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Abstract: The identification of influential nodes in complex networks is fundamental for assessing
their importance, particularly when simultaneously considering topological structure and nodal
attributes. In this paper, we introduce SL-WLEN (Semi-local Centrality with Weighted and
Lexicographic Extended Neighborhood), a novel centrality metric designed to identify the most
influential nodes in complex networks. SL-WLEN integrates topological structure and nodal
attributes by combining local components (degree and nodal values) with semi-local components
(Local Relative Average Shortest Path LRASP and lexicographic ordering), thereby overcoming
limitations of existing methods that treat these aspects independently. The incorporation of
lexicographic ordering preserves the relative importance of nodes at each neighborhood level,
ensuring that those with high values maintain their influence in the final metric without distortions
from statistical aggregations. The metric was validated on a chip manufacturing quality control
network comprising 1,555 nodes, where each node represents a critical process characteristic. The
weighted connections between nodes reflect correlations among characteristics, enabling the
evaluation of how changes propagate through the system and affect final product quality. Robustness
testing demonstrates that SL-WLEN maintains high stability under various perturbations: preserving
Top-1 rankings (98%) and correlations (R>>0.92) even with 50% link removal, while maintaining
robustness above 80% under moderate network modifications. These findings evidence its
effectiveness for complex network analysis in dynamic environments.

Keywords: semi-local centrality; complex networks; lexicographic ordering; influential nodes;
quality control

1. Introduction

Complex network analysis fundamentally focuses on studying its structure, dynamics, and
interaction to understand the importance of its nodes and connections in information diffusion,
resilience, and global information. This has garnered significant attention in recent years [1].
Processes such as synchronization, diffusion, and cascade effects are predominantly influenced by
nodes with higher influence and connectivity [2]. Thus, the study of these problems holds theoretical
relevance, which is reflected in its practical applications across fields including computational
biology, computer science, social networks, and artificial intelligence [3].

According to the information provided by a network, centrality metrics are classified into three
groups (local, semi-local, and global). Each evaluates node influence from two perspectives: their
topological structure, which analyzes connections and positions within the network, and their valued
nodal attributes, which consider quantifiable characteristics and weights assigned to each node to
determine its importance in the network.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Local metrics are subdivided into two categories: those based on topological structure, such as
Degree Centrality [4], which evaluates direct connections, PageRank [5], which analyzes nodes as
web pages, and Trust-PageRank [6]; and those with nodal weights such as Node-weighted Degree
Centrality [7], which incorporates weights through an f(Wx) function, and the
WNDegree/WNEDegree/WNEOpshalDegree variants [8] that integrate nodal attributes with
topological structure.

Semi-local metrics can also be approached from these two perspectives: those based on
topological structure such as K-Shell [9], which identifies influential nodes through iterative removal,
Mixed Degree Decomposition [10], which considers residual degrees, Semi-local Centrality [11],
which evaluates first and second-level neighbors, Local Structural Centrality [12], and Degree and
Importance of Lines [13]; and those with nodal weights such as Node-weighted Harmonic Centrality
[14], which combines weights and geodesic distances, Node-weighted Betweenness Centrality [15],
which evaluates flows between nodes, Modified Node-weighted Eigenvector Centrality [16], and
MCNDI [17], which integrates multiple indicators through the CRITIC method.

Global metrics represent the third group that utilizes information from the entire network.
Among those based on classical structural topological approaches, notable examples include
Betweenness Centrality [4], which analyzes shortest paths between nodes, Closeness Centrality [17],
which evaluates proximity to other nodes, and Eigenvector Centrality [19], which considers the
importance of neighboring nodes; while from the nodal attributes perspective, they incorporate
developments such as LARSP [20] and LASP [21] that optimize shortest path calculations, and ARP
[22] that considers reciprocal distances in directed networks.

These metrics have attempted to provide a balance between accuracy and efficiency in complex
network analysis; however, local and global metrics possess limitations. Local metrics exhibit
constraints as they only consider highly restricted information from nodes' immediate neighborhood
[23]. While computationally simple and efficient in considering only the nearest neighbors, their
capability to identify truly influential nodes is compromised by this limited network vision.
Meanwhile, global metrics, although more accurate by utilizing information from the entire network,
face considerable practical challenges. Their high computational complexity makes them impractical
for large-scale networks [24].

Semi-local metrics, particularly those implementing the Extended Neighborhood Concept
(ENC), overcome these limitations by providing an optimal balance. By considering local subgraphs
with LRASP (Local Relative Average Shortest Path), they generally achieve high accuracy in
identifying influential nodes while maintaining manageable computational complexity [25]. This
approach enables evaluation of both topological position and semi-local structure, simultaneously
considering node importance and the influence of its nearby neighbors.

Despite advances in semi-local metrics such as LASP, which incorporates LRASP and ENC to
evaluate centrality by combining topological structure, there remains a significant gap in developing
metrics that effectively integrate both topological structure and nodal values at the semi-local level.
While metrics such as Node-weighted Harmonic Centrality evaluates nodal weights with geodesic
distances and Node-weighted Betweenness Centrality considers flows between weighted nodes,
these analyze weights in isolation without considering how these values affect the structure of local
connections. This separation between weight and structure is particularly problematic in networks
where a node's influence depends on both factors in an interrelated manner, as occurs in phenomena
such as quality control in manufacturing environments or scientific collaboration networks, where
both node attributes and network position jointly determine their actual importance. For instance,
the works of [26-30] have addressed quality control through complex network analysis, although
limiting themselves to the study of topological structure.

Lexicographic ordering has been utilized in various complex network contexts. Notable
applications include the study of information diffusion through nodal configuration mapping [31]
and node importance evaluation through minimal winning coalitions [32]. However, its potential for
integrating topological structure with nodal values in centrality metrics remains relatively
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unexplored. This gap motivates the development of a new metric that leverages lexicographic
ordering properties to simultaneously evaluate structure and nodal values in specific testing contexts,
such as quality control.

In this context, this paper proposes a novel semi-local centrality metric called SL-WLEN (Semi-
local centrality with weighted and lexicographic extended neighborhood in node-attributed
weighted networks), specifically designed for a quality control network in chip production, where
nodes represent critical quality characteristics and their relationships are defined by correlations
between characteristics. The metric integrates both topological structure and nodal values through
lexicographic ordering, aiming to capture the actual importance of characteristics based not only on
their individual values but also on their interactions with other characteristics, vital for maintaining
production system equilibrium.

The methodology of this work encompasses the construction of a quality control process
network for chip production, followed by the theoretical formulation of the new SL-WLEN metric,
its practical implementation, and culminates with a comprehensive robustness analysis to validate
its effectiveness.

2. Establishment of a Quality Control Process Network for Chip Production

Complex network theory constitutes a viable methodology for analyzing and modeling
interrelationships in quality control systems for chip manufacturing [29]. By establishing a network
model that maps the evolution of critical quality parameters during the production process, it
becomes possible to precisely identify crucial control points in the manufacturing chain. This
approach enables visualization of how each stage in the chip manufacturing process influences
subsequent stages, facilitating early detection of potential quality deviations [27].

To create a network that represents the dynamics of quality control in the chip manufacturing
process, it is necessary to analyze and process information regarding specific characteristics that
influence finished product quality. This enables the definition of each mode and how they relate and
interact with one another.

2.1. Baseline Information Configuring the Network

The data used to configure the network consists of two sets. The first is a matrix XER*"Nxp, where
N=1,763 corresponds to the number of observations or manufactured products and p=1,555
represents the quality characteristics. The matrix is defined according to Eq. 1.

x11 x12 x13 nn xlj ann xlp
X1 Xo2 X33 x2j xzp

¥ = : : : : : 1
Xi1 Xio Xi3 x,:j xip ( )
Xn1 Xn2 Xn3 xnj xnp

where x;; € {0,1},Vi,j € Ncon1<i<n1<j<p

Each row x; = {x;1, X, ..., Xjj, ..., Xip} represents the characteristics of the i-th product. Each
column vector x; = {x; 9 X2js ey Xifjy e Xy j} represents the values of the j-th characteristic for all
products. Each component x;; indicates the presence (1) or absence (0) of quality defects in the j-th
characteristic for the i-th product. Each product is manufactured in the same system. The second set
corresponds to a vector Y € RN, where N = 1,763. Each element of vector Y contains information
associated with the quality of each product or observation from matrix X. Specifically, it indicates
whether the i-th finished product meets the required final quality (1) or is defective (0).

2.2. Network Node Definition

Within the network model, each node represents a quality characteristic of the manufactured
product, and the nodal value of each node is defined based on a logistic regression model with Lasso
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(L1) regularization. This allows assigning a numerical value v; to each node, representing the
relevance or influence of the corresponding characteristic on the manufactured product's quality. The
objective function for logistic regression with Lasso regularization is expressed according Eq. 2.

N
1
7 L DilogP(Y = 11x) + (1= ¥) log P(Y = 0Jx)} + &Il
y @

1 T
= == (5o + BTx) — log(1 + o)} 4 Bl

=1

where N is the total number of observations in the dataset, (y;) is the i-th observation of the binary
dependent variables, X € RM? is the matrix of feature vectors (independent variables) for all N
observations, and Y € RV is the binary dependent vector, with  being the model coefficients, and
A the regularization parameter.

The equation consists of two components: the first is the negative log-likelihood expression for
binary logistic regression: —%Z?’zl{yi logP(Y = 1|x;) + (1 = Y;)logP(Y = 0]x;)} , obtained after
applying the negative natural logarithm to the original likelihood function (Eq. 2), while the second
component, the L1 penalty, integrates two elements: A representing the L1 regularization
parameter and the norm [[|B]l;.

Regarding the expression A[|S]|;, the L1 norm (||8]l;) of vector B is defined as the sum of the
absolute values of its components. In other words, for vector f = (8;,8,,...,6n) the norm is
expressed as||Bll; = |B1]+,1B2], + -+ + | By, which measures the total magnitude of the coefficients. A
is a regularization parameter that controls the strength of the penalty. The larger A is, the greater the
penalty, leading to smaller coefficients. This additional penalty has the effect of 'shrinking' some
coefficients towards zero, and in some cases, may cause certain coefficients to be exactly zero.

The incorporation of penalti A[|S]l; into the objective function of the LASSO logistic regression
enables automatic feature selection. By forcing some coefficients to zero, the lasso tends to select a
more relevant subset of features, eliminating less important ones. This could result in simpler and
more generalizable models.

From the fitted model, the resulting f coefficients were utilized as nodal values v; within the
network model. Each node i represents a quality characteristic of the manufactured product, and its
nodal value v; is defined by the absolute magnitude of its estimated coefficient in the Lasso model

(Eq. 3).
v = |Bil, Vi€ {12, ..., p} ©)

2.3. Edge Weight Determination

The connections in the quality characteristics network are established through the Phi (¢)
coefficient, which quantifies the degree and direction of statistical association between pairs of binary
characteristics in matrix X € R¥*P. For each pair of characteristics i,j, the ¢ coefficient defines the

edge connecting them, evaluating the actual correlation between their variation patterns. This
(ad-bc)

; where a, b, c,d correspond

coefficient is calculated using the formula ¢;; = \/
((a+b)+(c+d)+(a+c)+(b+d))

to the frequencies in the 2x2 contingency table between characteristics i,j: a is the positive
coincidence frequency (1,1), b the frequency of combination (1,0), ¢ the frequency of combination
(0,1), and d the negative coincidence frequency (0,0).

The weight of each edge w;; is defined through a threshold function applied to the ¢
coefficient. The function establishes that w;; = ¢;; if ¢;; =T, or ¢;; < —7, and equals 0 if —T <
@;j <T, where T represents a statistical significance threshold. This threshold filters weak
correlations, allowing only statistically significant relationships to form part of the network structure.

The topological structure of the graph is described by the adjacency matrix
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A € RP*P, where A;j = 1if nodes i,j are connected, and A;; = 0 otherwise. The ¢ coefficient
has a range between [-1,1], with extreme values indicating perfect association: ¢;; =1 for perfect
positive association, ¢;; = —1 for perfect negative association, and ¢;; =0 for absence of
association. This enables the construction of a network that faithfully reflects relationships between
quality characteristics, capturing both positive and negative associations while avoiding irrelevant
connections that could introduce noise into the analysis.

The symmetry of the ¢ coefficient ¢;;(¢;; = ¢;; ) and its specificity for binary variables make
it ideal for modeling complex processes, such as chip manufacturing.

2.4. Construction of the Quality Control Network in Chip Manufacturing

During the chip manufacturing process, quality emerges as a complex phenomenon resulting
from the dynamic interaction among multiple characteristics. This work adopts a complex network-
based approach, visualizing quality control as an integrated system where each characteristic
influences both individually and through its interactions with others.

The network is constructed by representing each quality characteristic as a node, whose
importance is determined through analysis of historical production data. Edges between nodes
represent significant correlations between characteristics, revealing how changes in one can
propagate and affect others. The resulting structure is an undirected weighted network, where nodal
values quantify the individual importance of each characteristic, while edge weights reveal the
strength of relationships between them. This model enables visual understanding of how the
production system's equilibrium depends on both individual characteristics and their complex
network of interactions.

3. Definition of a Centrality Metric for Identification and Categorization of
Quality Characteristics Based on the Network

3.1. Literature Review

he study of complex networks provides methodological frameworks and fundamental
structures that enable the development of more advanced and sophisticated artificial intelligence
systems [33]. The intersection between Al and complex networks has revolutionized the analysis and
optimization of interconnected systems, enabling the development of promising and effective
solutions across various technological and social domains [34]. Within the framework of complex
network analysis, the identification of influential elements and understanding their impact on the
global system has garnered significant interest in recent years. This has led to the development and
evolution of various metrics and methodologies aimed at quantifying the relative importance of
components within these interconnected structures.

In this context, the present review examines the development of these metrics, focusing on the
progression from purely structural approaches toward more sophisticated methods that integrate
both the intrinsic attributes of nodes and the weights of their connections, thus responding to the
growing need for more comprehensive analyses in complex networks that better reflect real-world
phenomena. The analysis encompasses both local and semi-local centrality metrics, considering the
topological connections between neighbors and their relative influence within the network structure.

Consider an unweighted and undirected network G = (V,E), where V represents the set of
nodes and E the set of edges, depending on the application context. The adjacency matrix associated
with G is described by A = {aij} € R"*M, where a;; represents the weight of an edge between
nodes i and j. The set T(v) denotes the neighbors of node v. The degree of a node v, denoted as

ky, = Z Ay (4)

uev

k., is defined according to Eq. 4.
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Each node v € V is characterized by an attribute vector x, = (x, ..., x¢) € R where d is the
number of attributes and each component x¥ represents the value of the k-th attribute of node v. This
characterization enables the integration of both the topological structure of the network and the
intrinsic properties of its nodes in the centrality measure.

Such description proposes a complex network characterized by weighted edges and nodes with
valued attributes, allowing the modeling of systems where the centrality and influence of each
element depends on both its topological structure and the intrinsic properties of the analyzed node
and those that form its relational environment. This representation is particularly relevant in contexts
where the importance of an element cannot be determined solely by its connectivity patterns but
requires considering the heterogeneity of nodal attributes and their interaction with the network
structure.

In the context of these complex networks, where centrality depends on both the weighted
topological structure and nodal attributes, the scientific literature has followed a progressive
development in its approaches to measuring node importance. This development is characterized by
three distinctive stages: initially, metrics focused exclusively on the network's topological structure,
considering only node connections; subsequently, two parallel research lines emerged, one focused
on incorporating edge weights and another on considering nodal attributes independently; finally,
recent efforts seek to integrate both aspects into unified metrics, although this implies greater
computational challenges. This evolution reflects the growing understanding of the
multidimensional nature of centrality in complex networks, where a node's importance is defined by
the interaction between its structural position and intrinsic characteristics.

Table 1 presents the evolution of metrics that exclusively consider topological structure and edge
weights, encompassing different network analysis levels. Among global metrics, [4] Betweenness
Centrality (BC) considers the frequency with which a node appears in the shortest paths between all
node pairs in the network, while Closeness Centrality (CC) measures the proximity of a node to all
others through geodesic distances, Degree Centrality (DC) proposed by [35] evaluates importance
according to a node's direct connections. Semi-local metrics include Local Structural Centrality (LSC)
by [11], which incorporates both neighbor degrees and their local clustering coefficients, the DIL
(Degree and Importance of Lines) metric by [13] that combines node degree with the weighted
importance of adjacent connections, LRASP [19] which evaluates centrality considering induced
subgraphs, WHC [36] that integrates multiple centrality measures, and INASP [18] which combines
three different aspects of local influence.

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.

Reference Metric Category Formula Parameter Description
35] DC Local DCE) = k, k, is the number of neighbors of the
node v
Sy is the shortest path between u
Swp(v i
(4] BC Global BC(v) = Z wo (V) and w, an &, ,(v) is the shor‘test
szvetev Owp path between u and w passing
through v
[11] sc Semilocal SC) = Z Z ke, k,, is the number of neighbors of
wer (v) ~=dwer(u) node w
LSC(v) = Z (a. ky, (1 a is a tunable balance parameter,
[12] LSC Semi-local were)

and C,, is the local clustering
) coefcient for w

—a) Z Cw
wEer(v)

lo,, = % is the importance of a,, in

DIL(v) = k, + Z (Iaw terms of connectivity, A = Zi1is

Liu et al. (2016) DIL Semi-local were k,—1 the importance of a,, in t(zerms of
- m) fungibility, and p is the number of

triangles with one side a,,,,
Gpy vy is the set of all neighbors up
|ASP[Griy\v] — ASPGriwy)| tolevel L of v innetwork G, and
ASP[GNL(V)] Gy \V is the induced subgraph of
Gnyvy after node v is removed

[19] LRASP Semi-local LRASP(v) =
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WHC
@) EC(u) is the EC centrality score for
= k,+k ‘o’
36] WHC  Semi-local Zwer(v) ( v . ’_“fe v denotes “a;ural -
eksu/N) Flv,w) ogarl’]t3 m, an f(;, u) is tde weight
. etween nodes v u
ECW) ) Tuwere f(v,0) nn o
L is the maximum neighborhood
L ky level, V*% is the set of nodes at [ —
[18] INASP Semi-local INASP(v) = aky + ﬂ'zl=1 ZuevuyT hop from v, and A/S\P[E;] is defned

+v.4SP|[G,] as LRASP. Also, @,  and y are the
impact coefficients

More advanced metrics focus on information propagation and node distance in complex
networks, such as LARSP, ARP, and LASP. LARSP (Local Average Shortest Path) is a local metric
that measures node centrality based on the average length of shortest paths from that node to all
other nodes in its local subgraph. Its objective is to capture the node's influence on information
propagation within its immediate neighborhood, considering how local connectivity impacts the
node's capacity to transmit information across the network. ARP (Average Reciprocal Path) extends
the LARSP concept by considering the reciprocal distance of shortest paths in a directed network.
Specifically, it evaluates how the path structure between nodes, considering edge directions, affects
node centrality. LASP (Local Average Shortest Path) is an optimized version of LARSP that
incorporates a weighted local average of shortest distances, reducing computational complexity by
focusing on each node's local subgraph.

Meanwhile, metrics considering valued nodal attributes (Table 2) also present different
analytical scopes. Local metrics include node-weighted degree [7], which modifies the traditional
degree definition by incorporating a nodal weight function, and WNDegree variants [8] that integrate
nodal attributes with local topological structure. Semi-local metrics include node-weighted harmonic
centrality [14] that considers geodesic distances in the extended neighborhood, node-weighted
betweenness centrality [15] that incorporates the importance of communication between nearby node
pairs, and modified eigenvector centrality [16] that adjusts nodal weight influence through a variable
parameter. Additionally, hybrid metrics have been developed, such as the nodal attribute screening
method, applicable at both local and global levels, and the MCNDI metric that integrates multiple
indicators through the CRITIC method, combining local and global aspects [17].

Table 2. Node-attribute based centrality metrics.

Reference Metric Category Formula Parameter Description
Node-
[7] wDe(lagg};Zeed Local Z " )fig?()"ﬂa;'v f(wy) is the weight function of node x
ueV(u X
Centrality
Node-
[14] weighted Semi- Yuevw) % dy,, is the shortest path distance between
Harmzonic local flwe) + W nodes u and v.
Centrality eV *
Node-
[15] weighted Semi- Z Flw w, )Us[_(u) 0s¢(u) is the number of shortest paths
Betweenness local StEisEuEt s T Ost between s and t that pass through u.
Centrality
Modified
16 N.Ofle- d Semi- 8 B € [-1,1] is an adjustment parameter, EC (u)
(16l Ergrzlngvt:tor local EC@) - W is the unweighted eigenvector centrality.
Centrality
Node Att_rlbUteLocal/Glo y is a centrality, x; is a nodal attributes and b;
[37] Screening bal y = by + bix1 +...+ bix; . fficient
Centrality a are regression coefficients.
w; represents the weight of node v;, while
Node- WNC(vy) Degree(v;) denotes the degree of the noc.ie,
weighted = w; |Degree(v)) degout(v;) refers to the number of outgoing
[8] Degree Local ~ connections of the node. The parameter
Centrality ra ( ( degout (Ui))l_a- Z Wf’) controls the balance in the equation, and w; ;
vjeoutw) ). represents the weight of the link between
nodes v; and. v;.
Multi-attribute  Multi- MCNDIL = wi-Hi + wz - COG + ws represents the H — index, COC; denotes
[17] -KS; + w,

CRITIC atributo closeness centrality, KS; corresponds to the

-NCC;
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Network k — shell value, and NCC; signifies the
Decision network constraint coefficient. The weights w;
Indicator are computed using the CRITIC method
(MCNDI)

The integration of nodal attributes and connectivity in combined centrality metrics began with
seminal works, such as [38], who addressed attributed graph analysis by incorporating categorical
attributes in centrality evaluation. Their proposal extends classical measures through the E-I
homophily index and betweenness metrics, enabling node classification into groups based on
qualitative characteristics. While this approach represents an initial step in considering nodal
attributes, it is limited to categorical characteristics without exploiting the richness of numerical
attributes that could more precisely capture actors' influence in the network.

A more comprehensive advancement in integrating global structure and attributes was
proposed by [8], who developed a metric called node and edge-weighted closeness centrality, which
calculates nodal importance considering both normalized distances between nodes and connection
weights along shortest paths. This measure integrates the network's global structure and connection
weights into a global centrality metric. This measure, denoted as CWNECentr(v;) =w; -

CWECentr(v;), is defined as the product between the weight of node v; and its weighted closeness
ZeeShorthPath(vi,vj) w(e)
|ShortParth(vyv))|

centrality CWECentr(v;). The latter is calculated as CWNECentr(v;) = Zujev{i}

where w(e) represents the edge weight e in the shortest path ShortParth(v;, v;)denotes the length
of said path, measured as the number of links between nodes v;and v;. However, its main limitation
lies in the need to calculate shortest distances between each node pair, resulting in high
computational complexity, especially in extensive and complex networks. This complexity increases
significantly in networks with weights and nodal attributes, due to the additional analysis required
for each connection.

The development of centrality metrics reflects a progression from purely structural approaches
toward approximations that incorporate edge weights or nodal attributes independently. However,
there exists a significant gap in developing metrics that simultaneously integrate both edge weights
and valued nodal attributes while maintaining manageable computational complexity. Existing
attempts, such as [8], although promising, face significant limitations in terms of scalability and
computational efficiency. This gap is particularly relevant in the current context, where complex
networks frequently exhibit heterogeneity in their connections and diversity in their node
characteristics. Therefore, developing a centrality metric that can efficiently capture this duality while
maintaining feasible computational complexity represents a necessary research direction to advance
the understanding and analysis of real-world complex networks.

3.2. Proposed Metric: Semi-Local Centrality with Weighted and Lexicographic Extended Neighborhood in
Node-Attributed Weighted Networks (SL-WLEN)

The SL-WLEN metric quantifies node centrality in complex networks based on the LARSP (Local
Average Shortest Path) connectivity analysis through its DegreeLocal and DegreeSemil.ocal
components, which evaluate partial centrality as a function of connection degrees. SL-WLEN extends
this foundation by incorporating two additional components: a local component through the
normalized node value, and a semi-local component via SemilocalNodeLexOrder, which introduces
lexicographic ordering of neighbors. This component combination enhances the metric's capability
to reflect the influence of characteristics in chip manufacturing, enabling the identification of the most
relevant features of the final product by considering both their connectivity and their intrinsic values,
as well as their structural position within the network. Figure 1 illustrates the metric implementation
process.
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Considering the node v € G to
Start % Input: Network G % .
P calculate the influence
\l/ Calculation of node influence based Calculation of node influence
on weights assigned to edges in based on nodal values in G(v)
G(v) e "Local Influence" in G(v) for node v
e Calculation of "Local Influence” on is its own normalized nodal value
G(v) fornode v based on degree * Calculation of "Semi-Local Influence”
Extracting the subgraph > « Calculation of "Semi - Local > in G(v) for node v based on
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Figure 1. General implementation process of the proposed centrality metric.

3.3. Integration of Lexicographic Ordering

SL-WLEN integrates SemilocalNodeLexOrder, enabling a more precise characterization of node
influence within its structural and attributive context. The implementation of SL-WLEN is based on
Extended Neighborhood Connectivity (ENC), which extracts a subgraph encompassing node
neighbors up to a distance L. For details on ENC, see work of [21], pages 114 and 115.

Once the subgraph is obtained through ENC, SemilocalNodeLexOrder quantifies node influence
by considering its position in a lexicographic ordering based on attributes and neighborhood
structure. At each distance level 1, SemilocalNodeLexOrder assigns higher weights to better-
positioned nodes within the ordering, allowing the capture of subtle differences in nodes' relative
importance.

The metric operates by considering 1) prioritization of important features through lexicographic
comparison, 2) influence penalization as distance increases and adjustment of node influence based
on neighbor connectivity, and 3) influence accumulation.

Prioritization of important features through lexicographic comparison:

In the chip quality network, each node represents a quality characteristic, and its importance
depends not only on its individual contribution but on its relationship with other characteristics. The
SemilocalNodeLexOrder function enables node ordering based on their relative importance within
their neighborhood, ensuring that the most influential characteristics maintain a priority position.
Given a node v, its local influence is measured from the lexicographic ordering of its immediate
neighborhood at a distance (. The set of neighbors N;(v)is ordered according to the importance value
of each characteristic val(u), obtaining OrderLex;(v) = [u,u,, ..., ;] such that Vi < j,val (u;) =
al (u;). This ordering favors nodes with highly relevant characteristics for chip quality, ensuring that
those with higher values carry greater weight in the metric. In terms of chip manufacturing, this
means that characteristics that most influence defects or improvements in the final product will
occupy priority positions within the centrality evaluation. The partial contribution of a node v at

level [ is defined as ¢;(v) = (N_pos(olc‘i“exl(v)))

lexicographic order. If a node has neighbors with high impact on chip quality, its position in the list

where N — pos(OrderLex;(v) is v's position in the

will be lower (closer to 1), increasing the numerator and, consequently, its influence in the metric.
Distance-based influence penalization and node influence adjustment based on neighbor
connectivity:


https://doi.org/10.20944/preprints202503.0399.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 March 2025 d0i:10.20944/preprints202503.0399.v1

10 of 22

In the chip quality network, the effect of a characteristic can propagate through multiple
interactions. However, its impact must be reduced with distance to prevent overvaluation of distant

connections. The influence of v at each level 1 is weighted according to its neighborhood size and the

(N—pos(OrderLex,(v))) LA .. Here, the first
N-1 max {|N;(x)|:xeV} L+l

term maintains the lexicographic priority based on the characteristic's importance, while the second

maximum connectivity at that level ¢;(v) =

term adjusts the relative contribution according to neighborhood size, enabling differentiation of
highly connected characteristics, and the third term introduces a penalization that reduces influence
as distance increases, modeling the decreasing effect of characteristic propagation in manufacturing.

This adjustment aims to capture indirect relationships between characteristics without
excessively diluting or overestimating their influence, ensuring that closer nodes have a more
relevant impact on the metric, while the effects of distant nodes are attenuated in a controlled manner.
In the context of chip quality, this approach helps evaluate not only directly influential characteristics
but also those affecting the product in a more indirect yet equally relevant way, without excessive
overvaluation.

Influence Accumulation:

Finally, the total semi-local influence of node v is obtained by accumulating partial contributions
at each exploration level up to maximum L in the form @SemilocalNodeLexOrder(v) = Yi_, ¢, (v).
This enables consideration of how a characteristic affects chip quality not only directly but also
through indirect relationships with other characteristics. Additionally, it balances influence from [ =
1 to [ = L, preventing nodes with high connectivity from dominating the metric, and providing a
fair evaluation based on network structure. Lexicographic ordering proves particularly appropriate
for evaluating chip manufacturing quality due to its unique capability to preserve the importance of
critical characteristics. Unlike existing metrics, which tend to dilute the influence of important
characteristics through various procedures, lexicographic ordering maintains the relevance of the
most significant nodes throughout the analysis.

Traditional metrics present limitations in this context. Some use weighted sums like Node-
weighted Degree Centrality, others rely on distance normalizations like Node-weighted Harmonic
Centrality, or employ shortest paths like Node-weighted Betweenness Centrality. There are also those
that apply products with adjustable parameters, linear regressions, or combine multiple indices, such
as MCNDI. All these approaches may inadvertently reduce the influence of critical characteristics
through their statistical aggregations. In contrast, lexicographic ordering preserves the relative
importance of each characteristic through three complementary aspects: prioritizes nodes based on
their individual value, connectivity level, and influence adjusted by distance. This combination
enables a more precise evaluation where the importance of each characteristic is determined by its
own value and its relationships with neighboring characteristics, without losing critical information
in the process.

3.4. Definitions

The SL-WLEN metric quantifies node centrality in a complex network by considering two levels
of analysis: local and semi-local, and integrating weighted connectivity components and nodal
attributes. Its purpose is to capture node influence not only through direct connectivity but also by
evaluating the importance of its neighbors at different proximity levels, their characteristics, and their
relative position in the network. To achieve this, it integrates four main factors: local influence by
connectivity (DegreeLocal), local influence by node ({V,*®™™), Semi-Local Degree influence
(DegreeSemilLocal), and Semi-Local node value influence based on lexicographic ordering
(SemilocalNodeLexOrder).

In the final metric, ({V,'°"™) normalizes the node value by relativizing it within its
neighborhood, capturing its intrinsic importance beyond structural connectivity.

Definition 1: Local influence by connectivity (DegreeLocal)

DegreeLocal captures the local influence of the node based on its direct connectivity,

normalizing the node degree with respect to the total network size. This reflects its immediate
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importance within the network. The local influence by connectivity of v denoted as ¢DegreeLocal(v)
is defined according to Eq. 5.

k
@Degree Local(v) = NV (5)

where k,, is the degree of node v and N is the number of directly connected nodes.
Definition 2: Semi-Local Degree Influence (DegreeSemilLocal)

DegreeSemiLocal, derived from LARSP [20] and based on LASP [21], quantifies semi-local
influence by considering nearby neighbors within a subgraph extracted through the ENC (Extended
Neighborhood Connectivity) concept. This influence is weighted based on several aspects: weighted
connectivity, which reflects the intensity of relationships between the node and its neighbors through
edge weights; proximity, where neighbor influence decreases as distance increases, modeling impact
propagation within the network; and structural importance, which prioritizes neighbors with higher
topological relevance. The semi-local influence of v, denoted as @DegreeSemiLocal(v), is defined
according to Eq. 6.

L
Wy p- Ky

1
- - S 7 6
G )] oy (ka + o) ©)

=1 u€Tt(v)

@Degree Semi Local(v) =

where |Gy, (v)|! is the set of all neighbors up to level L of node v innetwork G, and T;(v) is the set
of all neighbors at level [ of node v.

Definition 3: Semi-Local Node Value Influence Based on Lexicographic Ordering
(SemilocalNodeLexOrder)

SemilocalNodeLexOrder introduces a novel perspective through lexicographic ordering of
nodes based on their attributes and neighborhood structure. This evaluates how a node's relative
position within this order affects its influence, considering its structural and attributive environment
at different distance levels. Additionally, it includes the contribution of nearby neighbors within a
subgraph extracted through ENC, enabling a deeper evaluation of the node within its topological
and attributive context.

The Semi-Local Node Influence based on Lexicographic
Ordering pSemilocalNodeLexOrder(v) measures node influence by considering its nearby
neighbors at different distance levels (up to a maximum L). Each level contributes with a partial
contribution ¢,;that depends on the node's position in the lexicographic order OrderLex;(v) within
its neighborhood, the number of neighbors at that distance, and the maximum degree among nodes
at the same level according to Eq. 7.

¢(v) @)

1

@SemilocalNodeLexOrder(v) =

L
1=
where ¢@; the partial contribution per level is defined according to Eq. 8.

(N — pos(OrderLex;(v))) IN;(v)| 1
N-—-1 ‘max {|N;(x)|:x €V} L +1

$u(v) = (8)

Here, N = |V| is the total number of nodes, pos(OrderLexl(v))defines node v's position in the
lexicographic order OrderLex; at level I, |N;(v)| is the number of neighbors at distance [ from
node v, max {|N;(x)|: x € V} is the maximum degree among all nodes at level [, L is the maximum
exploration level.

The ordering function OrderLex;(v) is defined as an ordered set of nodes based on
lexicographic comparison (Eq. 9).

OrderLex;(v) = [uq, Uy, ..., ulu; €V,Vi,j: Compl(ui,uj) =1 9)
While ¢pComp,;(u, z):
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¢Comp,(u, z)
_ {1,51' 3 < min(N@L IN@D: (¥) < ival(V W), = val(Ni(), Aval(M@w), > val(M(@),)  (10)
0, otherwise

where N;(v) ={u€V|d(v,u) =1} is a set of neighbors of v at distance [, val(Nl (v)) =
sort_desc({val(u)|u € N;(u)}) are values of v's neighbors sorted in descending order, and d(v,u) is
the shortest path length between v and u in G.

The metric uses normalized values for each node, obtained by dividing its value by the
maximum value of its neighbors at the same distance level, which adjusts its influence based on
relative importance within the neighborhood.

Special considerations

If several nodes have the same lexicographic order (Comp,(u,z) = Comp,(z,u) = 0, itis resolved
by assigning the same order for the set of nodes V. The term @SemilocalNodeLexOrder(v) can be
interpreted as the sum of contributions ¢,;(v) from each level [, facilitating detailed analysis of each
node's behavior at each exploration level.

Definition 4: Total Influence
For anode v, SL-WLEN is defined by Eq. 11:

SL —WLEN(v) = &.pDegreeLocal(v) + V"™ + §.¢@Degree Semilocal(v)

11
+ ypSemilocalNodeLexOrder(v) (1)

where £,{,6 and y are adjustable parameters between 0 and 1. The first two control the local and
semi-local influence of node connectivity, and the remaining ones control the local and semi-local
influence of its nodal value, satisfying the condition { +{+ 6§ +y = 1.

4. SL-WLEN Example

To better clarify the computational procedure of the proposed metric, we describe a numerical
example. An undirected weighted graph with 11 nodes and 14 edges is assumed, as shown in Figure
2. We present a calculation example for v, considering L = 2 and edge weights w,,,, as shown on
the edges, with assigned nodal values V = {Vlyzygyll =1.5V3457 = 0.5; Vgg10 = 4}.

Figure 2. A simple graph with 11 nodes and 14 edges.

According to Definition 1, since kg =7 and N = 11.According to Definition 2, the calculation
of pDegree Semi Local(6) is performed as follows:
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pDegree Semi Local(6)

1 0.1 (7) 0.1(7) 0.3.(7) 0.3(7)
_EK 2+7> +< 4+7> +< 4+7> +< 2+7>
u=2 u=3 u=4 u=>5
0.8 (7) 0.5(7) 0.4 (7) (12)
([59) (F9) (2 |
u=7 u=9 u=10

=1

03 (7) 0.3(7) 03.(7) ~
+ K 22+ 7)) * < 26+ 7)) + < 202+ 7)) ‘ = 04028
u=1 u=8 u=11

=2

@SemilocalNodeLexOrder(6) is determined from Definition 3.

At level 1, the neighbors of v are nodes number 2, 3, 4, 5, 7 and 9, giving a total of || N;(6) |=
7| neighbors. To calculate the lexicographic order, the normalized values associated with these nodes
are considered, which are 0.375, 0.125, 0.125, 0.125, 0.125, 0.375, and 1.00. These values are sorted in
descending order to form node V6's signature, resulting in {1.0, 0.375, 0.375, 0.125, 0.125, 0.125, 0.125}.
Comparing this signature with other nodes in the graph generates a ranking where nodes with higher
signatures are placed first. In this case, node vg occupies position 4 in the level 1 lexicographic
ranking, defined as OrderLex;.

At level 2, the neighbors of vg are nodes number 1, 8 and 11, resulting in | N,(6) |= 3|
neighbors. The normalized values associated with these neighbors are 0.375, 1.0, and 0.375, which are
sorted in descending order to form vg's signature at this level, obtaining {1.0,0.375y 0.375}.
Following the same signature comparison process to determine lexicographic order, it is concluded
that v4 occupies position 4 in the level 2 lexicographic ranking, defined as OrderLex,. Substituting
the values in Eq. 6 and 7, ¢SemilocalNodeLexOrder(6) is determined as:

@SemilocalNodeLexOrder(6)
[ =pos) M) 1 (N —pos) N6 1 (13)
(N—1) ‘max{|N;|} L+1 11 (N—1) "max{|N,|}'L+1 1=

SemilocalNodeLexOrder(6) = 11-47 1 (11-4) 3 1
@SemilocalNodeLexOrder(6) = (11_1).7.2"‘11:1 (11_1).7.2‘*‘21:2 (14)
pSemilocalNodeLexOrder(6) = 0.2333 + 0.0750 = 0.3083 (15)

Finally, SL-WLEN(3) is calculated according to the adjustable parameters condition { = { =6 =
y = 0.25, in accordance with Eq. 16:

SL — WLEN (6) = (0.25x0.636) + (0.25x1) + (0.25x0.403) + (0.25x0.30) = 0.587 (16)
The SL-WLEN metric results for all nodes are shown in Table 3.

Table 3. SL-WLEN metric results for all nodes in the example network

SemilocalNodeLexOrder(v

Rank Node ¢DegreeLocal {V;°"™ Degree Semilocal ) SLWLEN(v)
1 Vé 0.636 1.000 0.403 0.308 0.587
2 V8 0.273 1.000 0.376 0.025 0.419
3 V10 0.091 1.000 0.166 0.010 0.317
4 V9 0.273 0.375 0.285 0.171 0.276
5 V4 0.364 0.125 0.343 0.229 0.265
6 V2 0.182 0.375 0.191 0.231 0.245
7 V3 0.364 0.125 0.262 0.210 0.240
8 V5 0.182 0.125 0.262 0.345 0.228
9 Vi1 0.182 0.375 0.297 0.055 0.227
10 V1 0.182 0.375 0.200 0.054 0.203
11 V7 0.182 0.125 0.223 0.157 0.172
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5. Experimental Results

In the following illustration, a general view of the complex network for chip manufacturing
quality control is presented. The visualization shows the complete network structure, where nodes
(circles) represent quality characteristics and edges (lines) represent the correlations between them.

Figure 2. presents the detailed visualization of the quality control network. Node size and blue color intensity
indicate the individual importance level of each characteristic (nodal value) - larger size and darker blue tonality
correspond to greater importance. Connections between nodes (edges) are represented on a grayscale, where
tonalities closer to black indicate stronger correlations between characteristics, while lighter tones represent

weaker correlations.

Figure 5. presents the visualization of the quality control network with characteristic identifiers. The features
are identified with the prefix "f" followed by a four-digit sequential number. For example, £1263 corresponds to
feature number 1263 of the process.
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Figure 6. illustrates the visualization of the network's structural configuration in core and peripheral zones.
Panel (a) shows how the network accumulates connections in high-density areas, with strongly interconnected
nodes forming clusters that reveal grouping patterns from the network's center outward. Meanwhile, panel (b)
illustrates the network's peripheral region, where nodes with lower connectivity are located, demonstrating how
these elements are spatially distributed in areas furthest from the network's center. This progressive
representation facilitates understanding the network's complexity from different perspectives, enabling direct

appreciation of the relationships between process characteristics.

b)

The visualization of the quality control network in chip manufacturing maintains graphical
legibility, enabling identification of characteristics' importance hierarchy through node size and
tonality, as well as correlation strength through connection intensity. The representation achieves a
balance between showing densely connected structures (clusters) and more dispersed zones. This
clarity in visualization facilitates understanding of the complex network of interrelationships in the
manufacturing process, providing an effective visual tool for quality control monitoring and analysis.

Table 4 shows the top 20 nodes with highest centrality according to the SL-WLEN metric,
including their components and final rankings.
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Table 4. SL- Top 20 SL-WLEN metric application in measuring quality characteristics centrality.

Degree SemilocalNodeLexOrde

Node  ¢DegreeLocal JV3o™ Semilocal £v) SLWLEN(v) Rank
£625 0.0193 0.8412 0.6195 0.3047 0.4462 1
1397 0.0148 1.0000 0.6081 0.1095 0.4331 2
f468 0.0096 0.7487 0.3923 0.3509 0.3754 3
£506 0.0019 0.5576 0.4357 0.3796 0.3437 4
1981 0.0109 0.4842 0.6195 0.2365 0.3378 5
£732 0.0277 0.3096 0.6149 0.3245 0.3192 6
£1020 0.0167 0.3912 0.6026 0.2623 0.3182 7
f18 0.0051 0.5979 0.5259 0.1407 0.3174 8
1901 0.0148 0.4201 0.4320 0.3188 0.2964 9
£1245 0.0193 0.2558 0.6593 0.2277 0.2905 10
£1048 0.0039 0.2307 0.5820 0.3438 0.2901 11
£396 0.0006 0.7429 0.3657 0.0417 0.2877 12
f181 0.0013 0.9256 0.0000 0.1667 0.2734 13
f1165 0.0026 0.4705 0.5363 0.0833 0.2732 14
f7 0.0193 0.0000 0.6410 0.4116 0.2680 15
£1209 0.0251 0.0000 0.7026 0.3346 0.2656 16
£1033 0.0103 0.2543 0.5077 0.2681 0.2601 17
£721 0.0109 0.0000 0.5159 0.4992 0.2565 18
84 0.0161 0.0776 0.5680 0.3598 0.2553 19
f1176 0.0257 0.0000 0.5118 0.4815 0.2548 20

The following figure presents visual local subnetworks corresponding to the six highest-ranked
nodes according to the SL-WLEN metric, revealing distinctive patterns of connectivity and local
structure. The composite visualization shows different topological configurations that justify the
ranking obtained through the proposed metric.

Node {625, which occupies the first position, exhibits high density of local connections with a
compact and well-connected structure, characterized by multiple intermediate nodes forming a
cohesive community. The second highest-ranked node, 1397, presents a distinctive triangular
connectivity pattern, less dense than 625 but with strategically distributed connections in its
neighborhood. In third position, f468 shows a predominantly radial structure with direct connections
and a more pronounced dispersion pattern than the previous ones. Node 506, in fourth place, is
characterized by minimal but strategic connectivity, with sparse links and a simpler structure
compared to higher-ranked nodes. The fifth node, f981, presents moderate connection density with a
semi-compact structure and irregular link distribution. Finally, {732, in sixth position, is
distinguished by a hexagonal structure with regular and symmetric connections, showing moderate
density with an ordered pattern.

This visualization provides empirical evidence of how the SL-WLEN metric captures different
aspects of centrality and local structure in the network. Visually, it is possible to appreciate its
capability to identify significant nodes based on multiple topological and structural criteria.
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The visualizations are consistent with the SL-WLEN ranking. The top three nodes (£625, 1397,
£468) demonstrate more sophisticated connectivity patterns that reflect their high metric values: {625
with its dense and cohesive structure (SLWLEN=0.4462), f1397 with strategic triangular connections
(SLWLEN=0.4331), and {468 with its efficient radial pattern (SLWLEN=0.3754). The lower-ranked
nodes (f506, 981, £732) exhibit simpler or less integrated structures, consistent with their lower
SLWLEN values (0.3437, 0.3378, 0.3192 respectively).

The identification of these central characteristics through SL-WLEN reveals not only nodes
important for final product quality but also their role in manufacturing system stability. The
connection structure of these nodes suggests they are critical points for maintaining process
coherence and stability: alterations in these characteristics could propagate extensively through the
network due to their multilevel connectivity patterns. This complements the traditional approach
based solely on nodal values by considering how these characteristics act as system stabilizers
through their interconnections. For example, the dense and cohesive structure of node {625 suggests
it is crucial not only for final quality but also for maintaining operational stability of the
manufacturing process.

6. Robustness Analysis of the SL-WLEN Metric

To evaluate the robustness of the SL-WLEN metric, we adapted the methodology proposed by
[38], which continues to be employed in contemporary research, such as in the study by [39], who
developed a systematic framework to analyze how classical centrality measures (degree,
betweenness, closeness, and eigenvector) maintain their consistency under different conditions of
error or perturbation in network data. The same perturbation and evaluation techniques were
applied to our composite SL-WLEN metric, which, unlike classical metrics, incorporates both
structural aspects and nodal values in its calculation. The importance of this analysis lies in that, in
real situations, networks may be subject to various types of modifications or errors in their structure.

The process began with selecting a representative sample of the network, balancing
computational efficiency and structural representativeness. Given that the complete network consists
of 1,555 nodes, a robustness analysis on the entire network would be computationally intensive and
time-demanding. Therefore, a sample size of 100 nodes was determined, large enough to capture the
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network structure without compromising analysis viability. To ensure representativeness, stratified
sampling based on connectivity distribution was implemented, following the power-law distribution
observed in real networks. Strata were defined according to node degree, classifying them into high,
medium, and low connectivity. Node allocation in each stratum was performed using the formula
n,=n (%), where n;, is the sample size for stratum h, n the total sample size, N; the stratum size

in the population, and N the total number of nodes. To ensure balanced network representation, the
sample distribution was adjusted, allocating 20% to highly connected nodes (hubs), 60% to medium
connectivity nodes, and 20% to peripheral nodes. This allowed capturing the global network
structure while optimizing computational resources during test execution.

Four fundamental types of error that can occur in real networks were considered. Node removal
simulates scenarios where data from some actors is lost, randomly selecting n X p nodes, where n is
the total number of nodes and p is the modification proportion (0.01, 0.05, etc.). Node addition
represents situations where new actors are incorporated into the network, creating n X p new nodes
with degree similar to randomly selected existing nodes. Edge removal simulates cases where
existing connections are lost, randomly selecting m X p edges, where m is the total number of edges.
Edge addition represents scenarios where m X p new connections are created between previously
unconnected nodes.

The selection of perturbation levels was made considering a spectrum ranging from minimal
modifications to substantial network changes. Levels of 1% were used, representing minimal errors
or minor natural changes in the network; 5% and 10% simulating moderate perturbations; 25%
representing significant structure alteration; and 50% simulating extreme network modification. This
gradation allows evaluating the metric's sensitivity to small perturbations, its resistance to moderate
changes, and its behavior under extreme conditions.

To evaluate different aspects of robustness, five complementary metrics were implemented. The
Top 1 metric measures the proportion of times the most important node maintains first position after
modification, Top 3 indicates the frequency with which it remains among the top three, and Top 10%
represents the proportion of times it stays within the first decile. For example, if a node has values of
0.980 in Top 1, 0.900 in Top 3, and 1.000 in Top 10%, it means that in 98% of replications it retained
first position, in 90% it remained among the top three, and in all replications it stayed within the first
decile.

The Overlap measure calculates the normalized intersection between the upper deciles of the
original and modified networks, defined as | AN B |/| AU B |, where A and B represent the sets of
nodes in the first decile of each network. Its value varies between 0 and 1, indicating the degree of
coincidence between both networks; for example, a value of 0.720 means that 72% of nodes in the first
decile are the same in both versions. On the other hand, R? represents the square of the Pearson
correlation between the SL-WLEN values of the original and modified network. Values close to 1,
such as 0.997, indicate that the relative order of nodes is preserved almost perfectly, while lower
values reflect a greater discrepancy in ordering.

The validation process was designed at multiple levels to ensure the robustness of results. Fifty
replications were performed, generating in each one a modified version of the network, called "test
network," on which modifications were applied. The evaluation included independent analysis of
each combination of error type and level, calculating the five robustness measures and averaging the
results. The entire process was documented, recording changes in each replication, ensuring
modification traceability, and generating detailed reports.

Tables 5-8 show the robustness results of the SL-WLEN metric under different network
perturbation levels.

Table 5. Robustness test results for the SL-WLEN metric under different perturbation levels: node removal case.

Proportion Topl Top3 Top10% Overlap R?
0.01 0.980 0.980 0.980 0.687 0.996
0.05 0.920 0.920 0.920 0.636 0.994
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0.10 0.900 0.900 0.900 0.580 0.991
0.25 0.800 0.800 0.800 0.381 0.978
0.50 0.500 0.500 0.500 0.213 0.921

Table 6. Robustness test results for the SL-WLEN metric under different perturbation levels: node addition case.

Error type Top1l Top3 Top10 Overlap R?
0.01 0.960 0.960 0.960 0.684 0.989
0.05 0.840 0.840 0.840 0.533 0.963
0.10 0.640 0.640 0.640 0.441 0.925
0.25 0.440 0.440 0.460 0.275 0.833
0.50 0.480 0.480 0.480 0.175 0.766

Table 7. Robustness test results for the SL-WLEN metric under different perturbation levels: edge removal case.

Error type Top1l Top3 Top10 Overlap R?
0.01 1.000 1.000 1.000 0.720 0.997
0.05 0.980 0.980 1.000 0.759 0.998
0.10 1.000 1.000 1.000 0.726 0.998
0.25 1.000 1.000 1.000 0.632 0.994
0.50 0.900 0.900 1.000 0.553 0.983

Table 8. Robustness test results for the SL-WLEN metric under different perturbation levels: edge addition case.

Error type Topl Top3 Top10 Overlap R?
0.01 0.980 0.980 0.980 0.734 0.994
0.05 0.840 0.840 0.840 0.569 0.967
0.10 0.660 0.660 0.700 0.530 0.928
0.25 0.580 0.580 0.600 0.313 0.862
0.50 0.640 0.640 0.660 0.225 0.797

The test results demonstrate that the SL-WLEN metric exhibits robust and reliable behavior
under different network perturbation conditions. The metric shows notable stability against element
removal, particularly in the case of edges, where it maintains Top1/3/10% values above 0.900 even
with 50% modifications. For node removal, the metric preserves its stability up to 25% modification,
with Top1/3/10% values equal to or greater than 0.800, and maintains R? values above 0.92 even with
50% alterations.

Regarding element addition, both for nodes and edges, the metric shows progressive
deterioration starting from 10% modification, demonstrating greater sensitivity to the incorporation
of new elements than to their removal. This sensitivity is reflected in a substantial decrease in
consistency for large-scale modifications, where R? decreases to approximately 0.77. Nevertheless,
the metric maintains high reliability in scenarios with small perturbations of 1-5%.

The practical implications of these results confirm that the SL-WLEN metric is particularly
effective in identifying and maintaining the hierarchy of the most important nodes in the network,
even under conditions of moderate data loss. Its greater sensitivity to the incorporation of new
elements suggests the need for caution when making modifications that exceed 25% of the network
structure. These findings validate the robustness and utility of the SL-WLEN metric for complex
network analysis, demonstrating its capability to maintain consistency in identifying critical nodes
under various perturbation conditions.

7. Conclusions

This paper proposes SL-WLEN as a weighted semi-local centrality metric based on the
integration of lexicographic ordering and extended neighborhood concept for identifying influential
nodes in complex quality control networks. Beyond node importance, SL-WLEN incorporates both
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topological structure and nodal values in its evaluation, considering four main components: local
influence by connectivity, local node influence, semi-local degree influence, and semi-local influence
based on lexicographic ordering. By applying a distributed approach that analyzes subgraphs per
node and utilizing lexicographic ordering to evaluate hierarchical importance, SL-WLEN provides
an effective balance between accuracy and computational complexity. Numerical robustness tests
demonstrate SL-WLEN's high stability, especially against element removal, maintaining its
consistency even with significant network modifications. However, the metric shows greater
sensitivity to the incorporation of new elements, suggesting areas for improvement in future work.
The extension of the metric to consider network temporal dynamics and its adaptation for different
types of complex networks represents a promising direction for subsequent research.
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