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Abstract: In deep-hole boring processes, boring bars with a large length-to-diameter ratio are
typically employed. However, excessive overhang significantly reduces the boring bar’s stiffness,
inducing vibrational effects that severely degrade machining precision and surface quality. To
address this, the research objective is to suppress vibrations using a tunable-parameter boring bar.
This paper proposes a novel Tunable Dynamic Vibration Absorber (TDVA) boring bar and designs
its fundamental parameters. Based on the derived dynamic model, the vibration characteristics of the
proposed boring bar are analyzed, revealing the variation in damping performance under different
excitation frequencies. By establishing the relationship between TDVA stiffness, damping, and the
axial compression of rubber bushings, optimal parameter combinations can be precisely identified
for specific excitation frequencies. Ultimately, adjusting the TDVA'’s axial compression displacement
(0.1-0.5 mm) achieves a 22% expansion in the effective machining frequency range.

Keywords: deep-hole boring; vibration absorber; axial compression; boring bar

1. Introduction

In deep-hole boring, insufficient stiffness due to excessive length-to-diameter ratios in boring
bars often induces severe vibrations. These vibrations not only deteriorate workpiece surface
quality[1,2], but may also trigger chatter, leading to tool breakage or machining failure[3].
Consequently, suppressing boring bar vibrations has become a critical challenge for improving deep-
hole machining precision. Current vibration control technologies for boring bars are categorized into
passive and active methods[4,5].

Early researchers developed passive vibration suppression techniques by applying various
damping principles to boring bar design. Typical examples include boring bars with special
geometric structures, impact damping particles, friction energy dissipation structures[6-9] , and
embedded dynamic vibration absorbers (DV As). Passive methods achieve vibration control through
structural optimization or additional damping devices, offering high reliability and low cost. Recent
advancements focus on variable—stiffness DVAs. For instance, Lie Li et al.[10-12] proposed a DVA
embedded with rubber bushing supports, where axial compression adjusts stiffness, significantly
influencing damping effects. Iklodi Z[13] proposed a methodology combining time-domain
simulations and hybrid periodic orbit continuation techniques to investigate the dynamic behavior
of displacement—constrained tuned mass dampers (TMDs) in boring processes. Addressing the
deterioration of damping performance and inherent chatter instability risks caused by such

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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constraints. Houck[14] suppressed resonance by tuning the natural frequency matching between the
boring bar and tool holder. Additionally, Haizhao Shi et al. [15] proposed an equivalent linearization
method, which showed that by optimizing the stiffness, mass, and damping of the shock absorber,
the vibration peak of the boring bar can be effectively reduced, and the vibration absorption effect
can be improved. L. Rubio and Miguélez [16,17] focused on optimizing the parameters of passive
DVA, with the optimization criterion maximizing the minimum value of the stability lobe diagram.
The calculation results indicate a significant improvement in stability performance, and the
parameter tuning efficiency was improved by modifying the formula.

With the advancement of innovative materials and control technologies, various active
vibration-damped boring bars have been developed. Typical active solutions include
electromagnetic variable-damping boring bars, particle-damped boring bars, magnetostrictive
actuator-driven boring bars, electrorheological fluid—actuated boring bars, magnetorheological
fluid-controlled boring bars, and piezoelectric ceramic—driven boring bars.

Active vibration-damping technologies rely on innovative materials and closed—loop control for
dynamic adjustment. Representative methodologies include: Liu Qiang et al. [18] designed an
electromagnetic variable-damping boring bar that dynamically regulates magnetic damping forces
by adjusting coil voltage. Taha Gokulu [19] expanded the application of zero—order harmonic
methods in chatter analysis by integrating multi-insert rotation and time—varying stiffness design.
Jiyvuan Tian [20] optimized particle damping parameters via discrete element simulations,
demonstrating that tungsten steel particles (0.5 mm, 90% filling rate) enhance damping
performance by 70%. GUO et al. [21] developed a tunable particle damper (TPD) with frequency-
adaptive stiffness. Ganesan Ramu et al. [22] proposed a vertical multi—cell hybrid particle damping
system, achieving higher resonance gaps, reduced displacement, and minimal surface roughness.
Lawranc et al. [23] utilized passive constrained layer damping (CLD) technology, optimizing
combinations of tool substrate materials (copper/aluminum/brass) and elastomer layers (nitrile
rubber/polyurethane) to suppress vibrations and extend tool life. In the field of brilliant damping,
C.V. Biju et al. [24] pioneered a semi-active boring bar using magnetorheological fluid, enabling
dynamic damping matching through electromagnetic regulation. Fan Chen et al. [25] implemented a
magneto—actuated Hee control system that significantly increased dynamic stiffness, resulting in
chatter—free material removal rates. Yamada K et al. [26] proposed a hybrid piezoelectric-LR circuit
vibration suppression method, improving energy dissipation efficiency through circuit parameter
optimization and validating its industrial applicability.

While passive methods remain favored in engineering due to structural simplicity, their fixed
parameters limit adaptability to varying machining conditions. Conversely, active damping solutions
face challenges such as complex sensor—actuator integration and reliability concerns despite their
dynamic tunability. To address these trade-offs, this study introduces a tunable dynamic vibration
absorber (TDVA) boring bar. A quantitative model is established to correlate TDVA stiffness,
damping, and axial compression, revealing their coupling mechanisms. This work provides a
vibration control solution for deep-hole boring that balances adjustability and operational reliability.

2. Theoretical Model of the Boring Bar

In order to study the vibration reduction performance of the boring bar, it is essential to analyze
its damping mechanism. The damped boring bar consists of a main body and a Tunable vibration
absorber (TDVA). The TDVA is embedded within the boring bar structure. According to the dynamic
vibration absorber (DVA) theory, the TDVA serves as the critical component for vibration
suppression. Installing the absorber near the tooltip of large length—to—diameter ratio boring bars can
effectively mitigate external excitation-induced vibrations. During design, it is necessary to balance
the overall stiffness of the boring bar with optimal vibration absorption performance. To maintain
sufficient structural rigidity, the absorber’s volume must be minimized while ensuring effective
damping functionality.
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2.1. Vibration Model of Boring Bar

The boring process is illustrated in Figure 1(a). The boring bar moves along the x—axis while the
workpiece rotates about its central axis. The primary cutting force acts in the Fr direction. The
mathematical model of the boring bar is simplified as a rigidly clamped vibration system Figure 1(b),
where M1 represents the equivalent mass of the boring bar, Ki denotes its equivalent stiffness, Fo is
the excitation force amplitude, m2 and k2 are the mass and stiffness of the TDVA, c¢ is the damping
coefficient, and x1 and x2 are displacements of the boring bar and TDVA, respectively. The system is
further simplified to a two—degree—of—freedom model Figure 2.

(a) N
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Figure 1. Diagram and theoretical model of boring bar cutting. (a) Description of what is contained in the first
panel; (b) Description of what is contained in the second panel. Figures should be placed in the main text near

to the first time they are cited.
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Figure 2. Two degrees of freedom vibration model.

When the boring bar is subjected to practical external excitation forces, the magnitude of the
external loads undergoes periodic variation. The maximum amplitude of the external excitation force
acting on the boring bar is defined as Fo. In the characteristic vibration analysis, load variation serves
as the primary research focus. The nonlinear effects of tool-workpiece contact interactions are
neglected in this study, with emphasis placed solely on the time-dependent load component. The
external load is defined as a harmonically varying periodic excitation force, expressed
mathematically as:
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considering that the external excitation is a harmonic force, the steady—state solution in complex form

xl_ A jot
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substituting the above equation into equation (1), the maximum amplitude at the boring bar tip

can be expressed as:

during cutting can be obtained as:
k, - m,o’ + joc
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by reorganizing equation 4, the amplitude ratio can be derived as:
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by rearranging the above equation, the amplitude ratio is derived as:
Al (-7 +(2A)° ©
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where: @, = m is the natural frequency of the vibration absorber, Q = m is the natural
frequency of the boring bar, p=m,/M, is the mass ratio between the boring bar and the absorber,
y=0,1Q, is the frequency ratio of the absorber to the boring bar, 1=w/Q, is the forced vibration
frequency ratio, {'=c/2m,m, is damping ratio, A, =F, /K| is static displacement under static load.

According to the analysis of equation 6, a larger mass ratio u results in a more pronounced
amplitude ratio response, indicating that a higher mass ratio helps reduce system vibration
amplitudes and improves damping performance. When the natural frequency ratio y approaches
resonance conditions, the system exhibits a higher amplitude ratio. Appropriately adjusting y can
achieve ideal vibration suppression effects. Since yis influenced by the absorber’s natural frequency
wn and the boring bar’s natural frequency wn, the latter is typically fixed. By designing the absorber’s
stiffness k2, v can be adjusted, demonstrating that the amplitude ratio is significantly affected by k.
Additionally, the damping ratio C critically impacts the amplitude ratio. Modifying C alters the
vibration amplitude and enhances system stability within specific frequency ranges.

In summary, the amplitude ratio can be optimized through absorber design, with key
parameters including the absorber’s mass m, stiffness k2, and damping ratio C. To maximize damping
performance while maintaining the boring bar’s overall rigidity, m2 should be maximized, and k2
should be tunable. The effects of k2 and C on the amplitude ratio are complex and interdependent.
Proper adjustment of these parameters enables effective vibration control.

2.2. Design of Variable Parameter Boring Bar Structure

The proposed boring bar structure innovatively integrates a boring head, a main body, and a
variable—stiffness damping vibration absorber (TDVA). A built-in cavity is designed within the front
rigid—weak zone of the boring bar to house the TDVA. The TDVA employs a tungsten-based high—
density alloy mass block to achieve an optimal mass ratio u (mass block—-to-boring bar ratio), enabling
high-efficiency vibration damping while ensuring the primary boring bar’s rigidity. The TDVA
comprises an axial compression block, dual rubber bushings, and a core mass block, forming a novel
coupled mechanism: the rubber bushings encapsulate the mass block and establish radial contact
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constraints with the boring bar’s inner wall. The left bushing interfaces with the axial compression
block, while the right bushing contacts the inner wall.

Based on a bolt-threaded hole transmission mechanism, rotating the bolt drives the axial
compression block to generate axial displacement, compressing the dual rubber bushings to
modulate radial stiffness and damping properties simultaneously. The nonlinear compressive
deformation of the rubber material inherently adjusts stiffness parameters, while its viscoelastic
properties enable dynamic adaptation of damping values. This stiffness—damping synergistic
regulation mechanism overcomes the limitations of traditional single-parameter tuning in damped
boring bars, achieving precise vibration suppression across diverse machining conditions. Existing
studies predominantly focus on independent stiffness or damping adjustment strategies, particularly
for rubber bushings that exhibit both stiffness—-tuning and time-varying damping characteristics.
However, research gaps remain in understanding the coupled effects of dual parameters. This study
systematically elucidates the regulatory mechanism of stiffness—damping interactions on boring bar
vibrations.

Axial compression block
Cuting tool Rubber bush

Cutting head Mass block VCDVA  Boring bar

Figure 3. Structure of the boring bar with a TDVA.

3. Analysis of vibration characteristics of boring bar

For the boring bar designed in Section 2.2, key parameters, including equivalent stiffness,
equivalent mass, and vibration damping ratio, have been considered, as listed in Table 1. Through
rational adjustments to the variable stiffness and damping of the TDVA, the vibration characteristics
of the boring bar can be significantly enhanced, thereby improving the precision and efficiency of the
machining process.

Table 1. Parameters of the boring bar with a variable stiffness TDVA.

Equivalent Equivalent Equivalent . . Equivalent
. Damping ratio .
stiffness of the mass of the mass of the of the TDVA stiffness of the
boring bar, boring bar, M TDVA, ! TDVA,
Ki1(10°N/m) (kg) mz (kg) ¢ K(10°N/m)
Vibration
damping 2.2057 1.12 0.59 variable variable
boring bar
boring bar 22134 1.216

3.1. Influence of TDVA Stiffness on Boring Bar Vibration

Based on the parameters listed in Table 1, the boring bar parameters were substituted into
equation (6) to establish a vibration response model, yielding the TDVA stiffness—dependent
vibration response curves shown in Figure 4. The horizontal axis represents the excitation frequency
(0-500 Hz), while the vertical axis denotes the dimensionless amplitude ratio. The black curve
corresponds to a conventional boring bar (single—degree—of—freedom system), and the colored curves
represent TDV A-integrated boring bars with varying stiffness values k2. An amplitude ratio below 1
indicates acceptable vibration levels for stable machining. The analysis reveals that the conventional
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boring bar exhibits a single intense resonance peak near 220 Hz, which aligns with its natural
frequency, confirming resonance as the primary cause of machining failure. In contrast, the TDVA
boring bar demonstrates typical two-degree—of-freedom system characteristics, with dual resonance
peaks in all response curves: the first peak (100-200 Hz) corresponds to the dominant mode of the
boring bar body, while the second peak (250-310 Hz) reflects the dynamic behavior of the TDVA
subsystem. As k2 increases from 3.0x10° N/m to 11.0x10°> N/m, both resonance frequencies shift
rightward, accompanied by reduced peak amplitudes, indicating that higher stiffness effectively
broadens the stable machining frequency band.

Further analysis of the influence of stiffness adjustment on vibration suppression performance
reveals that when k,=3.0x10° N/m (blue curve), the amplitude ratio remains below 1 within the 115-
135 Hz frequency range, yielding a stable bandwidth of 20 Hz. Increasing k2 to k;=5.0x10° N/m
(green curve) extends the stable region to 142-175 Hz (33 Hz bandwidth), representing a 165%
improvement. The intersections of the red horizontal line Z = 1 with each curve define the critical
machining frequency, which shifts toward higher frequencies as k2 increases. At k;=11.0x10° N/m, the
amplitude ratio remains below 1 in the 188-270 Hz range (82 Hz bandwidth); however, the system
requires 362 Hz to enter the unconditional stability zone at higher frequencies, where its performance
is inferior to that of the conventional boring bar.

5 T T

| —k,=3.0e5N/m
—k_ =5.0e5 N/m
Z4| 2
= —k, =7.0e5 N/m
= —k2 =9.0e5 N/m
g3 —k =11.0e5N/m |
[-~1 2
% —Normal boring bar
= 2
2
=
S
< 1
O 1 1 1 1 1 1 L 1 L

0 50 100 150 200 250 300 350 400 450 500
Frequency, f(Hz)

Figure 4. Amplitude ratio of the boring bar under different stiffnesses of the TDVA.

Comparing the dynamic responses of the two boring bar types reveals that the TDV A technology
significantly enhances vibration suppression performance. Within the 115-270 Hz range, adjusting
the TDVA stiffness satisfies machining requirements. However, in the 303-327 Hz frequency band,
the conventional boring bar meets machining conditions, whereas the TDVA boring bar
underperforms. By modulating the TDVA stiffness, the effective operational frequency coverage is
expanded from above 303 Hz (conventional boring bar) to 115-270 Hz and above 327 Hz, achieving
a 166% increase in effective frequency coverage. This provides a theoretical foundation for parameter
adaptation in complex machining scenarios.

To intuitively illustrate the impact of TDVA stiffness on the amplitude ratio, a three—dimensional
surface plot of the amplitude ratio under the coupled influence of frequency and TDVA stiffness is
depicted in Figure 5. The vibration characteristics of the boring bar can be classified into three distinct
zones: Area—A, characterized by a dual-ridge structure corresponding to the coupled resonance
bands of the boring bar body (160+15Hz) and the TDVA (24520 Hz) . At the ridge peaks, the
amplitude ratio exceeds 5, requiring strict avoidance to prevent chatter. Adjustable area—C: Exhibits
a saddle-shaped valley feature originating from the phase cancellation effect between stiffness and
mass ratios. Within the 100-285 Hz range, adjusting the stiffness ensures an amplitude ratio below 1,
establishing a stable cutting window with a bandwidth of 175 Hz. Area-B (>343 Hz) : Dominated
by system inertia, the amplitude ratio decays exponentially with increasing frequency. Beyond 367
Hz, the amplitude ratio remains below 1 across the entire frequency range, satisfying machining
requirements without further adjustments. Notably, in the 320-343 Hz transition band, modifying
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the TDVA stiffness reduces the amplitude ratio, validating the optimization capability of stiffness

tuning for edge frequency bands.
i ]

Area-B

W
|

st
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| | |
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Figure 5. The amplitude ratio of the three—dimensional surface under the coupling effect of frequency and TDVA

stiffness. (a) Macroscopic 3D Surface Diagram; (b) Top view of 3D curved surface.

In machining processes, the selection of cutting parameters is directly linked to the distribution
characteristics of the dominant excitation frequency. As shown in Figure 6, when the excitation
frequency is divided into six characteristic intervals, the stiffness adaptation strategies for the TDVA
exhibit significant differences: For the low—frequency band of 10-60 Hz (Figure 6a), the system
operates in a stiffness—insensitive region where the amplitude ratio consistently exceeds the chatter
threshold, necessitating priority optimization of the cutting path or spindle speed reduction to avoid
this frequency range. When the excitation frequency increases to 70-290 Hz (Figures 6b—f), the
vibration suppression effectiveness of stiffness adjustment gradually becomes prominent.
Particularly within the 150-285 Hz range, maintaining the TDVA stiffness above 4.2x10°N/m
establishes a stable machining window with a bandwidth of 135 Hz. Notably, the 270-285 Hz band
requires high-stiffness configurations to suppress secondary resonance modes, while the 285-320 Hz
range is classified as an absolute vibration—prohibited zone, requiring adjustments to feed rate
combined with the workpiece’s vibration resistance characteristics to mitigate chatter risks.
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Figure 6. Control characteristics of TDVA stiffness in different frequency bands on the amplitude ratio of boring
bar. (a)Excitation frequency 10-60Hz; (b)Excitation frequency 70-140Hz; (c)Excitation frequency 150-
190Hz; (d) Excitation frequency 200-260Hz; (e) Excitation frequency 270-300Hz; (f) Excitation frequency 310-
500Hz.

Further analysis of high—frequency conditions from Figure 6(f) reveals that within the 320-367
Hz transition band, the amplitude ratio exhibits nonlinear dependence on stiffness values, requiring
dynamic adjustment of kz based on frequency gradients to achieve vibration suppression. When the
frequency exceeds 367 Hz, the system enters an inertial stability zone, where the amplitude ratio
autonomously converges below 1, independent of stiffness, and machining stability is ensured by
maintaining baseline stiffness. This conclusively demonstrates that precise regulation of TDVA
stiffness parameters is the core strategy for suppressing boring bar vibrations.

3.2. Influence of TDVA Damping on Boring Bar Vibration

Based on the parameters in Table 1, the damping-dependent vibration response curves of the
TDVA constructed via equation 6 are shown in Figure 7. The horizontal axis represents the excitation
frequency (0-500 Hz), and the vertical axis denotes the dimensionless amplitude ratio. The black
curve corresponds to the conventional boring bar, while the colored curves represent the TDVA-
integrated boring bar with varying damping ratios C. The analysis reveals that when C < 0.4, the
system exhibits typical two—degree—of—freedom characteristics, with dual resonance peaks in the
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response curves. However, for (>0.4, the dual peaks gradually merge into a single—peak structure
due to high damping suppressing vibrations in the TDVA subsystem, weakening modal coupling
and significantly increasing peak amplitudes with rising C. The red horizontal line at an amplitude
ratio of 1 defines the allowable vibration threshold. Its intersections with the curves mark critical
stability frequency boundaries. When 0<(<0.1, the system establishes a stable machining interval
within the 149-198 Hz band. As C increases to 0.4, the stable window shifts toward higher frequencies
(250-367 Hz), demonstrating the directional effect of the damping ratio on frequency—domain
regulation.

—(=0.00
—¢=0.10
—(=0.20 i
—(=040
—(=0.60
—(¢=0.80 i
—(¢=10.00

—Normal boring bar

st
-8
T

Amplitude Ratio, |4 i |74

H i i i
200 250 300 350 400 450 500
Frequency, f(Hz)

O 1 L I
0 50 100 150

Figure 7. Amplitude ratio of the boring bar under different damping of the TDVA.

A detailed comparison of response patterns under varying damping ratios reveals that under
low—damping conditions, the system achieves excellent vibration suppression in the low—frequency
range of 150-220 Hz but is prone to inducing secondary resonance at higher frequencies. Conversely,
high damping significantly suppresses high—frequency vibrations at the cost of reduced low-
frequency stability. Notably, when the excitation frequency exceeds 367 Hz, the amplitude ratio
remains below 1 for all (, validating the system’s inherent stability in high—frequency regions. In
comparison, while the conventional boring bar retains basic machining capability above 303 Hz, its
fixed damping structure cannot dynamically adapt to frequency—varying conditions, resulting in
amplitude ratio peaks exceeding 5 in the mid—frequency band (200-280 Hz). This highlights the
technical superiority of the TDVA’s tunable damping mechanism.

Based on the frequency—damping coupled three—dimensional response surface shown in Figure
8, three characteristic vibration zones of the boring bar can be clearly identified: Area—A contains
three saddle-shaped peaks corresponding to the resonance bands of the first-order mode 85 Hz,
second—order mode 165 Hz of the boring bar—tool system, and the TDVA—coupled mode 285 Hz, with
amplitude ratios exceeding 5 at these peaks. Adjustable area—C exhibits a saddle-valley structure,
where the amplitude ratio remains below 1 for damping ratios (=0-0.15, enabling stable machining
within the 149-198 Hz frequency range 49 Hz bandwidth. Area-B is dominated by energy
dissipation, where the amplitude ratio decays gradiently with coordinated increases in frequency
and damping ratio; beyond 345 Hz, the amplitude ratio remains below 1 across the entire range
without requiring adjustments. Notably, in the 265-343 Hz transition band, increasing C to 0.4-0.6
reduces the amplitude ratio by over 50%, validating the damping ratio’s optimization capability for
edge frequency bands. Once the frequency exceeds 345 Hz, the system autonomously enters an
inertial stability state regardless of C. This three-dimensional characteristic demonstrates that TDVA
damping adjustments dynamically tailor energy dissipation pathways across frequency domains,
achieving comprehensive stability enhancement in machining processes.
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Figure 8. The amplitude ratio of the three—dimensional surface under the coupling effect of frequency and TDVA

damping. (a)Macroscopic 3D Surface Diagram; (b)Top view of 3D curved surface.

Based on the frequency-band vibration response analysis in Figure 9, the adaptation strategies
for TDVA damping parameters exhibit significant variability: In the low—frequency band of 10-140
Hz Figure 9(a), the amplitude ratio is highly insensitive to damping ratio variations and consistently
exceeds the chatter threshold, necessitating combined stiffness adjustments or process parameter
optimization to avoid vibrations. When the excitation frequency increases to 141-198 Hz Figures 9(b—
c), the system enters a damping-sensitive region. Low damping ratios C reduce the amplitude ratio
below 0.8, forming a stable machining window of 49 Hz bandwidth. Notably, within the narrow 141-
149 Hz sub-band, the amplitude ratio’s sensitivity to C increases abruptly —adjusting C from 0.1 to
0.15 alone reduces the amplitude ratio by 300%. In the high—frequency band 265-343 Hz, increasing
Cisrequired to suppress secondary resonance. Once the frequency exceeds 345 Hz, the system enters
an inertial stability domain, where the amplitude ratio autonomously converges to 0.4-0.5,
independent of damping.
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Figure 9. Control characteristics of TDVA damping in frequency division on the amplitude ratio of boring bar.
(a) Excitation frequency 10-140Hz; (b) Excitation frequency 141-149Hz; (c) Excitation frequency 150-198Hz;(d)
Excitation frequency 200-280Hz; (e) Excitation frequency 290-343Hz; (f) Excitation frequency 345-500Hz.

4. Analysis of Boring Bar Vibration Characteristics Under Combined Stiffness—
Damping Effects of TDVA

4.1. Stiffness Simulation Experiment of TDVA

Based on the stiffness regulation mechanism of the TDVA illustrated in Figure 3, the radial
stiffness of the rubber bushing is dynamically adjusted via axial compression. To establish the
quantitative relationship between stiffness and axial compression, a finite element model (FEM) of
the rubber bushing was developed for static simulation. Under fixed constraints on the mass block,
the equivalent stiffness was calculated using Hooke’s law by controlling the displacement of the axial
compression block and measuring the radial deformation Ax. The objective is to determine the
relationship between radial stiffness and axial compression distance for the TDVA. A simplified
FEM of a single rubber bushing was constructed in ANSYS Workbench, as shown in Figure 10. The
Mooney-Rivlin hyperelastic model was adopted to characterize the nonlinear behavior of the rubber
material. The mass block was constrained in all six degrees of freedom (DOF) while displacement
loads were applied to the axial compression block. A mesh size of 0.05 mm was utilized. Different
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working conditions were simulated by varying the axial compression displacement, and radial
displacements were monitored synchronously. When an external force F is applied to the rubber
bushing, inducing a radial displacement Ax, the stiffness of a single rubber bushing can be calculated
using Hooke’s law:

F

k=— (7)
Ax

since the TDVA incorporates two rubber bushings, its total stiffness is given by:
k,=2% ®)
F \ p
Axial compression block *
Rubber bush

y

/ Mass block

Displacement 0~1mm

1

Figure 10. Stiffness analysis finite element model.

The simulation results are shown in Figure 11. Analysis of the simulated data reveals that the
rubber material exhibits distinct stage—dependent mechanical behavior during axial compression.
When the compression displacement is within 0.7 mm, the system stiffness follows a linear response
regime, specifically, a 12% increase in radial stiffness per 0.1 mm increment in compression. During
this phase, the internal molecular chains of the material maintain a free conformational state,
ensuring reversible energy absorption. As illustrated in Figure 12, which plots the relationship
between TDVA stiffness and axial compression, surpassing the critical threshold of 0.7 mm axial
compression triggers the rubber bushing’s densification deformation phase. In this stage, the rate of
change in Ax (radial displacement) decreases significantly. The directional rearrangement of
molecular chains within the material induces a nonlinear stiffness surge. This intense deformation
process not only accelerates fatigue damage accumulation but also causes irreversible plastic
deformation. For engineering applications, it is recommended to strictly limit axial compression to
within the 0.7 mm threshold to ensure structural stability and prolong component service life.

(a) (b) (© (d)
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Figure 11. TDVA radial stiffness analysis. (a)Axial compression 0.1mm;(b) Axial compression 0.4mm;(c) Axial

compression 0.6mm;(d) Axial compression Imm.
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Figure 12. The relationship between stiffness and axial compression value of TDVA.

This section establishes a constitutive relationship model between the radial stiffness k: of the
TDVA and the axial compression distance. In engineering applications, the equivalent stiffness k2 can
be determined via swept-frequency excitation tests, and the optimal compression displacement can
be back-calculated based on characteristic curves. When the axial compression is controlled within
the 0-0.7 mm range, the stiffness adjustment range reaches 243%. Notably, the current stiffness
regulation model does not account for time—varying damping effects. Under practical operating
conditions, each 0.1 mm increase in axial compression alters the equivalent damping ratio, thereby
affecting vibration control bandwidth. In the next phase, a coupled model of axial compression and
damping will be developed to quantitatively analyze the modulation mechanisms of compression
displacement on damping characteristics.

4.2. Damping Simulation Experiment of TDVA

The damping characteristics of the TDVA were quantitatively analyzed through coupled axial
compression-radial loading simulations. Based on the finite element model (FEM) shown in Figure
13, periodic compressive displacements of 0.1 mm were applied radially under varying axial
compression levels. The force-displacement curves of the rubber bushing formed hysteresis loops,
where the enclosed area directly quantified the system’s energy dissipation capacity. Simulation
results indicate that as the axial compression displacement increased from 0 to 0.5 mm, the hysteresis
loop area exhibited a nonlinear increasing trend. This trend reveals a directional modulation
mechanism of axial compression on the TDVA’s damping properties, providing a theoretical
foundation for subsequent stiffness—damping coupling optimization.

Simple Harmonic Displacement=0.1mm

l
)/ Rubber bush

/ Mass block

Axial compression block

Displacement 0~0.7mm
Figure 13. Damping analysis finite element model.

For a viscous damping system subjected to external excitation, the equation of motion for a unit
mass can be expressed as:
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2w x+0 x =0 u(t) ©)
where wn is the natural frequency of the TDVA, and u(t) is the sinusoidal excitation function. Within
one cycle, the energy dissipation per unit mass AU (i.e., damping capacity) is defined as the energy
consumed during a complete periodic motion:

AU =2zx}m,08 (10)
where xo is the amplitude, and w is the excitation frequency. The maximum potential energy of the
system per unit mass is:

u -1k x= @

if the initial total energy of the system is denoted as Umax, the loss factor n equals the specific damping

(11)

capacity per radian over one damping cycle:

AU
27U,

from equation 12, the loss factor for a simple harmonic oscillator with viscous damping is expressed

n (12)

as:

B 2nxio,0f 204
L o (13)
2

for damped decay systems and forced vibrations, the most intense vibration response occurs when

27 x

the excitation frequency approximates the natural frequency of the vibration absorber (w=wn), where
energy dissipation must be considered.

The above derivations assume mass normalization. equation 10 represents the work done by a
unit mass to overcome resistance during one load—unload cycle, leading to:

20,8 =clm (14)
where c is the viscous damping coefficient, and mm is the mass. The unit mass and the energy
dissipated by each hysteresis loop are equal to:

AU = 27rx§a)c/m (15)
for non-normalized systems, the energy dissipated per hysteresis loop by viscous damping is:
AU, = 2rx;emc (16)
the initial maximum energy can be expressed using the initial maximum potential energy:
1
Ure =50 (17)
the loss factor for non-normalized systems is derived as:
. AU,  2mxoc  2ac
- - 1., & 18
27T Umax 272_ % E k xg k ( )
from equation 13, the damping ratio C is obtained:
c
=— 19
g p (19)

According to the quantitative analysis of the hysteresis loop area in Figure 14, combined with
equation 16 and the known amplitude x, and stiffness k, the parameter wc can be solved, and the
damping ratio C is subsequently derived using equation 19. The damping ratio evolution curve in
Figure 15 illustrates that within the axial compression range of 0-0.5 mm, C increases approximately
linearly with compression displacement, exhibiting a 16% enhancement in energy dissipation
efficiency per 0.1 mm increment. When the compression exceeds 0.5 mm, material nonlinearity
reduces the slope of C growth by 25%, with an inflection point observed at 0.7 mm. Consequently, it
is recommended to limit axial compression to the 0-0.5 mm range to achieve linear and controllable
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adjustment of C between 0.1 and 0.8. This design range ensures machining stability while avoiding
stress relaxation failure of the rubber bushing under high compression.
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Figure 14. TDVA damping force and displacement hysteresis curve.
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Figure 15. The relationship between damping and axial compression value of TDVA.

5. TDVA Stiffness and Damping Combined Effect

As established in prior sections, when the axial compression block in the TDVA moves
rightward, compressing the rubber bushings, both the stiffness and damping of the TDVA change.
By linking the results from Sections 4.1 and 4.2 under axial compression, the stiffness and damping
exhibit approximately linear correlation within the 0.5 mm axial compression range, as illustrated in
Figure 16.

In Figure 16(a), the cyan plane represents an amplitude ratio of 1. The intersection of the 3D
surface with this plane is marked by red curves. Regions where the 3D surface lies below the
amplitude ratio = 1 plane indicate favorable machining conditions with effective vibration
suppression, termed Adjustable area—A and Adjustable area—B. Figure 16(b), the top view of Figure
16(a), clearly shows that in Machinable Zone A, spanning 163-215 Hz excitation frequency, vibration
reduction is achievable with minimal axial compression. In Machinable Zone B (245-343 Hz),
adjusting the axial compression of the TDVA enables the amplitude ratio to remain below 1,
demonstrating the vibration—tuning capability of the proposed boring bar design. Beyond 343 Hz,
the system’s inherent stability autonomously converges the amplitude ratio to within 1, fulfilling
machining requirements without parameter adjustments. This characteristic validates the TDVA
boring bar’s dynamic adaptability across the full frequency spectrum.
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Figure 16. The relationship between axial compression value, excitation frequency, and amplitude ratio of
TDVA. (a) Three-dimensional graph of the relationship between axial compression value and amplitude ratio

of TDVA; (b) Top view of the relationship between axial compression value and amplitude ratio of TDVA.

Figure 17 presents a comparative analysis between the TDVA-integrated boring bar and a
conventional boring bar, where the colored curves represent the amplitude ratios of the TDVA under
varying axial compression displacements A and excitation frequencies. In contrast, the black curve
denotes the amplitude ratios of the conventional boring bar. The results demonstrate that the
designed TDVA-damped boring bar exhibits superior vibration regulation adaptability in mid-
frequency (163-215 Hz) and high—frequency ranges (>245 Hz). However, within the 0-0.1 mm axial
compression range, the curves display significant irregular fluctuations, necessitating supplemental
Figure 18 to further clarify the tunability within the 163-215 Hz excitation band. For the conventional
boring bar, the amplitude ratio (black curve) consistently exceeds 1 at excitation frequencies below
304 Hz, indicating its operational incapacity and lack of tunability in low—frequency regimes. In
contrast, the TDVA—-damped boring bar achieves stable machining performance in both the 163-215
Hz and >245 Hz frequency ranges, effectively overcoming the limitations of traditional designs.
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Figure 18. Time frequency domain focusing analysis of TDVA axial compression 0—-0.1mm.

6. Conclusions

This study reveals the stiffness—damping synergistic regulation mechanism by establishing a
dynamic mapping relationship between the axial compression displacement of the rubber bushing
and the vibration absorber parameters. Finite element simulations demonstrate that within the axial
compression range of 0-0.7 mm, the radial stiffness increases linearly at a gradient of approximately
5x10* N/m. In comparison, the damping ratio exhibits nonlinear attenuation beyond 0.5 mm. The
positive stiffness gradient regulation and negative damping gradient evolution form the theoretical
foundation for decoupled dual-parameter control, offering an innovative solution for broadband
vibration suppression through a single mechanical adjustment.

According to three-dimensional response surface analysis, the TDVA exhibits exceptional
vibration suppression adaptability across the 163-343 Hz wide—frequency domain. For mid-low—
frequency vibrations, 163-215 Hz, a micro—compression displacement of 0—0.1 mm combined with a
stiffness of 7-7.5x105> N/m and a damping ratio of 0.1-0.4 stabilizes the amplitude ratio below 1. In
the high—frequency range 245-343 Hz, a compression displacement of 0.2-0.5 mm with high stiffness
7.5-16x105 N/m and damping ratios 0.4-0.8 suppresses the amplitude ratio below 1, achieving over
65% reduction compared to conventional boring bars and overcoming their nonadjustable limitations
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below 303 Hz. With a reference excitation frequency range of 0-500 Hz, the TDV A boring bar achieves
a 22% expansion in effective machining bandwidth.
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