (14) 

𝜑𝑆𝑒𝑚𝑖𝑙𝑜𝑐𝑎𝑙𝑁𝑜𝑑𝑒𝐿𝑒𝑥𝑂𝑟𝑑𝑒𝑟(6) = 0.2333 + 0.0750 = 0.3083 (15) 

Finally, SL-WLEN(3) is calculated according to the adjustable parameters condition 𝜉 = 𝜁 = 𝛿 =

𝛾 = 0.25, in accordance with Eq. 16: 

SL − WLEN (6) = (0.25x0.636) + (0.25x1) + (0.25x0.403) + (0.25x0.30) = 0.587 (16) 

The SL-WLEN metric results for all nodes are shown in Table 3. 

Table 3. SL-WLEN metric results for all nodes in the example network 

Rank Node φDegreeLocal  𝜻𝑽𝒗
𝒏𝒐𝒓𝒎 Degree Semilocal 

SemilocalNodeLexOrder(v

) 
SLWLEN(v) 

1 V6 0.636 1.000 0.403 0.308 0.587 

2 V8 0.273 1.000 0.376 0.025 0.419 

3 V10 0.091 1.000 0.166 0.010 0.317 

4 V9 0.273 0.375 0.285 0.171 0.276 

5 V4 0.364 0.125 0.343 0.229 0.265 

6 V2 0.182 0.375 0.191 0.231 0.245 

7 V3 0.364 0.125 0.262 0.210 0.240 

8 V5 0.182 0.125 0.262 0.345 0.228 

9 V11 0.182 0.375 0.297 0.055 0.227 

10 V1 0.182 0.375 0.200 0.054 0.203 

11 V7 0.182 0.125 0.223 0.157 0.172 
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5. Experimental Results 

In the following illustration, a general view of the complex network for chip manufacturing 

quality control is presented. The visualization shows the complete network structure, where nodes 

(circles) represent quality characteristics and edges (lines) represent the correlations between them. 

 

Figure 2. presents the detailed visualization of the quality control network. Node size and blue color intensity 

indicate the individual importance level of each characteristic (nodal value) - larger size and darker blue tonality 

correspond to greater importance. Connections between nodes (edges) are represented on a grayscale, where 

tonalities closer to black indicate stronger correlations between characteristics, while lighter tones represent 

weaker correlations. 

 

Figure 5. presents the visualization of the quality control network with characteristic identifiers. The features 

are identified with the prefix "f" followed by a four-digit sequential number. For example, f1263 corresponds to 

feature number 1263 of the process. 
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Figure 6. illustrates the visualization of the network's structural configuration in core and peripheral zones. 

Panel (a) shows how the network accumulates connections in high-density areas, with strongly interconnected 

nodes forming clusters that reveal grouping patterns from the network's center outward. Meanwhile, panel (b) 

illustrates the network's peripheral region, where nodes with lower connectivity are located, demonstrating how 

these elements are spatially distributed in areas furthest from the network's center. This progressive 

representation facilitates understanding the network's complexity from different perspectives, enabling direct 

appreciation of the relationships between process characteristics. 

 
a) 

 
b) 

The visualization of the quality control network in chip manufacturing maintains graphical 

legibility, enabling identification of characteristics' importance hierarchy through node size and 

tonality, as well as correlation strength through connection intensity. The representation achieves a 

balance between showing densely connected structures (clusters) and more dispersed zones. This 

clarity in visualization facilitates understanding of the complex network of interrelationships in the 

manufacturing process, providing an effective visual tool for quality control monitoring and analysis. 

Table 4 shows the top 20 nodes with highest centrality according to the SL-WLEN metric, 

including their components and final rankings. 
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Table 4. SL- Top 20 SL-WLEN metric application in measuring quality characteristics centrality. 

Node φDegreeLocal  𝜻𝑽𝒗
𝒏𝒐𝒓𝒎 

Degree 

Semilocal 

SemilocalNodeLexOrde

r(v) 
SLWLEN(v) Rank 

f625 0.0193 0.8412 0.6195 0.3047 0.4462 1 

f1397 0.0148 1.0000 0.6081 0.1095 0.4331 2 

f468 0.0096 0.7487 0.3923 0.3509 0.3754 3 

f506 0.0019 0.5576 0.4357 0.3796 0.3437 4 

f981 0.0109 0.4842 0.6195 0.2365 0.3378 5 

f732 0.0277 0.3096 0.6149 0.3245 0.3192 6 

f1020 0.0167 0.3912 0.6026 0.2623 0.3182 7 

f18 0.0051 0.5979 0.5259 0.1407 0.3174 8 

f901 0.0148 0.4201 0.4320 0.3188 0.2964 9 

f1245 0.0193 0.2558 0.6593 0.2277 0.2905 10 

f1048 0.0039 0.2307 0.5820 0.3438 0.2901 11 

f396 0.0006 0.7429 0.3657 0.0417 0.2877 12 

f181 0.0013 0.9256 0.0000 0.1667 0.2734 13 

f1165 0.0026 0.4705 0.5363 0.0833 0.2732 14 

f7 0.0193 0.0000 0.6410 0.4116 0.2680 15 

f1209 0.0251 0.0000 0.7026 0.3346 0.2656 16 

f1033 0.0103 0.2543 0.5077 0.2681 0.2601 17 

f721 0.0109 0.0000 0.5159 0.4992 0.2565 18 

f84 0.0161 0.0776 0.5680 0.3598 0.2553 19 

f1176 0.0257 0.0000 0.5118 0.4815 0.2548 20 

The following figure presents visual local subnetworks corresponding to the six highest-ranked 

nodes according to the SL-WLEN metric, revealing distinctive patterns of connectivity and local 

structure. The composite visualization shows different topological configurations that justify the 

ranking obtained through the proposed metric. 

Node f625, which occupies the first position, exhibits high density of local connections with a 

compact and well-connected structure, characterized by multiple intermediate nodes forming a 

cohesive community. The second highest-ranked node, f1397, presents a distinctive triangular 

connectivity pattern, less dense than f625 but with strategically distributed connections in its 

neighborhood. In third position, f468 shows a predominantly radial structure with direct connections 

and a more pronounced dispersion pattern than the previous ones. Node f506, in fourth place, is 

characterized by minimal but strategic connectivity, with sparse links and a simpler structure 

compared to higher-ranked nodes. The fifth node, f981, presents moderate connection density with a 

semi-compact structure and irregular link distribution. Finally, f732, in sixth position, is 

distinguished by a hexagonal structure with regular and symmetric connections, showing moderate 

density with an ordered pattern. 

This visualization provides empirical evidence of how the SL-WLEN metric captures different 

aspects of centrality and local structure in the network. Visually, it is possible to appreciate its 

capability to identify significant nodes based on multiple topological and structural criteria. 

 

a) 

 

b) 
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c) 

 

d) 

 

e) 

 

f) 

The visualizations are consistent with the SL-WLEN ranking. The top three nodes (f625, f1397, 

f468) demonstrate more sophisticated connectivity patterns that reflect their high metric values: f625 

with its dense and cohesive structure (SLWLEN=0.4462), f1397 with strategic triangular connections 

(SLWLEN=0.4331), and f468 with its efficient radial pattern (SLWLEN=0.3754). The lower-ranked 

nodes (f506, f981, f732) exhibit simpler or less integrated structures, consistent with their lower 

SLWLEN values (0.3437, 0.3378, 0.3192 respectively). 

The identification of these central characteristics through SL-WLEN reveals not only nodes 

important for final product quality but also their role in manufacturing system stability. The 

connection structure of these nodes suggests they are critical points for maintaining process 

coherence and stability: alterations in these characteristics could propagate extensively through the 

network due to their multilevel connectivity patterns. This complements the traditional approach 

based solely on nodal values by considering how these characteristics act as system stabilizers 

through their interconnections. For example, the dense and cohesive structure of node f625 suggests 

it is crucial not only for final quality but also for maintaining operational stability of the 

manufacturing process. 

6. Robustness Analysis of the SL-WLEN Metric 

To evaluate the robustness of the SL-WLEN metric, we adapted the methodology proposed by 

[38], which continues to be employed in contemporary research, such as in the study by [39], who 

developed a systematic framework to analyze how classical centrality measures (degree, 

betweenness, closeness, and eigenvector) maintain their consistency under different conditions of 

error or perturbation in network data. The same perturbation and evaluation techniques were 

applied to our composite SL-WLEN metric, which, unlike classical metrics, incorporates both 

structural aspects and nodal values in its calculation. The importance of this analysis lies in that, in 

real situations, networks may be subject to various types of modifications or errors in their structure. 

The process began with selecting a representative sample of the network, balancing 

computational efficiency and structural representativeness. Given that the complete network consists 

of 1,555 nodes, a robustness analysis on the entire network would be computationally intensive and 

time-demanding. Therefore, a sample size of 100 nodes was determined, large enough to capture the 
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network structure without compromising analysis viability. To ensure representativeness, stratified 

sampling based on connectivity distribution was implemented, following the power-law distribution 

observed in real networks. Strata were defined according to node degree, classifying them into high, 

medium, and low connectivity. Node allocation in each stratum was performed using the formula 

𝑛ℎ = 𝑛 (
𝑁ℎ

𝑁
), where 𝑛ℎ is the sample size for stratum ℎ, 𝑛 the total sample size, 𝑁ℎ the stratum size 

in the population, and 𝑁 the total number of nodes. To ensure balanced network representation, the 

sample distribution was adjusted, allocating 20% to highly connected nodes (hubs), 60% to medium 

connectivity nodes, and 20% to peripheral nodes. This allowed capturing the global network 

structure while optimizing computational resources during test execution. 

Four fundamental types of error that can occur in real networks were considered. Node removal 

simulates scenarios where data from some actors is lost, randomly selecting 𝑛 × 𝑝 nodes, where n is 

the total number of nodes and p is the modification proportion (0.01, 0.05, etc.). Node addition 

represents situations where new actors are incorporated into the network, creating 𝑛 × 𝑝 new nodes 

with degree similar to randomly selected existing nodes. Edge removal simulates cases where 

existing connections are lost, randomly selecting 𝑚 × 𝑝 edges, where m is the total number of edges. 

Edge addition represents scenarios where 𝑚 × 𝑝 new connections are created between previously 

unconnected nodes. 

The selection of perturbation levels was made considering a spectrum ranging from minimal 

modifications to substantial network changes. Levels of 1% were used, representing minimal errors 

or minor natural changes in the network; 5% and 10% simulating moderate perturbations; 25% 

representing significant structure alteration; and 50% simulating extreme network modification. This 

gradation allows evaluating the metric's sensitivity to small perturbations, its resistance to moderate 

changes, and its behavior under extreme conditions.  

To evaluate different aspects of robustness, five complementary metrics were implemented. The 

Top 1 metric measures the proportion of times the most important node maintains first position after 

modification, Top 3 indicates the frequency with which it remains among the top three, and Top 10% 

represents the proportion of times it stays within the first decile. For example, if a node has values of 

0.980 in Top 1, 0.900 in Top 3, and 1.000 in Top 10%, it means that in 98% of replications it retained 

first position, in 90% it remained among the top three, and in all replications it stayed within the first 

decile. 

The Overlap measure calculates the normalized intersection between the upper deciles of the 

original and modified networks, defined as ∣ 𝐴 ∩ 𝐵 ∣/∣ 𝐴 ∪ 𝐵 ∣, where A and B represent the sets of 

nodes in the first decile of each network. Its value varies between 0 and 1, indicating the degree of 

coincidence between both networks; for example, a value of 0.720 means that 72% of nodes in the first 

decile are the same in both versions. On the other hand, 𝑅2 represents the square of the Pearson 

correlation between the SL-WLEN values of the original and modified network. Values close to 1, 

such as 0.997, indicate that the relative order of nodes is preserved almost perfectly, while lower 

values reflect a greater discrepancy in ordering. 

The validation process was designed at multiple levels to ensure the robustness of results. Fifty 

replications were performed, generating in each one a modified version of the network, called "test 

network," on which modifications were applied. The evaluation included independent analysis of 

each combination of error type and level, calculating the five robustness measures and averaging the 

results. The entire process was documented, recording changes in each replication, ensuring 

modification traceability, and generating detailed reports. 

Tables 5–8 show the robustness results of the SL-WLEN metric under different network 

perturbation levels. 

Table 5. Robustness test results for the SL-WLEN metric under different perturbation levels: node removal case. 

Proportion Top1 Top3 Top10% Overlap R² 

0.01 0.980 0.980 0.980 0.687 0.996 

0.05 0.920 0.920 0.920 0.636 0.994 
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0.10 0.900 0.900 0.900 0.580 0.991 

0.25 0.800 0.800 0.800 0.381 0.978 

0.50 0.500 0.500 0.500 0.213 0.921 

Table 6. Robustness test results for the SL-WLEN metric under different perturbation levels: node addition case. 

Error type Top1 Top3 Top10 Overlap R² 

0.01 0.960 0.960 0.960 0.684 0.989 

0.05 0.840 0.840 0.840 0.533 0.963 

0.10 0.640 0.640 0.640 0.441 0.925 

0.25 0.440 0.440 0.460 0.275 0.833 

0.50 0.480 0.480 0.480 0.175 0.766 

Table 7. Robustness test results for the SL-WLEN metric under different perturbation levels: edge removal case. 

Error type Top1 Top3 Top10 Overlap R² 

0.01 1.000 1.000 1.000 0.720 0.997 

0.05 0.980 0.980 1.000 0.759 0.998 

0.10 1.000 1.000 1.000 0.726 0.998 

0.25 1.000 1.000 1.000 0.632 0.994 

0.50 0.900 0.900 1.000 0.553 0.983 

Table 8. Robustness test results for the SL-WLEN metric under different perturbation levels: edge addition case. 

Error type Top1 Top3 Top10 Overlap R² 

0.01 0.980 0.980 0.980 0.734 0.994 

0.05 0.840 0.840 0.840 0.569 0.967 

0.10 0.660 0.660 0.700 0.530 0.928 

0.25 0.580 0.580 0.600 0.313 0.862 

0.50 0.640 0.640 0.660 0.225 0.797 

The test results demonstrate that the SL-WLEN metric exhibits robust and reliable behavior 

under different network perturbation conditions. The metric shows notable stability against element 

removal, particularly in the case of edges, where it maintains Top1/3/10% values above 0.900 even 

with 50% modifications. For node removal, the metric preserves its stability up to 25% modification, 

with Top1/3/10% values equal to or greater than 0.800, and maintains R² values above 0.92 even with 

50% alterations. 

Regarding element addition, both for nodes and edges, the metric shows progressive 

deterioration starting from 10% modification, demonstrating greater sensitivity to the incorporation 

of new elements than to their removal. This sensitivity is reflected in a substantial decrease in 

consistency for large-scale modifications, where R² decreases to approximately 0.77. Nevertheless, 

the metric maintains high reliability in scenarios with small perturbations of 1-5%. 

The practical implications of these results confirm that the SL-WLEN metric is particularly 

effective in identifying and maintaining the hierarchy of the most important nodes in the network, 

even under conditions of moderate data loss. Its greater sensitivity to the incorporation of new 

elements suggests the need for caution when making modifications that exceed 25% of the network 

structure. These findings validate the robustness and utility of the SL-WLEN metric for complex 

network analysis, demonstrating its capability to maintain consistency in identifying critical nodes 

under various perturbation conditions. 

7. Conclusions 

This paper proposes SL-WLEN as a weighted semi-local centrality metric based on the 

integration of lexicographic ordering and extended neighborhood concept for identifying influential 

nodes in complex quality control networks. Beyond node importance, SL-WLEN incorporates both 
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topological structure and nodal values in its evaluation, considering four main components: local 

influence by connectivity, local node influence, semi-local degree influence, and semi-local influence 

based on lexicographic ordering. By applying a distributed approach that analyzes subgraphs per 

node and utilizing lexicographic ordering to evaluate hierarchical importance, SL-WLEN provides 

an effective balance between accuracy and computational complexity. Numerical robustness tests 

demonstrate SL-WLEN's high stability, especially against element removal, maintaining its 

consistency even with significant network modifications. However, the metric shows greater 

sensitivity to the incorporation of new elements, suggesting areas for improvement in future work. 

The extension of the metric to consider network temporal dynamics and its adaptation for different 

types of complex networks represents a promising direction for subsequent research. 
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