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Abstract: In deep-hole boring processes, boring bars with a large length-to-diameter ratio are 

typically employed. However, excessive overhang significantly reduces the boring bar’s stiffness, 

inducing vibrational effects that severely degrade machining precision and surface quality. To 

address this, the research objective is to suppress vibrations using a tunable-parameter boring bar. 

This paper proposes a novel Tunable Dynamic Vibration Absorber (TDVA) boring bar and designs 

its fundamental parameters. Based on the derived dynamic model, the vibration characteristics of the 

proposed boring bar are analyzed, revealing the variation in damping performance under different 

excitation frequencies. By establishing the relationship between TDVA stiffness, damping, and the 

axial compression of rubber bushings, optimal parameter combinations can be precisely identified 

for specific excitation frequencies. Ultimately, adjusting the TDVA’s axial compression displacement 

(0.1–0.5 mm) achieves a 22% expansion in the effective machining frequency range. 

Keywords: deep-hole boring; vibration absorber; axial compression; boring bar 

 

1. Introduction 

In deep-hole boring, insufficient stiffness due to excessive length-to-diameter ratios in boring 

bars often induces severe vibrations. These vibrations not only deteriorate workpiece surface 

quality[1,2], but may also trigger chatter, leading to tool breakage or machining failure[3]. 

Consequently, suppressing boring bar vibrations has become a critical challenge for improving deep-

hole machining precision. Current vibration control technologies for boring bars are categorized into 

passive and active methods[4,5]. 

Early researchers developed passive vibration suppression techniques by applying various 

damping principles to boring bar design. Typical examples include boring bars with special 

geometric structures, impact damping particles, friction energy dissipation structures[6–9] , and 

embedded dynamic vibration absorbers (DVAs). Passive methods achieve vibration control through 

structural optimization or additional damping devices, offering high reliability and low cost. Recent 

advancements focus on variable–stiffness DVAs. For instance, Lie Li et al.[10–12] proposed a DVA 

embedded with rubber bushing supports, where axial compression adjusts stiffness, significantly 

influencing damping effects. Iklodi Z[13] proposed a methodology combining time–domain 

simulations and hybrid periodic orbit continuation techniques to investigate the dynamic behavior 

of displacement–constrained tuned mass dampers (TMDs) in boring processes. Addressing the 

deterioration of damping performance and inherent chatter instability risks caused by such 
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constraints. Houck[14] suppressed resonance by tuning the natural frequency matching between the 

boring bar and tool holder. Additionally, Haizhao Shi et al. [15] proposed an equivalent linearization 

method, which showed that by optimizing the stiffness, mass, and damping of the shock absorber, 

the vibration peak of the boring bar can be effectively reduced, and the vibration absorption effect 

can be improved. L. Rubio and Miguélez [16,17] focused on optimizing the parameters of passive 

DVA, with the optimization criterion maximizing the minimum value of the stability lobe diagram. 

The calculation results indicate a significant improvement in stability performance, and the 

parameter tuning efficiency was improved by modifying the formula. 

With the advancement of innovative materials and control technologies, various active 

vibration–damped boring bars have been developed. Typical active solutions include 

electromagnetic variable–damping boring bars, particle–damped boring bars, magnetostrictive 

actuator–driven boring bars, electrorheological fluid–actuated boring bars, magnetorheological 

fluid–controlled boring bars, and piezoelectric ceramic–driven boring bars. 

Active vibration–damping technologies rely on innovative materials and closed–loop control for 

dynamic adjustment. Representative methodologies include: Liu Qiang et al. [18] designed an 

electromagnetic variable–damping boring bar that dynamically regulates magnetic damping forces 

by adjusting coil voltage. Taha Gokulu [19] expanded the application of zero–order harmonic 

methods in chatter analysis by integrating multi–insert rotation and time–varying stiffness design. 

Jiyuan Tian [20] optimized particle damping parameters via discrete element simulations, 

demonstrating that tungsten steel particles (Φ0.5 mm, 90% filling rate) enhance damping 

performance by 70%. GUO et al. [21] developed a tunable particle damper (TPD) with frequency–

adaptive stiffness. Ganesan Ramu et al. [22] proposed a vertical multi–cell hybrid particle damping 

system, achieving higher resonance gaps, reduced displacement, and minimal surface roughness. 

Lawranc et al. [23] utilized passive constrained layer damping (CLD) technology, optimizing 

combinations of tool substrate materials (copper/aluminum/brass) and elastomer layers (nitrile 

rubber/polyurethane) to suppress vibrations and extend tool life. In the field of brilliant damping, 

C.V. Biju et al. [24] pioneered a semi–active boring bar using magnetorheological fluid, enabling 

dynamic damping matching through electromagnetic regulation. Fan Chen et al. [25] implemented a 

magneto–actuated H∞ control system that significantly increased dynamic stiffness, resulting in 

chatter–free material removal rates. Yamada K et al. [26] proposed a hybrid piezoelectric–LR circuit 

vibration suppression method, improving energy dissipation efficiency through circuit parameter 

optimization and validating its industrial applicability. 

While passive methods remain favored in engineering due to structural simplicity, their fixed 

parameters limit adaptability to varying machining conditions. Conversely, active damping solutions 

face challenges such as complex sensor–actuator integration and reliability concerns despite their 

dynamic tunability. To address these trade–offs, this study introduces a tunable dynamic vibration 

absorber (TDVA) boring bar. A quantitative model is established to correlate TDVA stiffness, 

damping, and axial compression, revealing their coupling mechanisms. This work provides a 

vibration control solution for deep–hole boring that balances adjustability and operational reliability. 

2. Theoretical Model of the Boring Bar 

In order to study the vibration reduction performance of the boring bar, it is essential to analyze 

its damping mechanism. The damped boring bar consists of a main body and a Tunable vibration 

absorber (TDVA). The TDVA is embedded within the boring bar structure. According to the dynamic 

vibration absorber (DVA) theory, the TDVA serves as the critical component for vibration 

suppression. Installing the absorber near the tooltip of large length–to–diameter ratio boring bars can 

effectively mitigate external excitation–induced vibrations. During design, it is necessary to balance 

the overall stiffness of the boring bar with optimal vibration absorption performance. To maintain 

sufficient structural rigidity, the absorber’s volume must be minimized while ensuring effective 

damping functionality. 
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2.1. Vibration Model of Boring Bar 

The boring process is illustrated in Figure 1(a). The boring bar moves along the x–axis while the 

workpiece rotates about its central axis. The primary cutting force acts in the FR direction. The 

mathematical model of the boring bar is simplified as a rigidly clamped vibration system Figure 1(b), 

where M1 represents the equivalent mass of the boring bar, K1 denotes its equivalent stiffness, F0 is 

the excitation force amplitude, m2 and k2 are the mass and stiffness of the TDVA, c is the damping 

coefficient, and x1 and x2 are displacements of the boring bar and TDVA, respectively. The system is 

further simplified to a two–degree–of–freedom model Figure 2. 

 
(a) 

 
(b) 

Figure 1. Diagram and theoretical model of boring bar cutting. (a) Description of what is contained in the first 

panel; (b) Description of what is contained in the second panel. Figures should be placed in the main text near 

to the first time they are cited. 

 

Figure 2. Two degrees of freedom vibration model. 

When the boring bar is subjected to practical external excitation forces, the magnitude of the 

external loads undergoes periodic variation. The maximum amplitude of the external excitation force 

acting on the boring bar is defined as F0. In the characteristic vibration analysis, load variation serves 

as the primary research focus. The nonlinear effects of tool–workpiece contact interactions are 

neglected in this study, with emphasis placed solely on the time–dependent load component. The 

external load is defined as a harmonically varying periodic excitation force, expressed 

mathematically as: 
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                 (1) 

convert equation 1 into matrix form: 

             (2) 

considering that the external excitation is a harmonic force, the steady–state solution in complex form 

can be expressed as: 

                                 (3) 

substituting the above equation into equation (1), the maximum amplitude at the boring bar tip 

during cutting can be obtained as: 

                 (4) 

by reorganizing equation 4, the amplitude ratio can be derived as: 

           (5) 

by rearranging the above equation, the amplitude ratio is derived as: 

                 (6) 

where:  is the natural frequency of the vibration absorber,  is the natural 

frequency of the boring bar,  is the mass ratio between the boring bar and the absorber, 

 is the frequency ratio of the absorber to the boring bar,  is the forced vibration 

frequency ratio,  is damping ratio,  is static displacement under static load. 

According to the analysis of equation 6, a larger mass ratio μ results in a more pronounced 

amplitude ratio response, indicating that a higher mass ratio helps reduce system vibration 

amplitudes and improves damping performance. When the natural frequency ratio γ approaches 

resonance conditions, the system exhibits a higher amplitude ratio. Appropriately adjusting γ can 

achieve ideal vibration suppression effects. Since γis influenced by the absorber’s natural frequency 

ωn and the boring bar’s natural frequency ωn, the latter is typically fixed. By designing the absorber’s 

stiffness k2, γ can be adjusted, demonstrating that the amplitude ratio is significantly affected by k2. 

Additionally, the damping ratio ζ critically impacts the amplitude ratio. Modifying ζ alters the 

vibration amplitude and enhances system stability within specific frequency ranges.  

In summary, the amplitude ratio can be optimized through absorber design, with key 

parameters including the absorber’s mass m2, stiffness k2, and damping ratio ζ. To maximize damping 

performance while maintaining the boring bar’s overall rigidity, m2 should be maximized, and k2 

should be tunable. The effects of k2 and ζ on the amplitude ratio are complex and interdependent. 

Proper adjustment of these parameters enables effective vibration control.   

2.2. Design of Variable Parameter Boring Bar Structure 

The proposed boring bar structure innovatively integrates a boring head, a main body, and a 

variable–stiffness damping vibration absorber (TDVA). A built–in cavity is designed within the front 

rigid–weak zone of the boring bar to house the TDVA. The TDVA employs a tungsten–based high–

density alloy mass block to achieve an optimal mass ratio μ (mass block–to–boring bar ratio), enabling 

high–efficiency vibration damping while ensuring the primary boring bar’s rigidity. The TDVA 

comprises an axial compression block, dual rubber bushings, and a core mass block, forming a novel 

coupled mechanism: the rubber bushings encapsulate the mass block and establish radial contact 
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constraints with the boring bar’s inner wall. The left bushing interfaces with the axial compression 

block, while the right bushing contacts the inner wall.   

Based on a bolt–threaded hole transmission mechanism, rotating the bolt drives the axial 

compression block to generate axial displacement, compressing the dual rubber bushings to 

modulate radial stiffness and damping properties simultaneously. The nonlinear compressive 

deformation of the rubber material inherently adjusts stiffness parameters, while its viscoelastic 

properties enable dynamic adaptation of damping values. This stiffness–damping synergistic 

regulation mechanism overcomes the limitations of traditional single–parameter tuning in damped 

boring bars, achieving precise vibration suppression across diverse machining conditions. Existing 

studies predominantly focus on independent stiffness or damping adjustment strategies, particularly 

for rubber bushings that exhibit both stiffness–tuning and time–varying damping characteristics. 

However, research gaps remain in understanding the coupled effects of dual parameters. This study 

systematically elucidates the regulatory mechanism of stiffness–damping interactions on boring bar 

vibrations.  

 

Figure 3. Structure of the boring bar with a TDVA. 

3. Analysis of vibration characteristics of boring bar 

For the boring bar designed in Section 2.2, key parameters, including equivalent stiffness, 

equivalent mass, and vibration damping ratio, have been considered, as listed in Table 1. Through 

rational adjustments to the variable stiffness and damping of the TDVA, the vibration characteristics 

of the boring bar can be significantly enhanced, thereby improving the precision and efficiency of the 

machining process. 

Table 1. Parameters of the boring bar with a variable stiffness TDVA. 

 

Equivalent 

stiffness of the 

boring bar, 

K1(106N/m) 

Equivalent 

mass of the 

boring bar, M 

(kg) 

Equivalent 

mass of the 

TDVA,  

m2 (kg) 

Damping ratio 

of the TDVA, 

ζ 

Equivalent 

stiffness of the 

TDVA, 

K(106N/m) 

Vibration 

damping 

boring bar 

2.2057 1.12 0.59 variable variable 

boring bar 2.2134 1.216    

3.1. Influence of TDVA Stiffness on Boring Bar Vibration 

Based on the parameters listed in Table 1, the boring bar parameters were substituted into 

equation (6) to establish a vibration response model, yielding the TDVA stiffness–dependent 

vibration response curves shown in Figure 4. The horizontal axis represents the excitation frequency 

(0–500 Hz), while the vertical axis denotes the dimensionless amplitude ratio. The black curve 

corresponds to a conventional boring bar (single–degree–of–freedom system), and the colored curves 

represent TDVA–integrated boring bars with varying stiffness values k2. An amplitude ratio below 1 

indicates acceptable vibration levels for stable machining.  The analysis reveals that the conventional 
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boring bar exhibits a single intense resonance peak near 220 Hz, which aligns with its natural 

frequency, confirming resonance as the primary cause of machining failure. In contrast, the TDVA 

boring bar demonstrates typical two–degree–of–freedom system characteristics, with dual resonance 

peaks in all response curves: the first peak (100–200 Hz) corresponds to the dominant mode of the 

boring bar body, while the second peak (250–310 Hz) reflects the dynamic behavior of the TDVA 

subsystem. As  k2  increases from 3.0×10⁵ N/m to 11.0×10⁵ N/m, both resonance frequencies shift 

rightward, accompanied by reduced peak amplitudes, indicating that higher stiffness effectively 

broadens the stable machining frequency band.   

Further analysis of the influence of stiffness adjustment on vibration suppression performance 

reveals that when k₂=3.0×10⁵ N/m (blue curve), the amplitude ratio remains below 1 within the 115–

135 Hz frequency range, yielding a stable bandwidth of 20 Hz. Increasing  k2  to k₂=5.0×10⁵ N/m 

(green curve) extends the stable region to 142–175 Hz (33 Hz bandwidth), representing a 165% 

improvement. The intersections of the red horizontal line Z = 1 with each curve define the critical 

machining frequency, which shifts toward higher frequencies as k2 increases. At k₂=11.0×10⁵ N/m, the 

amplitude ratio remains below 1 in the 188–270 Hz range (82 Hz bandwidth); however, the system 

requires 362 Hz to enter the unconditional stability zone at higher frequencies, where its performance 

is inferior to that of the conventional boring bar.  

 

Figure 4. Amplitude ratio of the boring bar under different stiffnesses of the TDVA. 

Comparing the dynamic responses of the two boring bar types reveals that the TDVA technology 

significantly enhances vibration suppression performance. Within the 115–270 Hz range, adjusting 

the TDVA stiffness satisfies machining requirements. However, in the 303–327 Hz frequency band, 

the conventional boring bar meets machining conditions, whereas the TDVA boring bar 

underperforms. By modulating the TDVA stiffness, the effective operational frequency coverage is 

expanded from above 303 Hz (conventional boring bar) to 115–270 Hz and above 327 Hz, achieving 

a 166% increase in effective frequency coverage. This provides a theoretical foundation for parameter 

adaptation in complex machining scenarios. 

To intuitively illustrate the impact of TDVA stiffness on the amplitude ratio, a three–dimensional 

surface plot of the amplitude ratio under the coupled influence of frequency and TDVA stiffness is 

depicted in Figure 5. The vibration characteristics of the boring bar can be classified into three distinct 

zones: Area–A, characterized by a dual–ridge structure corresponding to the coupled resonance 

bands of the boring bar body （160±15 Hz） and the TDVA （245±20 Hz）. At the ridge peaks, the 

amplitude ratio exceeds 5, requiring strict avoidance to prevent chatter.  Adjustable area–C: Exhibits 

a saddle–shaped valley feature originating from the phase cancellation effect between stiffness and 

mass ratios. Within the 100–285 Hz range, adjusting the stiffness ensures an amplitude ratio below 1, 

establishing a stable cutting window with a bandwidth of 175 Hz. Area–B （>343 Hz）: Dominated 

by system inertia, the amplitude ratio decays exponentially with increasing frequency. Beyond 367 

Hz, the amplitude ratio remains below 1 across the entire frequency range, satisfying machining 

requirements without further adjustments. Notably, in the 320–343 Hz transition band, modifying 
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the TDVA stiffness reduces the amplitude ratio, validating the optimization capability of stiffness 

tuning for edge frequency bands.   

 
(a) 

 
(b) 

Figure 5. The amplitude ratio of the three–dimensional surface under the coupling effect of frequency and TDVA 

stiffness. (a) Macroscopic 3D Surface Diagram;(b)Top view of 3D curved surface. 

In machining processes, the selection of cutting parameters is directly linked to the distribution 

characteristics of the dominant excitation frequency. As shown in Figure 6, when the excitation 

frequency is divided into six characteristic intervals, the stiffness adaptation strategies for the TDVA 

exhibit significant differences: For the low–frequency band of 10–60 Hz (Figure 6a), the system 

operates in a stiffness–insensitive region where the amplitude ratio consistently exceeds the chatter 

threshold, necessitating priority optimization of the cutting path or spindle speed reduction to avoid 

this frequency range. When the excitation frequency increases to 70–290 Hz (Figures 6b–f), the 

vibration suppression effectiveness of stiffness adjustment gradually becomes prominent. 

Particularly within the 150–285 Hz range, maintaining the TDVA stiffness above 4.2×10⁵N/m 

establishes a stable machining window with a bandwidth of 135 Hz. Notably, the 270–285 Hz band 

requires high–stiffness configurations to suppress secondary resonance modes, while the 285–320 Hz 

range is classified as an absolute vibration–prohibited zone, requiring adjustments to feed rate 

combined with the workpiece’s vibration resistance characteristics to mitigate chatter risks. 
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(a)                                (b) 

 
(c)                                (d) 

 
(e)                                (f) 

Figure 6. Control characteristics of TDVA stiffness in different frequency bands on the amplitude ratio of boring 

bar. (a)Excitation frequency 10–60Hz; (b)Excitation frequency 70–140Hz; (c)Excitation frequency 150–

190Hz;(d)Excitation frequency 200–260Hz; (e)Excitation frequency 270–300Hz; (f)Excitation frequency 310–

500Hz. 

Further analysis of high–frequency conditions from Figure 6(f) reveals that within the 320–367 

Hz transition band, the amplitude ratio exhibits nonlinear dependence on stiffness values, requiring 

dynamic adjustment of k2 based on frequency gradients to achieve vibration suppression. When the 

frequency exceeds 367 Hz, the system enters an inertial stability zone, where the amplitude ratio 

autonomously converges below 1, independent of stiffness, and machining stability is ensured by 

maintaining baseline stiffness. This conclusively demonstrates that precise regulation of TDVA 

stiffness parameters is the core strategy for suppressing boring bar vibrations.   

3.2. Influence of TDVA Damping on Boring Bar Vibration 

Based on the parameters in Table 1, the damping–dependent vibration response curves of the 

TDVA constructed via equation 6 are shown in Figure 7. The horizontal axis represents the excitation 

frequency (0–500 Hz), and the vertical axis denotes the dimensionless amplitude ratio. The black 

curve corresponds to the conventional boring bar, while the colored curves represent the TDVA–

integrated boring bar with varying damping ratios ζ.  The analysis reveals that when ζ < 0.4, the 

system exhibits typical two–degree–of–freedom characteristics, with dual resonance peaks in the 
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response curves. However, for ζ>0.4, the dual peaks gradually merge into a single–peak structure 

due to high damping suppressing vibrations in the TDVA subsystem, weakening modal coupling 

and significantly increasing peak amplitudes with rising ζ. The red horizontal line at an amplitude 

ratio of 1 defines the allowable vibration threshold. Its intersections with the curves mark critical 

stability frequency boundaries. When 0≤ζ≤0.1, the system establishes a stable machining interval 

within the 149–198 Hz band. As ζ increases to 0.4, the stable window shifts toward higher frequencies 

(250–367 Hz), demonstrating the directional effect of the damping ratio on frequency–domain 

regulation.   

 

Figure 7. Amplitude ratio of the boring bar under different damping of the TDVA. 

A detailed comparison of response patterns under varying damping ratios reveals that under 

low–damping conditions, the system achieves excellent vibration suppression in the low–frequency 

range of 150–220 Hz but is prone to inducing secondary resonance at higher frequencies. Conversely, 

high damping significantly suppresses high–frequency vibrations at the cost of reduced low–

frequency stability. Notably, when the excitation frequency exceeds 367 Hz, the amplitude ratio 

remains below 1 for all ζ, validating the system’s inherent stability in high–frequency regions. In 

comparison, while the conventional boring bar retains basic machining capability above 303 Hz, its 

fixed damping structure cannot dynamically adapt to frequency–varying conditions, resulting in 

amplitude ratio peaks exceeding 5 in the mid–frequency band (200–280 Hz). This highlights the 

technical superiority of the TDVA’s tunable damping mechanism.   

Based on the frequency–damping coupled three–dimensional response surface shown in Figure 

8, three characteristic vibration zones of the boring bar can be clearly identified: Area–A contains 

three saddle–shaped peaks corresponding to the resonance bands of the first–order mode 85 Hz, 

second–order mode 165 Hz of the boring bar–tool system, and the TDVA–coupled mode 285 Hz, with 

amplitude ratios exceeding 5 at these peaks. Adjustable area–C exhibits a saddle–valley structure, 

where the amplitude ratio remains below 1 for damping ratios ζ=0–0.15, enabling stable machining 

within the 149–198 Hz frequency range 49 Hz bandwidth. Area–B is dominated by energy 

dissipation, where the amplitude ratio decays gradiently with coordinated increases in frequency 

and damping ratio; beyond 345 Hz, the amplitude ratio remains below 1 across the entire range 

without requiring adjustments. Notably, in the 265–343 Hz transition band, increasing ζ to 0.4–0.6 

reduces the amplitude ratio by over 50%, validating the damping ratio’s optimization capability for 

edge frequency bands. Once the frequency exceeds 345 Hz, the system autonomously enters an 

inertial stability state regardless of ζ. This three–dimensional characteristic demonstrates that TDVA 

damping adjustments dynamically tailor energy dissipation pathways across frequency domains, 

achieving comprehensive stability enhancement in machining processes. 
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(a) 

 
(b) 

Figure 8. The amplitude ratio of the three–dimensional surface under the coupling effect of frequency and TDVA 

damping. (a)Macroscopic 3D Surface Diagram; (b)Top view of 3D curved surface. 

Based on the frequency–band vibration response analysis in Figure 9, the adaptation strategies 

for TDVA damping parameters exhibit significant variability: In the low–frequency band of 10–140 

Hz Figure 9(a), the amplitude ratio is highly insensitive to damping ratio variations and consistently 

exceeds the chatter threshold, necessitating combined stiffness adjustments or process parameter 

optimization to avoid vibrations. When the excitation frequency increases to 141–198 Hz Figures 9(b–

c), the system enters a damping–sensitive region. Low damping ratios ζ reduce the amplitude ratio 

below 0.8, forming a stable machining window of 49 Hz bandwidth. Notably, within the narrow 141–

149 Hz sub–band, the amplitude ratio’s sensitivity to ζ increases abruptly—adjusting ζ from 0.1 to 

0.15 alone reduces the amplitude ratio by 300%. In the high–frequency band 265–343 Hz, increasing 

ζ is required to suppress secondary resonance. Once the frequency exceeds 345 Hz, the system enters 

an inertial stability domain, where the amplitude ratio autonomously converges to 0.4–0.5, 

independent of damping. 
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e)                                    (f) 

Figure 9. Control characteristics of TDVA damping in frequency division on the amplitude ratio of boring bar. 

(a) Excitation frequency 10–140Hz; (b) Excitation frequency 141–149Hz; (c) Excitation frequency 150–198Hz;(d) 

Excitation frequency 200–280Hz; (e) Excitation frequency 290–343Hz; (f) Excitation frequency 345–500Hz. 

4. Analysis of Boring Bar Vibration Characteristics Under Combined Stiffness–

Damping Effects of TDVA 

4.1. Stiffness Simulation Experiment of TDVA 

Based on the stiffness regulation mechanism of the TDVA illustrated in Figure 3, the radial 

stiffness of the rubber bushing is dynamically adjusted via axial compression. To establish the 

quantitative relationship between stiffness and axial compression, a finite element model (FEM) of 

the rubber bushing was developed for static simulation. Under fixed constraints on the mass block, 

the equivalent stiffness was calculated using Hooke’s law by controlling the displacement of the axial 

compression block and measuring the radial deformation Δx. The objective is to determine the 

relationship between radial stiffness and axial compression distance for the TDVA.  A simplified 

FEM of a single rubber bushing was constructed in ANSYS Workbench, as shown in Figure 10. The 

Mooney–Rivlin hyperelastic model was adopted to characterize the nonlinear behavior of the rubber 

material. The mass block was constrained in all six degrees of freedom (DOF) while displacement 

loads were applied to the axial compression block. A mesh size of 0.05 mm was utilized. Different 
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working conditions were simulated by varying the axial compression displacement, and radial 

displacements were monitored synchronously. When an external force F  is applied to the rubber 

bushing, inducing a radial displacement Δx, the stiffness of a single rubber bushing can be calculated 

using Hooke’s law: 

                                     (7) 

since the TDVA incorporates two rubber bushings, its total stiffness is given by: 

                                     (8) 

 

Figure 10. Stiffness analysis finite element model. 

The simulation results are shown in Figure 11. Analysis of the simulated data reveals that the 

rubber material exhibits distinct stage–dependent mechanical behavior during axial compression. 

When the compression displacement is within 0.7 mm, the system stiffness follows a linear response 

regime, specifically, a 12% increase in radial stiffness per 0.1 mm increment in compression. During 

this phase, the internal molecular chains of the material maintain a free conformational state, 

ensuring reversible energy absorption. As illustrated in Figure 12, which plots the relationship 

between TDVA stiffness and axial compression, surpassing the critical threshold of 0.7 mm axial 

compression triggers the rubber bushing’s densification deformation phase. In this stage, the rate of 

change in Δx (radial displacement) decreases significantly. The directional rearrangement of 

molecular chains within the material induces a nonlinear stiffness surge. This intense deformation 

process not only accelerates fatigue damage accumulation but also causes irreversible plastic 

deformation. For engineering applications, it is recommended to strictly limit axial compression to 

within the 0.7 mm threshold to ensure structural stability and prolong component service life. 

 
                 (a)                  (b)                 (c)               (d) 

=


F
k

x

2 =2k k
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Figure 11. TDVA radial stiffness analysis. (a)Axial compression 0.1mm;(b) Axial compression 0.4mm;(c) Axial 

compression 0.6mm;(d) Axial compression 1mm. 

 

Figure 12. The relationship between stiffness and axial compression value of TDVA. 

This section establishes a constitutive relationship model between the radial stiffness k2 of the 

TDVA and the axial compression distance. In engineering applications, the equivalent stiffness k2 can 

be determined via swept–frequency excitation tests, and the optimal compression displacement can 

be back–calculated based on characteristic curves. When the axial compression is controlled within 

the 0–0.7 mm range, the stiffness adjustment range reaches 243%. Notably, the current stiffness 

regulation model does not account for time–varying damping effects. Under practical operating 

conditions, each 0.1 mm increase in axial compression alters the equivalent damping ratio, thereby 

affecting vibration control bandwidth. In the next phase, a coupled model of axial compression and 

damping will be developed to quantitatively analyze the modulation mechanisms of compression 

displacement on damping characteristics. 

4.2. Damping Simulation Experiment of TDVA 

The damping characteristics of the TDVA were quantitatively analyzed through coupled axial 

compression–radial loading simulations. Based on the finite element model (FEM) shown in Figure 

13, periodic compressive displacements of 0.1 mm were applied radially under varying axial 

compression levels. The force–displacement curves of the rubber bushing formed hysteresis loops, 

where the enclosed area directly quantified the system’s energy dissipation capacity. Simulation 

results indicate that as the axial compression displacement increased from 0 to 0.5 mm, the hysteresis 

loop area exhibited a nonlinear increasing trend. This trend reveals a directional modulation 

mechanism of axial compression on the TDVA’s damping properties, providing a theoretical 

foundation for subsequent stiffness–damping coupling optimization. 

 

Figure 13. Damping analysis finite element model. 

For a viscous damping system subjected to external excitation, the equation of motion for a unit 

mass can be expressed as: 
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                               (9) 

where ωn is the natural frequency of the TDVA, and u(t) is the sinusoidal excitation function. Within 

one cycle, the energy dissipation per unit mass ΔU (i.e., damping capacity) is defined as the energy 

consumed during a complete periodic motion: 

                                    (10) 

where x0 is the amplitude, and ω is the excitation frequency. The maximum potential energy of the 

system per unit mass is: 

                                 (11) 

if the initial total energy of the system is denoted as Umax, the loss factor η equals the specific damping 

capacity per radian over one damping cycle: 

                                      (12) 

from equation 12, the loss factor for a simple harmonic oscillator with viscous damping is expressed 

as: 

                               (13) 

for damped decay systems and forced vibrations, the most intense vibration response occurs when 

the excitation frequency approximates the natural frequency of the vibration absorber (ω≈ωn), where 

energy dissipation must be considered. 

The above derivations assume mass normalization. equation 10 represents the work done by a 

unit mass to overcome resistance during one load–unload cycle, leading to: 

 

                                     (14) 

where c is the viscous damping coefficient, and mm is the mass. The unit mass and the energy 

dissipated by each hysteresis loop are equal to: 

                                   (15) 

for non–normalized systems, the energy dissipated per hysteresis loop by viscous damping is: 

                                   (16) 

the initial maximum energy can be expressed using the initial maximum potential energy: 

                                     (17) 

the loss factor for non–normalized systems is derived as: 

                              (18) 

from equation 13, the damping ratio ζ is obtained: 

                                      (19) 

According to the quantitative analysis of the hysteresis loop area in Figure 14, combined with 

equation 16 and the known amplitude x₀ and stiffness k, the parameter ωc can be solved, and the 

damping ratio ζ is subsequently derived using equation 19. The damping ratio evolution curve in 

Figure 15 illustrates that within the axial compression range of 0–0.5 mm, ζ increases approximately 

linearly with compression displacement, exhibiting a 16% enhancement in energy dissipation 

efficiency per 0.1 mm increment. When the compression exceeds 0.5 mm, material nonlinearity 

reduces the slope of ζ growth by 25%, with an inflection point observed at 0.7 mm. Consequently, it 

is recommended to limit axial compression to the 0–0.5 mm range to achieve linear and controllable 
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adjustment of ζ between 0.1 and 0.8. This design range ensures machining stability while avoiding 

stress relaxation failure of the rubber bushing under high compression.  

 

Figure 14. TDVA damping force and displacement hysteresis curve. 

 

Figure 15. The relationship between damping and axial compression value of TDVA. 

5. TDVA Stiffness and Damping Combined Effect 

As established in prior sections, when the axial compression block in the TDVA moves 

rightward, compressing the rubber bushings, both the stiffness and damping of the TDVA change. 

By linking the results from Sections 4.1 and 4.2 under axial compression, the stiffness and damping 

exhibit approximately linear correlation within the 0.5 mm axial compression range, as illustrated in 

Figure 16. 

In Figure 16(a), the cyan plane represents an amplitude ratio of 1. The intersection of the 3D 

surface with this plane is marked by red curves. Regions where the 3D surface lies below the 

amplitude ratio = 1 plane indicate favorable machining conditions with effective vibration 

suppression, termed Adjustable area–A and Adjustable area–B. Figure 16(b), the top view of Figure 

16(a), clearly shows that in Machinable Zone A, spanning 163–215 Hz excitation frequency, vibration 

reduction is achievable with minimal axial compression. In Machinable Zone B (245–343 Hz), 

adjusting the axial compression of the TDVA enables the amplitude ratio to remain below 1, 

demonstrating the vibration–tuning capability of the proposed boring bar design. Beyond 343 Hz, 

the system’s inherent stability autonomously converges the amplitude ratio to within 1, fulfilling 

machining requirements without parameter adjustments. This characteristic validates the TDVA 

boring bar’s dynamic adaptability across the full frequency spectrum. 
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(a) 

 
(b) 

Figure 16. The relationship between axial compression value, excitation frequency, and amplitude ratio of 

TDVA. (a)Three–dimensional graph of the relationship between axial compression value and amplitude ratio 

of TDVA; (b)Top view of the relationship between axial compression value and amplitude ratio of TDVA. 

Figure 17 presents a comparative analysis between the TDVA–integrated boring bar and a 

conventional boring bar, where the colored curves represent the amplitude ratios of the TDVA under 

varying axial compression displacements Δ and excitation frequencies. In contrast, the black curve 

denotes the amplitude ratios of the conventional boring bar. The results demonstrate that the 

designed TDVA–damped boring bar exhibits superior vibration regulation adaptability in mid–

frequency (163–215 Hz) and high–frequency ranges (>245 Hz). However, within the 0–0.1 mm axial 

compression range, the curves display significant irregular fluctuations, necessitating supplemental 

Figure 18 to further clarify the tunability within the 163–215 Hz excitation band. For the conventional 

boring bar, the amplitude ratio (black curve) consistently exceeds 1 at excitation frequencies below 

304 Hz, indicating its operational incapacity and lack of tunability in low–frequency regimes. In 

contrast, the TDVA–damped boring bar achieves stable machining performance in both the 163–215 

Hz and >245 Hz frequency ranges, effectively overcoming the limitations of traditional designs. 
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Figure 17. Comparison between TDVA boring bar and ordinary boring bar. 

 

Figure 18. Time frequency domain focusing analysis of TDVA axial compression 0–0.1mm. 

6. Conclusions 

This study reveals the stiffness–damping synergistic regulation mechanism by establishing a 

dynamic mapping relationship between the axial compression displacement of the rubber bushing 

and the vibration absorber parameters. Finite element simulations demonstrate that within the axial 

compression range of 0–0.7 mm, the radial stiffness increases linearly at a gradient of approximately 

5×104 N/m. In comparison,  the damping ratio exhibits nonlinear attenuation beyond 0.5 mm. The 

positive stiffness gradient regulation and negative damping gradient evolution form the theoretical 

foundation for decoupled dual–parameter control, offering an innovative solution for broadband 

vibration suppression through a single mechanical adjustment.   

According to three–dimensional response surface analysis, the TDVA exhibits exceptional 

vibration suppression adaptability across the 163–343 Hz wide–frequency domain. For mid–low–

frequency vibrations, 163–215 Hz, a micro–compression displacement of 0–0.1 mm combined with a 

stiffness of 7–7.5×10⁵ N/m and a damping ratio of 0.1–0.4 stabilizes the amplitude ratio below 1. In 

the high–frequency range 245–343 Hz, a compression displacement of 0.2–0.5 mm with high stiffness 

7.5–16×10⁵ N/m and damping ratios 0.4–0.8 suppresses the amplitude ratio below 1, achieving over 

65% reduction compared to conventional boring bars and overcoming their nonadjustable limitations 
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below 303 Hz. With a reference excitation frequency range of 0–500 Hz, the TDVA boring bar achieves 

a 22% expansion in effective machining bandwidth. 
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