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Abstract: Significant vulnerabilities in traditional authentication systems have been demonstrated 
due to the highly dependency on smartphone hardware devices to execute many different and 
complicated tasks. PINs, Passwords, and static biometric techniques have been shown to be subjected 
to various serious attacks, such as environmental limitations, spoofing, and brute force attacks, and 
this in turn mitigates the security level of the entire system. In this study, a robust framework for 
smartphone authentication is presented. Touch dynamic pattern recognitions, including trajectory 
curvature, touch pressure, acceleration, 2 dimensional spatial coordinates, and velocity, have been 
extracted and assessed as behavioral biometric features. TOPSIS, Technique for Order of Preference 
by Similarity to Ideal Solution, methodology has also been incorporated to get the most affected and 
valuable features, in which they are then fed as input to three different Machine Learning (ML) 
algorithms: Random Forest (RF), Gradient Boosting Machines (GBM), and K-Nearest Neighbors 
(KNN). Our analysis, supported by experimental results, ensure that the RF model outperforms the 
two other ML algorithms by getting F1-score, accuracy, recall, and precision of 95.1%, 95.2%, 95.5%, 
and 94.8%, respectively. In order to further increase the resiliency of the proposed technique, data 
perturbation approach, including temporal scaling and noise insertion, has been augmented. Also, 
the proposal has been shown to be resilient against both environmental variation-based attacks by 
achieving accuracy above 93% and spoofing attacks by obtaining a detection rate of 96%. This 
emphasizes that the proposed technique provides a promising solution to many authentication issues 
and offers user-friendly and scalable method to improve the security of the smartphone against 
cybersecurity attacks. 

Keywords: smartphone authentication systems; cybersecurity; behavioral biometrics; machine 
learning; TOPSIS 
 

1. Introduction 

The need for resilient and secure authentication systems has been highly requested due to the 
continuous incremental increase in the dependency on smartphones in daily activities for 
professional, personal, and financial operations. It has been pointed out that even though traditional 
authentication approaches, such as PINs, passwords, and static biometrics, still provide a certain 
security level in a system, they have been shown to be subjected to many threats, including data 
sensitivity leakage, phishing, theft, and brute force attacks [1]. Other static biometric methods, e.g., 
facial recognition and fingerprint, have enhanced and increased the security of the system; however, 
it has been proven that they are subject to static data constraints, environmental conditions, and 
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spoofing-based attacks [2]. To address the aforementioned shortcomings and improve usability and 
security, dynamic promising solutions should be adopted [3]. 

Behavioral biometrics have been considered as one of the best prominent solutions for system 
authentication issues since they analyze in-depth the personal specific interaction patterns, including 
swipe gestures, touch pressure, and (X, Y) coordinate of spatial movements. These approaches can 
repeatedly provide authentication and also be adapted to dynamic user behavior compared to 
traditional approaches, such as static techniques. Motion data and touch dynamics have been 
investigated by many prior works in order to precisely recognize unique user features; however, they 
are not strong enough to resist real-world variations and conditions, e.g., counterfeit attempts and 
environmental and climate modifications [4,5]. Such problems ensure the real need for more resilient 
techniques. 

Interestingly, in order to further refine authentication systems, the three-dimensional (3D) touch 
sensors have been widely leveraged in many different applications. For instance, to get unique 
interaction patterns for each person, contemporary techniques have been implemented using 3D 
touch position and pressure sensitivity, and this significantly elevates the security level and the 
robustness of the system [6]. Other methodologies, e.g., audio and sound sensors, have been 
augmented with the 3D touch sensors to be employed for mobile healthcare in order to maintain the 
data of the patient private and secure [7]. To significantly refine the security level of a design, the 
biometric data, e.g., electroencephalogram (EEG) signal processing, can be combined with sensor 
data [8]. While these advances contribute to improved security, there is still a need to integrate touch 
pressure and location data into a unified framework for more robust authentication. 

Previous works have not focused on integrating 3D touch pressure data with on-screen finger 
location data to create a unified framework using decision-making techniques, such as TOPSIS. In 
this work, we focus on addressing these limitations by presenting a novel smartphone authentication 
framework. The TOPSIS-based decision-making approach has been augmented with ML techniques 
to identify and rank critical and valuable features in user behavior. By leveraging only valuable 
features, selected using the TOPSIS approach, and enhancing model resilience using ML algorithms, 
the proposed technique provides a secure, scalable, and user-friendly authentication system that can 
thwart many attacks, including cybersecurity threats. In order to refine the resiliency and robustness 
of the proposed technique, temporal scaling, noise insertion, and spatial perturbation approaches 
have been incorporated to mimic real-world user responses. This work proposes a secure and 
lightweight technique against strong threats and addresses current authentication dilemmas by 
integrating TOPSIS methodology with ML algorithms and dynamic pattern recognition. 

The main contributions of this paper are: 

1. A smartphone authentication application was developed on the Android platform to collect data 
from 30 participants, each performing 10 attempts. 

2. A machine learning-based approach was developed for system authentication, where various 
machine learning algorithms were evaluated to identify the most effective model. 

3. The TOPSIS method was employed to select key behavioral features, improving the 
authentication system’s performance by focusing on the most impactful data. 

4. The system's resilience was enhanced by applying data perturbation techniques, including noise 
injection and temporal scaling, to simulate real-world variations. 

5. The system was tested against four types of cybersecurity attacks—spoofing, lighting variations, 
orientation changes, and noise injection—to assess its robustness and security. 
The rest of the paper is organized as follows: Section 2 gives a brief overview of previous works, 

including behavioral biometrics for authentication systems, ML techniques in authentication systems 
as well as decision-making methods, and current challenges in security and usability. Section 3 
presents in detail our proposed technique. The experimental results, including the decision and 
analysis are given in Section 4. Our conclusion and future works are explained in Section 5. 

2. Literature Review 
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Due to the current advancements and modern sophistications in smart devices, many 
researchers have implemented biometric authentication to significantly improve the system security 
and usability [9]. Unfortunately, timeouts, and failures are two main drawbacks in conventional 
authentication techniques, such as pattern locks, PIN codes, basic biometric systems, and passwords. 
Although traditional authentications are simple, lightweight, and easy to implement, it has been 
demonstrated that they are subjected to brute force, password theft, and phishing assaults [3,7,10,11]. 
Once static credentials are compromised, an attacker can get unlimited access to break the system 
security [12]. To address such vulnerabilities, recent research has incorporated ML algorithms and 
sensor data along with the traditional authentication to offer more secure and resilient systems 
against many serious attacks [4,13]. 

2.1. Behavioral Biometrics for Authentication Systems 

Biometric authentication systems, including fingerprint and facial recognition, have been 
introduced as alternatives to address the limitations of traditional methods. These systems offer 
improved security and user convenience compared to passwords [14,15]. However, facial recognition 
systems can be spoofed using high-quality images or masks, and fingerprint sensors are susceptible 
to environmental factors, such as rain, dust, and physical degradation [16,17] and vulnerable to 
advanced spoofing techniques [18,19]. The aforementioned challenges emphasize the need for 
resilient, dynamic, and adaptive authentication methods capable of addressing both security and 
usability issues. In [20], the authors combined fingerprint, facial recognition, and iris scanning as 
alternatives to traditional methods. Although the proposal utilized physiological characteristics for 
user verification and provides enhanced security, it is subjected to environmental factors, such as 
humidity, lighting conditions, and device orientation [21]. Furthermore, biometric data is susceptible 
to spoofing, where adversaries can mimic user credentials [19,22]. This elevates the need for behavior-
based authentication approaches. 

Behavioral biometrics rely on user interaction patterns, such as swipe dynamics, typing speed, 
and touch pressure, to enable continuous authentication. Unlike static physiological biometrics, 
behavioral methods are dynamic and adaptive to changes in user behavior over time, and this in turn 
provides resilience against spoofing attempts and adversarial attacks [6]. Many studies have shown 
the impact of the behavioral biometrics on the performance of the smartphone authentication. Smith 
et al. have employed swipe trajectories and pressure levels in order to differentiate impostors from 
genuine persons [23]. In [24], Wang et al have presented the touch dynamics during password input, 
and the results indicated that the proposed technique can highly elevate the overall performance of 
the authentication systems. Compared to traditional biometrics, behavioral biometrics are non-
intrusive, have flexible authentication, and difficult to be duplicated. Such techniques render 
researchers to focus further on individuals with more features, e.g., keystroke patterns, gait, and 
touch dynamics [20,25]. It has been proven that touch patterns can effectively distinguish between 
authentic users and impostors, and this improves the system security [26–28]. Unfortunately, 
behavioral biometrics are not robust in real-world conditions, such as international spoofing attempts 
and different environmental circumstances. Such drawbacks can be mitigated by augmenting 
behavioral biometrics with decision-making and ML algorithms. 

2.2. ML Techniques in Authentication Systems and Decision-Making Methods 

ML algorithms, such as Support Vector Machines (SVM), Decision Trees, and Neural Networks 
have provided promising solutions in improving the system performance and identifying user-
specific patterns [29]. Other ML algorithms, such as Random Forest (RF) and Gradient Boosting 
Machine (GBM) based multi classifiers, further improve both the generalization and the performance 
by decreasing overfitting [30]. ML techniques have shown exceptional performance in processing 
complicated behavioral data, and this allows to effectively classify user interactions. For examples, 
both RF and SVM algorithms have been leveraged to analyze touch dynamics data, and achieved 
high accuracy for user authentication [31–33]. Pryor et al. merged RF and SVM classifiers to process 
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touch behavior datasets and obtained accuracy exceeding 85% [31]. However, in real-time 
performance for a flawless user experience, computational complexity of such technique with high 
protection level still pose a challenge [33]. 

To further reduce the computational penalty and complexity in real time performance, ML 
models can be incorporated with decision-making techniques, such as TOPSIS, to select only valuable 
feature [34,35]. The hybrid ML and decision-making frameworks can help address existing issues in 
authentication systems. The TOPSIS and Analytic Hierarchy Process (AHP) techniques are an 
example of Multi-Criteria Decision-Making (MCDM) approaches that can be employed to prioritize 
and rank input features in many different applications. Specifically, TOPSIS identifies the highest 
impact parameters on a system to provide best possible solutions [34,35], and this can help to 
successfully rank features in many ML models [34]. However, integrating TOPSIS and ML with 
behavioral biometrics for smartphone authentication is still unrevealed in the Cybersecurity field. 

2.3. Security and Usability Challenges in System Authentication 

It is not easy to balance between security and usability in authentication systems. Increasing the 
security level of a design often leads to increase the system complexity that could negatively affect 
the user experience [36,37]. For instance, while strong authentication systems employing multi-factor 
approaches provide strong resistance against both spoofing and adversarial attacks, they induce user 
frustration due to the increase in time complexity or repeated queries for user verification [19]. 
Similarly, when environmental factors, e.g., lighting or humidity, disrupt sensor detection sensitivity, 
highly sensitive biometric systems may not function properly and this leads to produce wrong output 
[38–40]. 

It is worth noting that repeatedly tracking biometric features of users and precisely extracting 
valuable features, such as touch pressure, swipe dynamics, and trajectory patterns, significantly 
increase the system robustness [41,42]. However, the computations of real-time processing will be 
highly increased, and this renders the system unsuitable for seamless use. Interestingly, decision-
making techniques, e.g., TOPSIS, can be utilized to select only valuable features, and this in turn 
ensures that the system remains user-friendly, and secure and decreases the computational system 
penalty [43,44]. 

The goal of this work is to develop a lightweight and robust authentication framework that is 
dynamically adapted to the user environments and conditions in real-world applications [37]. Even 
though significant progress has been achieved in the fields of biometric authentication, current 
existing techniques are still subjected to cybersecurity attacks and are not robust to real-world 
conditions. To address the aforementioned shortcomings, in this paper, different ML algorithms are 
integrated with TOPSIS and behavioral biometrics to get secure, resilient, and lightweight prominent 
solution for smartphone authentication. 

3. Methodology 

In this section, we present the proposed touch-based authentication framework, as illustrated in 
Figure 1. The process begins by collecting data from thirty participants, each used the 3D touch screen 
on a Samsung Galaxy A72 smartphone with ten attempts. This data is gathered and recorded through 
a custom-developed application, named the Authentication Application (AA), which was 
implemented on the Android platform. The AA captures sensitive data, including touch pressure, X 
and Y coordinates, velocity, acceleration, and trajectory curvature, as entered by the participants. This 
data is stored in a file named "dataset collection." 

Next, the TOPSIS decision-making approach is applied to identify the most impactful features, 
while eliminating those that have minimal effect. The dataset is then preprocessed and cleaned. 
Following this, three machine learning algorithms—Random Forest, Gradient Boosting, and K-
Nearest Neighbors (KNN)—are implemented and trained. During the training phase, the TOPSIS 
approach iteratively evaluates the results from each ML model, updates the feature set, and refines 
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the data processing based on the newly identified valuable features. Once the model is trained, it is 
ready for use in mobile authentication. The complete framework comprises five main processes: 

 

Figure 1. The life cycle of our complete framework. 

3.1. Data Generation and Preprocessing 

The 3D touch sensors of the Samsung Galaxy A72 device, shown in Figure 2, were 
experimentally utilized to collect data from touch-based behavioral biometrics. The dataset was 
generated with the participation of 30 individuals (15 males and 15 females) whose age range is 
between 18 and 50 years. Ethical considerations were a fundamental aspect of this study to ensure 
the responsible collection and use of data. Prior to participation, all individuals provided informed 
consent, ensuring their awareness and voluntary involvement in the study. To protect participant 
privacy, all collected data was anonymized, preventing the identification of individual contributors. 
Every participated person gave ten different pattern recognition samples that comprise typing 
phrases, unlocking the device, and performing swipe gestures. Our authentication application, 
implemented leveraging the Android system of Samsung Galaxy A72, received the incoming data 
with high resolution that are entered by the participated persons using the 3D touch screen. It is 
worth mentioning that the collected dataset has been encrypted to prohibit an attacker or 
unauthorized user get access to it. In order to verify that this work is within the conduct research role, 
it follows the international organization standards in research integrity as it only deals with human 
participants. The main five extracted features of the dynamic pattern recognition that are directly 
obtained from the 3D touch screen contain the following: 

1. Touch Pressure (P): The intensity of pressure applied during interactions. 
2. Trajectory Curvature (T): The geometric path traced by the finger's movement. 
3. Velocity (V): The rate of change in position during swipe gestures. 
4. Spatial Coordinates (X, Y): The precise position of the finger on the 3D touch screen. 
5. Acceleration (A): The change in velocity over time. 

The resulting dataset spans a broad spectrum of user behaviors and scenarios, designed to 
enhance the robustness and adaptability of the proposed system. Noise removal, value 
normalization, and handling of missing data have been performed during the data preprocessing in 
order to ensure consistent and trustworthiness of the collected dataset. We also validated the dataset 
to make sure data reliability and integrity. To keep the collected data reliable and uniform, the mean 
for numerical features and the mode for nominal features have been leveraged. Note that, the 
interquartile range (IQR) approach has been used to recognize trajectory data, touch pressure, and 
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velocity and then either exchanged with median values or eliminated for consistency purposes. Also, 
repeated records or entries have been recognized and then eliminated to avoid bias in the training 
process, and the entire features have been carefully normalized to a common scale in order to make 
sure that they are matchable with each used model. 

 

                          a. The experiments                     b. Collected data operations 

Figure 2. Dataset generation and collection using dynamic pattern recognition. 

3.2. Feature Ranking and Engineering Leveraging TOPSIS Methodology 

In order to rank the current entered and extracted features in terms of their effectiveness on the 
system performance, the TOPSIS methodology have been utilized. Similar procedure in [35,43,45] has 
been used to implement and run the TOPSIS methodology. First of all, the decision matrix D has been 
built, equation 1, in which each given column corresponds to the assessment metrics and each given 
row reflects the feature. The assessment metrics consist of the main measurement components, e.g., 
correlation, variance, and entropy. Note that, the aim of leveraging the TOPSIS methodology is to 
recognize only the most affected features in order to refine the accuracy of the system. 

 

(1)

Next, to ensure the features’ comparability, the D has been normalized leveraging the following 
formula, equation 2: 

𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ       ∀𝑖, 𝑗 
(2) 

After D is normalized, weights wj has been applied to normalized values, in order to drive the 
weighted normalized matrix, equation 3: 𝑣௜௝ = 𝑤௝ ∙ 𝑟௜௝ (3) 

The worst and possible values for each metric are represented by negative-ideal (A−) and ideal 
(A+) formulas, respectively, as follows [45], equation 4 and 5: 𝐴ା = ൛max൫𝑣௜௝൯ |𝑗 ∈ 𝐽, min (𝑣௜௝)|𝑗 ∈ 𝐽ᇱൟ (4) 𝐴ି = ൛min൫𝑣௜௝൯ |𝑗 ∈ 𝐽, max (𝑣௜௝)|𝑗 ∈ 𝐽ᇱൟ (5) 

In which J′ signifies to non-beneficial criteria while J refers to beneficial criteria. 
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In order to find the actual distance of each extracted feature from the negative-ideal and ideal 
solutions, the separation measures (S− and S+) have been performed, as follows, equation 6: 

𝑆௜ା = ඩ෍(𝑣௜௝ − 𝐴௝ା)ଶ௡
௝ୀଵ , 𝑆௜ି = ඩ෍(𝑣௜௝ − 𝐴௝ି )ଶ௡

௝ୀଵ  (6) 

All given features have been ranked based on their values in Ci, in which higher values reflect 
high impact [46]. The relative closeness (Ci) of each feature to the ideal solution has been calculated, 
as follows in equation 7: 

𝐶௜ = 𝑆௜ି𝑆௜ା + 𝑆௜ି  (7) 

It is worth to mention that the velocity, trajectory curvature, and touch pressure have been 
proven to represent the most valuable and affective features based on our experimental results 
obtained from the TOPSIS technique. Such valuable features have been demonstrated to refine the 
ML performance by increasing the model accuracy and mitigating the complexity of the 
authentication design compared to implementing the technique without incorporating the TOPSIS 
methodology. 

3.3. ML Models 

In order to refine the performance of the user authentication technique, three different ML 
algorithms—Gradient Boosting Machines (GBM), Random Forest (RF), and K-Nearest Neighbors 
(KNN)— have been employed. Each on these three models have been trained with and without 
incorporating the TOPSIS methodology. 

1. Gradient Boosting Machines (GBM): GBM iteratively builds decision trees to minimize 
prediction errors, aiming to improve the model's predictive accuracy. The prediction at each 
iteration is represented as in equation 8: 𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) + 𝜂 ∙ ℎ௠(𝑥) (8) 

where Fm(x) is the updated model, Fm-1(x) is the previous model, η is the learning rate, and hm(x) 
is the weak learner [47]. 

2. Random Forest (RF): RF constructs multiple decision trees during training and combines their 
outputs—through majority voting for classification or averaging for regression—with the 
objective of enhancing predictive performance. The prediction function is given as in equation 9 
below: 

𝑓(𝑥) = 1𝑁 ෍ 𝑇௜(𝑥)ே
௜ୀଵ  (9) 

where N is the number of trees, and Ti(x) represents individual tree predictions [48]. 

3. K-Nearest Neighbors (KNN): KNN aims to classify data points by determining the majority 
label of their k-nearest neighbors, using a distance metric such as the Euclidean distance [49], 
equation 10: 

𝑑(𝑥, 𝑦) = ඩ෍(𝑥௜ − 𝑦௜)ଶ௡
௜ୀଵ  (10) 

3.4. Data Perturbation Techniques 
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Data perturbation approaches, noise injection, temporal scaling, and spatial perturbations, have 
been used to further refine the robustness of the proposed technique and the generalization 
capabilities of the ML models. The main purpose of incorporating such approaches is to imitate the 
real-world noise and variability in personal actions and responses through increasing the ability of 
the proposal to effectively deal with different conditions and circumstances. 
• Spatial Perturbations: In order to mimic natural hand movements, small random Perturbation 

has been applied to the spatial coordinates (X, Y) based on the following equation 11: (𝑋ᇱ, 𝑌ᇱ) = (𝑋 + 𝛿௫, 𝑌 + 𝛿௬) (11) 

where δy and δx represent the random perturbations. 
• Noise Injection: To emulate variability in real-world interactions, random noise is augmented 

to the extracted features, e.g., velocity and touch pressure, equation 12: 𝑋ᇱ = 𝑋 + 𝜖 (12) 

where ϵ is random noise obtained from a Gaussian distribution, and X is the value of the original 
extracted feature. 
• Temporal Scaling: To emulate various interaction styles, interaction durations have been further 

scaled to reflect variations in user speed, equation 13: 𝑻ᇱ = 𝑻 ∙ 𝜶 (13) 

where α is the scaling factor and T is the actual interaction duration [50] [51]. 

3.5. Assessing and Testing the Robustness of the Proposal 

The collected dataset has been partitioned into 80% and 20% for training and validation, 
respectively, in order to assess the performance of the ML models. Several testing approaches and 
evaluation metrics have been used to evaluate the robustness and effectiveness of the proposed 
technique, aiming to get high reliable and accurate authentication system under different 
circumstances and conditions: 
• Recall (Sensitivity): This metric quantifies the proportion of true positives among all actual 

positives, ensuring genuine users are accurately recognized [8], equation 14: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (14) 

• Precision: A critical metric for evaluating the proportion of true positives among all predicted 
positives, reducing false alarms, equation 15: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (15) 

High precision minimizes false-positive rates, which is crucial to preventing unauthorized access [8]. 
• Accuracy: The primary metric to measure the ratio of correctly classified instances to the total 

number of instances, equation 16: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (16) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, 
respectively [8]. 
• F1-Score: A balanced measure combining precision and recall, particularly useful in scenarios 

with class imbalances or where addressing the trade-off between precision and recall is critical 
[8], equation 17: 
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𝐹1 = 2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (17) 

• Confusion Matrix (CM): in order to evaluate the system's performance, the CM has been used, 
in which is can offer information about true negatives, false negatives, true positives, and false 
positives. This CM can provide valuable details about the model operation [53]. 

• Resilience Testing [52]: robustness of the proposed technique has been assessed under three 
different conditions. First, environmental variations are tested, including different lighting 
conditions (bright, dim, and dark) and humidity levels, to ensure stable feature extraction and 
classification accuracy. Second, variations in user behavior, such as changes in touch speed, 
pressure intensity, and swipe dynamics, are tested to assess the system’s ability to adapt, with 
performance measured by accuracy and F1-score. Finally, the system's performance is tested 
under different device orientations—portrait, landscape, and tilted—to ensure consistency 
across various handling scenarios. 

• Spoofing Detection Rate (SDR): The effectiveness of the proposed technique can be assessed 
via using the SDR measurement in order to reveal and prevent spoofing attempts-based attacks. 
The mathematical equation of SDR is as in the following [22], equation 18: 

𝑆𝐷𝑅 = Total Number of Spoofing AttemptsNumber of Detected Spoofing Attempts (18) 

4. Experimental Results 

The performance assessment of our proposed technique based on smartphone authentication 
has been given in details in this section, in which the TOPSIS methodology-based feature ranking has 
been combined with different ML algorithms. The evaluation of our proposal is mainly concentrated 
on the performance criteria, a comprehensive analysis of the confusion matrix to evaluate the 
classification accuracy, and robustness testing under real-world conditions and circumstances. The 
proposed framework has been implemented on three main layers to correctly perform and 
authenticate each participated user. First of all, the touch-based dynamic pattern recognition data, 
including the gyroscope, 3D touch sensor, and accelerometer, has been used for data collection and 
generation layer. This layer has been leveraged to extract real-time features, such as coordinate curves 
for trajectories, 2D spatial coordinate, touch pressure, acceleration, and velocity. Data preparation 
and processing is the second layer that is used to carry out data preprocessing, including 
standardization, normalization, and noise mitigation or reduction. During data processing, the 
TOPSIS method has been implemented and applied to carefully rank the extracted valuable features. 
The ranked valuable features have then fed as input into three different ML models — RF, KNN, and 
GBM — for user classification purposes. Finally, the application layer has been used to classify the 
findings to the authenticated persons or users in order to give immediate feedback and input for 
denying or granting access. 

The proposed framework processes the incoming dynamic touch information in real-time, in 
which optimized algorithms have been leveraged for low-latency performance in order to ensure 
better smooth operation. The primary sequence of the given events is as follows: the personal touch 
data is first entered and preprocessed; then, the ranked affected features are fed into the trained ML 
models; and next, the classification results of the participated persons are pulled up, and the system 
either refuses or allows the user to enter. 

4.1. Feature Importance Analysis 

The most affected and significant features for personal authentication are listed in Table 1, in 
which the ranking of the dynamic pattern recognition (behavioral biometrics) based on the TOPSIS 
methodology is presented. As illustrated in the Table, the three top ranked values of the affected and 
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valuable features are: the touch force (pressure), abscissa (X coordinate), and duration (velocity). Note 
that, these features have been chosen based on their highest essentiality. Then, they are fed as primary 
input into each of the implemented ML models, instead of considering all of the entered features by 
the users. This helps to further refine the performance of the system and optimize the entire 
framework. 

Table 1. TOPSIS-Based Feature Ranking. 

Feature TOPSIS Score Rank 
Touch Pressure 0.5053 1 
X Coordinate 0.4602 2 

Velocity  0.4562 3 
Y Coordinate 0.4353 4 

4.2. Performance Evaluation 

The performance assessment of the three implemented ML models—KNN, RF, and GBM—with 
and without incorporating TOPSIS methodology-based feature ranking is elucidated in Table 2. 
Based on the experimental results, it has been pointed out that the KNN model performed good on 
small datasets; however, encountered a problem with scalability when the data size is significantly 
elevated. GBM model accomplished high accuracy due to its iterative boosting process, yet it needed 
longer training time. RF model offered a good solution balance between computational efficiency and 
accuracy, and this renders the system more appropriate for real-time applications and processing 
systems. Note that, the RF model produced the highest accuracy compared to the two other models, 
KNN and GBM. Also, it has been pointed out that classification accuracy has been refined when 
TOPSIS-methodology based feature chosen ranking is augmented, and this further emphasizes that 
feature selection approach is valuable. A good balance between computational efficiency and 
performance could be obtained based on this comparative assessment leveraging the most suitable 
model for authentication system purposes. 

Table 2. Performance Metrics of the Proposed Models. 

Metric 
RF GBM KNN 

Without 
TOPSIS  

With TOPSIS Without 
TOPSIS  

With 
TOPSIS 

Without 
TOPSIS  

With 
TOPSIS 

Accuracy 90.4% 94.8% 90.13%  94.7% 83.42% 93.8% 
Precision 88.9% 94.8% 91.09% 94.3% 81.24% 93.5% 

Recall 90.89% 95.5% 89.78% 94.9% 83.31% 94.1% 
F1-Score 90.15% 95.1% 89.35% 94.6% 81.37%  93.8% 

4.3. Confusion Matrix Results 

In order to verify both areas and strengths of our proposal, the confusion matrix (CM) has been 
leveraged to further show whether our design is able to successfully classify personal interactions 
based on the selected features. Figure 3 illustrates CM outcomes for the classification performance of 
our proposed technique based on RF model for smartphone authentication system. 

Firstly, the matrix illustrates diagonal clarity, where the majority of predictions are correctly 
classified. For example, most of the users have been successfully classified based on the prediction 
accuracy, and this shows the great performance of our proposal. The given simulation results indicate 
that our proposed technique is able to correctly recognize between user touch dynamic patterns based 
on valuable selected features, including spatial coordinates (X, Y), interaction duration or velocity, 
and touch pressure intensity. 

However, with some minor emerged errors, the matrix also reveals misclassification cases, 
represented by off-diagonal values, and this could be due to overlapping behavioral patterns among 
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participated users, leading to the possibility of overlapping among classes. For example, one sample 
from each of the users 6, 7, and 8 has been misclassified as users 8, 19, and 15, respectively, due to 
some overlapping in dynamic pattern recognition, e.g., similar swipe trajectories and / or similar 
touch pressure levels among some participated users. Note that, some minor deviations in 
performance may lead to missing data in some experiments when taking into consideration the 
differences in some samples among the participated users. 

Even though some numbers have not been classified correctly, the correct classifications shown 
on the main diagonal of the CM elucidates the significantly effectiveness of the TOPSIS methodology-
based feature extraction. Also, the high correct predictions in the matrix diagonal implies that the 
selected features, e.g., spatial X coordinates, trajectory curvature, and touch pressure intensity, are 
the most promising ones. By incorporating only valuable features and optimizing the 
hyperparameters of the model, the proposed technique can offer an excellent balance among different 
classes, and this in turn could lead to mitigate the wrong classification and obtain better performance. 

 
Figure 3. The Confusion Matrix (CM) outcomes of our proposal. 

4.4. Evaluating the Strength of Our Proposal 

In order to exam the resiliency of the proposal-based RF model under various real-world 
circumstances, four different cybersecurity attacks have been incorporated, as elucidated in Table 3. 
The reason behind selecting the RF model for the testing is that the FR model provides better accuracy 
compared to the two other models as shown previously in Table 2. The proposed technique showed 
excellent resiliency against spoofing attempts-based attacks in which the spoofing detection rate 
reached 96%, and this emphasized that the proposed techniques can successfully prohibit adversarial 
access-based attacks. Moreover, ever when random noise has been inserted into the primary input 
dataset, the framework illustrated to be strong against such noise insertion data-based attacks via 
accomplishing 90.8% accuracy. The proposal can also prevent environmental variations or 
conditions, including device orientation adjustments and lighting changes, via achieving 93.2% and 
92.3% accuracies, respectively. Given the aforementioned experimental results, the proposal is shown 
to be resilient against different conditions and circumstances, and this makes it appropriate for real-
world processing systems and applications. 
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Table 3. Testing the resiliency of the proposed technique-based RF model against four serious cybersecurity 
threats. 

Test Scenario Metric Result 
Spoofing Detection Detection Rate 96% 
Lighting Variations Accuracy 92.3% 

Device Orientation Changes Accuracy 93.2% 
Noise Injection in Data Accuracy 90.8% 

4.5. Discussion Summary 

It has been proven that the TOPSIS methodology can effectively be leveraged to select the most 
affected features, and this in turn increase the security level of the authentication system. The three 
extracted features: velocity, X coordinate, and touch pressure, have been recognized to be the most 
affected and valuable features, and can significantly elevate the classification accuracy. as previously 
explained via the experimental findings, the hybrid ML models and these affected features have 
refined the performance of the system significantly. It has been pointed out that when the RF 
combined with the TOPSIS methodology-based feature chosen, it can accomplish the highest 
accuracy than the two other algorithms. Under different environmental circumstances and 
conditions, e.g., device orientation and modifications in lighting density, our proposed technique has 
been carefully evaluated in terms of resiliency and robustness with minimal performance penalty 
and with high detection rates in spoofing attempts-based attacks. Moreover, the proposal keeps 
achieving a high level of accuracy, underscoring the combined strength of the chosen features and 
robustness’s model in refining both accuracy and reliability in real-world applications and real 
system processing even when noise was inserted into the original dataset. 

Even though the proposed framework has shown many advancements, it also has some 
limitations. For examples, environmental conditions and highly dependency on variations in device 
orientation and lighting density can slightly impact on collected and generated dataset. Also, with 
small sample size of the provided dataset, it could not possible to capture all user behavioral 
biometrics, and this encourages us to gather and enlarge the data samples in our future works. 
Finally, significant additional resources might be requested in some of the designed and 
implemented ML algorithms, e.g., GBM, and this in turn potentially impact on both the 
computational penalty and affected the real-time performance. 

5. Conclusion and Future Work 

A smartphone framework-based authentication technique has been designed and implemented 
leveraging TOPSIS technique-based extracted feature ranking, dynamic pattern recognition 
(behavioral biometrics), and different ML models. It has been proven that when RF is incorporated, 
the proposed technique performs better than the other two ML algorithms, with a reported accuracy 
of 95.2%. The system is also resilient against serious cybersecurity attacks, achieving over 93% 
accuracy against environmental changes and 96% detection rates against spoofing attacks. By 
considering only critical features, such as touch pressure, velocity, and trajectory curvature, the 
framework balances security and usability, enabling real-time adaptability for end users. The 
proposed technique provides a lightweight, robust, secure, and scalable authentication solution when 
the TOPSIS decision-making technique and ML algorithms are integrated into the design. Despite 
promising results, this work has limitations, including the use of a small dataset and the lack of 
testing against extreme environmental factors. In future work, we plan to expand our datasets further 
by considering multi-modal biometrics, such as facial recognition and fingerprints, and leveraging 
deep learning algorithms, such as CNN, DNN, and RNNs, to enhance performance in real-world 
applications and improve energy efficiency. 
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